Richard W Groen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4794271/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs, 2015, 7, 311-320.	5.2	405
2	The Therapeutic CD38 Monoclonal Antibody Daratumumab Induces Programmed Cell Death via Fcγ Receptor–Mediated Cross-Linking. Journal of Immunology, 2016, 197, 807-813.	0.8	225
3	Upregulation of CD38 expression on multiple myeloma cells by all-trans retinoic acid improves the efficacy of daratumumab. Leukemia, 2015, 29, 2039-2049.	7.2	217
4	A Rational Strategy for Reducing On-Target Off-Tumor Effects of CD38-Chimeric Antigen Receptors by Affinity Optimization. Molecular Therapy, 2017, 25, 1946-1958.	8.2	197
5	Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia. Journal of Clinical Investigation, 2014, 124, 644-655.	8.2	180
6	Preclinical Evidence for the Therapeutic Potential of CD38-Targeted Immuno-Chemotherapy in Multiple Myeloma Patients Refractory to Lenalidomide and Bortezomib. Clinical Cancer Research, 2015, 21, 2802-2810.	7.0	136
7	Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma. Haematologica, 2016, 101, 616-625.	3.5	136
8	Monocytes and Granulocytes Reduce CD38 Expression Levels on Myeloma Cells in Patients Treated with Daratumumab. Clinical Cancer Research, 2017, 23, 7498-7511.	7.0	134
9	Non-canonical PRC1.1 Targets Active Genes Independent of H3K27me3 and Is Essential for Leukemogenesis. Cell Reports, 2016, 14, 332-346.	6.4	126
10	Combined CD28 and 4-1BB Costimulation Potentiates Affinity-tuned Chimeric Antigen Receptor–engineered T Cells. Clinical Cancer Research, 2019, 25, 4014-4025.	7.0	110
11	Reconstructing the human hematopoietic niche in immunodeficient mice: opportunities for studying primary multiple myeloma. Blood, 2012, 120, e9-e16.	1.4	104
12	CD38 as a therapeutic target for adult acute myeloid leukemia and T-cell acute lymphoblastic leukemia. Haematologica, 2019, 104, e100-e103.	3.5	90
13	Functional analysis of HGF/MET signaling and aberrant HGF-activator expression in diffuse large B-cell lymphoma. Blood, 2006, 107, 760-768.	1.4	80
14	Preclinical Activity of the Oral Proteasome Inhibitor MLN9708 in Myeloma Bone Disease. Clinical Cancer Research, 2014, 20, 1542-1554.	7.0	75
15	Targeting EXT1 reveals a crucial role for heparan sulfate in the growth of multiple myeloma. Blood, 2010, 115, 601-604.	1.4	50
16	Combining a CAR and a chimeric costimulatory receptor enhances T cell sensitivity to low antigen density and promotes persistence. Science Translational Medicine, 2021, 13, eabh1962.	12.4	49
17	Accessory Cells of the Microenvironment Protect Multiple Myeloma from T-Cell Cytotoxicity through Cell Adhesion-Mediated Immune Resistance. Clinical Cancer Research, 2013, 19, 5591-5601.	7.0	48
18	Optimal selection of natural killer cells to kill myeloma: the role of HLA-E and NKG2A. Cancer Immunology, Immunotherapy, 2015, 64, 951-963.	4.2	47

RICHARD W GROEN

#	Article	IF	CITATIONS
19	Illegitimate WNT Pathway Activation by β-Catenin Mutation or Autocrine Stimulation in T-Cell Malignancies. Cancer Research, 2008, 68, 6969-6977.	0.9	41
20	Transcriptional Silencing of the Wnt-Antagonist DKK1 by Promoter Methylation Is Associated with Enhanced Wnt Signaling in Advanced Multiple Myeloma. PLoS ONE, 2012, 7, e30359.	2.5	41
21	A bioluminescence imaging based in vivo model for preclinical testing of novel cellular immunotherapy strategies to improve the graft-versus-myeloma effect. Haematologica, 2008, 93, 1049-1057.	3.5	37
22	Mouse Versus Human Extrinsic Cues Dictate Transformation Potential In BCR-ABL/BMI1-Induced Leukemia In Humanized Xenograft Models. Blood, 2013, 122, 515-515.	1.4	29
23	Lenalidomide for the treatment of relapsed and refractory multiple myeloma. Cancer Management and Research, 2012, 4, 253.	1.9	28
24	Human Regulatory T Cells Do Not Suppress the Antitumor Immunity in the Bone Marrow: A Role for Bone Marrow Stromal Cells in Neutralizing Regulatory T Cells. Clinical Cancer Research, 2013, 19, 1467-1475.	7.0	27
25	Liposomal dexamethasone inhibits tumor growth in an advanced human-mouse hybrid model of multiple myeloma. Journal of Controlled Release, 2019, 296, 232-240.	9.9	27
26	Bone Marrow Mesenchymal Stromal Cells Can Render Multiple Myeloma Cells Resistant to Cytotoxic Machinery of CAR T Cells through Inhibition of Apoptosis. Clinical Cancer Research, 2021, 27, 3793-3803.	7.0	27
27	Realgar nanoparticles <i>versus </i> <scp>ATO</scp> arsenic compounds induce <i>inÂvitro</i> and <i>inÂvivo</i> activity <i>against</i> multiple myeloma. British Journal of Haematology, 2017, 179, 756-771.	2.5	26
28	Eradication of Medullary Multiple Myeloma by CD4+ Cytotoxic Human T Lymphocytes Directed at a Single Minor Histocompatibility Antigen. Clinical Cancer Research, 2010, 16, 5481-5488.	7.0	24
29	Genetically engineered mesenchymal stromal cells produce IL-3 and TPO to further improve human scaffold-based xenograft models. Experimental Hematology, 2017, 51, 36-46.	0.4	19
30	Time 2EVOLVE: predicting efficacy of engineered T-cells – how far is the bench from the bedside?. , 2022, 10, e003487.		13
31	Preclinical evidence for an effective therapeutic activity of FL118, a novel survivin inhibitor, in patients with relapsed/refractory multiple myeloma. Haematologica, 2020, 105, e80-e83.	3.5	12
32	CD38-specific Chimeric Antigen Receptor Expressing Natural Killer KHYG-1 Cells: A Proof of Concept for an "Off the Shelf―Therapy for Multiple Myeloma. HemaSphere, 2021, 5, e596.	2.7	11
33	The Impact and Modulation of Microenvironment-Induced Immune Resistance Against CAR T Cell and Antibody Treatments in Multiple Myeloma. Blood, 2019, 134, 137-137.	1.4	10
34	Decoding the Pathophysiology and the Genetics of Multiple Myeloma to Identify New Therapeutic Targets. Seminars in Oncology, 2013, 40, 537-548.	2.2	9
35	SF3B1 as therapeutic target in FLT3/ITD positive acute myeloid leukemia. Leukemia, 2021, 35, 2698-2702.	7.2	9
36	CD38 Chimeric Antigen Receptor Engineered T Cells As Therapeutic Tools for Multiple Myeloma. Blood, 2014, 124, 4759-4759.	1.4	8

RICHARD W GROEN

#	Article	IF	CITATIONS
37	Bone Morphogenetic Protein 4 Gene Therapy in Mice Inhibits Myeloma Tumor Growth, But Has a Negative Impact on Bone. JBMR Plus, 2020, 4, e10247.	2.7	7
38	Intracellular IL-32 regulates mitochondrial metabolism, proliferation, and differentiation of malignant plasma cells. IScience, 2022, 25, 103605.	4.1	6
39	Complete Tumor Regression by Liposomal Bortezomib in a Humanized Mouse Model of Multiple Myeloma. HemaSphere, 2020, 4, e463.	2.7	5
40	Systematic Characterization of Genes Representing Preferential Molecular Vulnerabilities for Myeloma Cells Compared to Other Neoplasias - Implications for the Biology and Therapeutic Targeting of Myeloma. Blood, 2019, 134, 4407-4407.	1.4	4
41	CD38-Targeted Immunochemotherapy Of Multiple Myeloma: Preclinical Evidence For Its Combinatorial Use In Lenalidomide and Bortezomib Refractory/Intolerant MM Patients. Blood, 2013, 122, 277-277.	1.4	4
42	Modulation of CD38 Expression Levels on Multiple Myeloma Tumor Cells By All-Trans Retinoic Acid Improves the Efficacy of the Anti-CD38 Monoclonal Antibody Daratumumab. Blood, 2014, 124, 2096-2096.	1.4	3
43	Pharmacological Perturbation of the Immunoproteasome in Hematologic Neoplasias: Therapeutic Implications. Blood, 2019, 134, 1291-1291.	1.4	2
44	Targeting EXT-1 Reveals a Crucial Role of Heparan Sulfate in the Growth of Multiple Myeloma Blood, 2009, 114, 1830-1830.	1.4	1
45	Establishing Human Niche Xenograft Models For Myeloid and Lymphoid Leukemia Driven By MLL-AF9. Blood, 2013, 122, 1646-1646.	1.4	1
46	Induction of Potent Anti-Tumor Effects by Original and TCR-Redirected CD4 + Cytotoxic T Cells Blood, 2009, 114, 1333-1333.	1.4	1
47	The Humanized Multiple Myeloma Mouse Model: Opportunities for Studying the Pathogenesis of MM in Its Natural Environment Blood, 2009, 114, 1847-1847.	1.4	Ο
48	Disregulated Osteogenesis By Mesenchymal Stromal Cells (MSC) After In Vivo Exposure To Multiple Myeloma: Studies In a Novel Humanized Mouse Model For Bone Remodelling In Myeloma. Blood, 2013, 122, 1906-1906.	1.4	0
49	Evaluation of Extrinsic and Intrinsic Cues Involved in BCR-ABL-Induced Leukemogenesis. Blood, 2014, 124, 515-515.	1.4	Ο
50	Establishing Human Niche Xenograft Models for Myeloid and Lymphoid Leukemia Driven By MLL-AF9. Blood, 2014, 124, 4781-4781.	1.4	0
51	Addition of the Vascular Niche Component to the Human Bone Marrow-like Scaffold Model. Blood, 2015, 126, 2402-2402.	1.4	Ο
52	Functional Interactions between Transcription Factors Involved in Myeloma Pathogenesis - Biological and Therapeutic Implications. Blood, 2019, 134, 315-315.	1.4	0
53	Functional Genomic and Immune Response Characterization of PTEN Loss: Therapeutic Implications for Myeloma. Blood, 2021, 138, 1612-1612.	1.4	0
54	Interactions with a "Humanized" Mesenchymal Bone Marrow Stromal Niche In Vivo Modify the Patterns of Essential Genes for Myeloma Cells: Therapeutic Implications. Blood, 2020, 136, 40-40.	1.4	0