Hui Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4794044/publications.pdf

Version: 2024-02-01

107	3,907	36	58
papers	citations	h-index	g-index
110	110	110	5397
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Highly Efficient Far Red/Nearâ€Infrared Solid Fluorophores: Aggregationâ€Induced Emission, Intramolecular Charge Transfer, Twisted Molecular Conformation, and Bioimaging Applications. Angewandte Chemie - International Edition, 2016, 55, 155-159.	13.8	257
2	Mesoporous Silica Nanoparticles Coated by Layer-by-Layer Self-assembly Using Cucurbit[7]uril for in Vitro and in Vivo Anticancer Drug Release. Chemistry of Materials, 2014, 26, 6418-6431.	6.7	183
3	pH and Glutathione Dual-Responsive Dynamic Cross-Linked Supramolecular Network on Mesoporous Silica Nanoparticles for Controlled Anticancer Drug Release. ACS Applied Materials & Diterfaces, 2015, 7, 28656-28664.	8.0	128
4	Layer-by-Layer (LBL) Self-Assembled Biohybrid Nanomaterials for Efficient Antibacterial Applications. ACS Applied Materials & Samp; Interfaces, 2015, 7, 17255-17263.	8.0	116
5	Magnetic and pH-sensitive nanoparticles for antitumor drug delivery. Colloids and Surfaces B: Biointerfaces, 2013, 103, 15-22.	5.0	108
6	Synthesis of a biodegradable tadpole-shaped polymer via the coupling reaction of polylactide onto mono(6-(2-aminoethyl)amino-6-deoxy)- \hat{l}^2 -cyclodextrin and its properties as the new carrier of protein delivery system. Journal of Controlled Release, 2005, 107, 158-173.	9.9	107
7	Near-Infrared Triggered Upconversion Polymeric Nanoparticles Based on Aggregation-Induced Emission and Mitochondria Targeting for Photodynamic Cancer Therapy. ACS Applied Materials & Lamp; Interfaces, 2017, 9, 26731-26739.	8.0	104
8	Biodegradable Supramolecular Materials Based on Cationic Polyaspartamides and Pillar[5]arene for Targeting Gramâ€Positive Bacteria and Mitigating Antimicrobial Resistance. Advanced Functional Materials, 2019, 29, 1904683.	14.9	93
9	Supramolecular nanotheranostics based on pillarenes. Theranostics, 2019, 9, 3075-3093.	10.0	92
10	Self-assembly and applications of poly(glycidyl methacrylate)s and their derivatives. Chemical Communications, 2014, 50, 13201-13215.	4.1	90
11	Construction of Supramolecular Nanoassembly for Responsive Bacterial Elimination and Effective Bacterial Detection. ACS Applied Materials & Samp; Interfaces, 2017, 9, 10180-10189.	8.0	84
12	pH-Responsive Molecular Tweezers. Journal of the American Chemical Society, 2010, 132, 8544-8545.	13.7	82
13	Temperature- and pH-responsive nanoparticles of biocompatible polyurethanes for doxorubicin delivery. International Journal of Pharmaceutics, 2013, 441, 30-39.	5.2	81
14	Reverse polymeric micelles for pharmaceutical applications. Journal of Controlled Release, 2008, 132, 208-215.	9.9	74
15	Stimuli-responsive biocompatible nanovalves based on \hat{I}^2 -cyclodextrin modified poly(glycidyl) Tj ETQq $1\ 1\ 0.7843$	814 ₃ .gBT	/Overlock 10 Tf
16	Biodegradable Synthetic Antimicrobial with Aggregation-Induced Emissive Luminogens for Temporal Antibacterial Activity and Facile Bacteria Detection. Chemistry of Materials, 2018, 30, 1782-1790.	6.7	68
17	Low-power white light triggered AIE polymer nanoparticles with high ROS quantum yield for mitochondria-targeted and image-guided photodynamic therapy. Journal of Materials Chemistry B, 2017, 5, 6277-6281.	5.8	66
18	Biodegradable and temperature-responsive polyurethanes for adriamycin delivery. International Journal of Pharmaceutics, 2011, 412, 52-58.	5. 2	65

#	Article	IF	Citations
19	Conjugates of poly(dl-lactic acid) with ethylenediamino or diethylenetriamino bridged bis(l²-cyclodextrin)s and their nanoparticles as protein delivery systems. Journal of Controlled Release, 2006, 112, 301-311.	9.9	64
20	Aminated Linear and Star-Shape Poly(glycerol methacrylate)s: Synthesis and Self-Assembling Properties. Biomacromolecules, 2010, 11, 889-895.	5.4	62
21	Preparation and tunable temperature sensitivity of biodegradable polyurethane nanoassemblies from diisocyanate and poly(ethylene glycol). Soft Matter, 2011, 7, 3546.	2.7	62
22	Nanoassembles constructed from mesoporous silica nanoparticles and surface-coated multilayer polyelectrolytes for controlled drug delivery. Microporous and Mesoporous Materials, 2014, 185, 245-253.	4.4	62
23	A novel delivery system of doxorubicin with high load and pH-responsive release from the nanoparticles of poly $(\hat{l}\pm,\hat{l}^2$ -aspartic acid) derivative. European Journal of Pharmaceutical Sciences, 2012, 47, 256-264.	4.0	59
24	Interactions of some modified mono- and bis- \hat{l}^2 -cyclodextrins with bovine serum albumin. Bioorganic and Medicinal Chemistry, 2006, 14, 131-137.	3.0	57
25	Renewable polyesters derived from 10-undecenoic acid and vanillic acid with versatile properties. Polymer Chemistry, 2014, 5, 2843-2853.	3.9	54
26	Temperature-responsive drug delivery systems based on polyaspartamides with isopropylamine pendant groups. Soft Matter, 2013, 9, 7267.	2.7	48
27	Construction of an iridium(<scp>iii</scp>)-complex-loaded MOF nanoplatform mediated with a dual-responsive polycationic polymer for photodynamic therapy and cell imaging. Chemical Communications, 2020, 56, 762-765.	4.1	48
28	Construction of stable polymeric vesicles based on azobenzene and beta-cyclodextrin grafted poly(glycerol methacrylate)s for potential applications in colon-specific drug delivery. Chemical Communications, 2015, 51, 4715-4718.	4.1	44
29	Aggregation-Induced-Emissive Molecule Incorporated into Polymeric Nanoparticulate as FRET Donor for Observing Doxorubicin Delivery. ACS Applied Materials & Samp; Interfaces, 2015, 7, 23760-23766.	8.0	44
30	An injectable and biodegradable hydrogel based on poly(α,βâ€aspartic acid) derivatives for localized drug delivery. Journal of Biomedical Materials Research - Part A, 2014, 102, 628-638.	4.0	43
31	Star-shaped alkylated poly(glycerol methacrylate) reverse micelles: Synthesis and evaluation of their solubilizing properties in dichloromethane. Journal of Polymer Science Part A, 2007, 45, 2425-2435.	2.3	42
32	Construction of coumarin-based cross-linked micelles with pH responsive hydrazone bond and tumor targeting moiety. Journal of Materials Chemistry B, 2016, 4, 1480-1488.	5.8	42
33	Amino poly(glycerol methacrylate)s for oligonucleic acid delivery with enhanced transfection efficiency and low cytotoxicity. Soft Matter, 2011, 7, 9239.	2.7	40
34	Post-modification of poly(glycidyl methacrylate)s with alkyl amine and isothiocyanate for effective pDNA delivery. Polymer Chemistry, 2013, 4, 4366.	3.9	38
35	Construction of an Antibacterial Membrane Based on Dopamine and Polyethylenimine Cross-Linked Graphene Oxide. ACS Biomaterials Science and Engineering, 2019, 5, 2732-2739.	5.2	38
36	Polyelectrolyte complex nanoparticles of amino poly(glycerol methacrylate)s and insulin. International Journal of Pharmaceutics, 2012, 423, 195-201.	5.2	37

#	Article	IF	CITATIONS
37	A hydrazone crosslinked zwitterionic polypeptide nanogel as a platform for controlled drug delivery. RSC Advances, 2014, 4, 50301-50311.	3.6	36
38	Layer-by-layer assembled polyaspartamide nanocapsules for pH-responsive protein delivery. Colloids and Surfaces B: Biointerfaces, 2013, 108, 205-211.	5.0	35
39	Conjugates of poly(DL-lactide-co-glycolide) on amino cyclodextrins and their nanoparticles as protein delivery system. Journal of Biomedical Materials Research - Part A, 2007, 80A, 111-122.	4.0	34
40	Multifunctional bacterial imaging and therapy systems. Journal of Materials Chemistry B, 2018, 6, 5198-5214.	5.8	34
41	Transcellular delivery of messenger RNA payloads by a cationic supramolecular MOF platform. Chemical Communications, 2018, 54, 11304-11307.	4.1	33
42	Construction of biocompatible bovine serum albumin nanoparticles composed of nano graphene oxide and AlEgen for dual-mode phototherapy bacteriostatic and bacterial tracking. Journal of Nanobiotechnology, 2019, 17, 104.	9.1	33
43	Quaternized amino poly(glycerol-methacrylate)s for enhanced pDNA delivery. Polymer Chemistry, 2013, 4, 3514.	3.9	31
44	Core Cross-Linked Reverse Micelles from Star-Shaped Polymers. Chemistry of Materials, 2008, 20, 3063-3067.	6.7	30
45	Synthesis of a novel zwitterionic biodegradable poly $(\hat{l}\pm,\hat{l}^2$ -l-aspartic acid) derivative with some l-histidine side-residues and its resistance to non-specific protein adsorption. Colloids and Surfaces B: Biointerfaces, 2011, 86, 237-241.	5 . O	30
46	Random Copolycarbonates Based on a Renewable Bicyclic Diol Derived from Citric Acid. Macromolecules, 2017, 50, 7949-7958.	4.8	28
47	A thermo-responsive polyurethane organogel for norfloxacin delivery. Polymer Chemistry, 2018, 9, 228-235.	3.9	28
48	Dual functionalized amino poly(glycerol methacrylate) with guanidine and Schiff-base linked imidazole for enhanced gene transfection and minimized cytotoxicity. Journal of Materials Chemistry B, 2015, 3, 6911-6918.	5.8	27
49	Probe Intracellular Trafficking of a Polymeric DNA Delivery Vehicle by Functionalization with an Aggregation-Induced Emissive Tetraphenylethene Derivative. ACS Applied Materials & Samp; Interfaces, 2015, 7, 28494-28501.	8.0	26
50	Carboxylated poly(glycerol methacrylate)s for doxorubicin delivery. European Journal of Pharmaceutical Sciences, 2012, 45, 65-72.	4.0	25
51	Reverse micelles based on biocompatible \hat{l}^2 -cyclodextrin conjugated polyethylene glycol block polylactide for protein delivery. Journal of Materials Chemistry B, 2015, 3, 316-322.	5.8	25
52	\hat{l}^2 -Cyclodextrin-conjugated amino poly(glycerol methacrylate)s for efficient insulin delivery. RSC Advances, 2014, 4, 6478.	3.6	24
53	Daylight-stimulated antibacterial activity for sustainable bacterial detection and inhibition. Journal of Materials Chemistry B, 2016, 4, 6350-6357.	5.8	24
54	A multi-functional fluorescent probe with aggregation-induced emission characteristics: Mitochondrial imaging, photodynamic therapy and visualizing therapeutic process in zebrafish model. Dyes and Pigments, 2018, 151, 45-53.	3.7	24

#	Article	IF	CITATIONS
55	Antimicrobial activities of polymeric quaternary ammonium salts from poly(glycidyl methacrylate)s. Polymers for Advanced Technologies, 2014, 25, 117-122.	3.2	23
56	Sustainable Polycarbonates from a Citric Acid-Based Rigid Diol and Recycled BPA-PC: From Synthesis to Properties. ACS Sustainable Chemistry and Engineering, 2018, 6, 17059-17067.	6.7	22
57	Synthesis and characterization of zwitterionic peptides derived from natural amino acids and their resistance to protein adsorption. RSC Advances, 2014, 4, 20665.	3.6	21
58	Copolymerization of Natural Camphor-Derived Rigid Diol with Various Dicarboxylic Acids: Access to Biobased Polyesters with Various Properties. ACS Macro Letters, 2019, 8, 1442-1448.	4.8	21
59	Regulated protonation of polyaspartamide derivatives bearing repeated aminoethylene side chains for efficient intracellular siRNA delivery with minimal cytotoxicity. Chemical Communications, 2015, 51, 3158-3161.	4.1	19
60	Self-curing furan-based elastic thermosets derived from citric acid. Green Chemistry, 2016, 18, 6320-6328.	9.0	19
61	Copolycarbonates Based on a Bicyclic Diol Derived from Citric Acid and Flexible 1,4-Cyclohexanedimethanol: From Synthesis to Properties. ACS Macro Letters, 2019, 8, 454-459.	4.8	19
62	AlEgens for Bacterial Imaging and Ablation. Advanced Healthcare Materials, 2021, 10, e2100877.	7.6	19
63	Random and Multiblock PBS Copolyesters Based on a Rigid Diol Derived from Naturally Occurring Camphor: Influence of Chemical Microstructure on Thermal and Mechanical Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 3626-3636.	6.7	18
64	A dendritic polyamidoamine supramolecular system composed of pillar[5]arene and azobenzene for targeting drug-resistant colon cancer. Journal of Materials Chemistry B, 2021, 9, 9594-9605.	5.8	18
65	On–off switchable drug release from multi-responsive degradable poly(ether urethane) nanoparticles. Biomaterials Science, 2013, 1, 614.	5 . 4	17
66	Reverse micelles based on \hat{l}^2 -cyclodextrin-incorporated amphiphilic polyurethane copolymers for protein delivery. Polymer Chemistry, 2014, 5, 5300-5309.	3.9	17
67	A dendritic catiomer with an MOF motif for the construction of safe and efficient gene delivery systems. Journal of Materials Chemistry B, 2017, 5, 8322-8329.	5 . 8	17
68	Hyaluronic acid/PEGylated amphiphilic nanoparticles for pursuit of selective intracellular doxorubicin release. Journal of Materials Chemistry B, 2019, 7, 95-102.	5.8	17
69	Hydrophilic Nanoreservoirs Embedded into Polymeric Micro/Nanoparticles: An Approach To Compatibilize Polar Molecules with Hydrophobic Matrixes. Chemistry of Materials, 2008, 20, 4191-4193.	6.7	16
70	Shedding PEG Palisade by Temporal Photostimulation and Intracellular Reducing Milieu for Facilitated Intracellular Trafficking and DNA Release. Bioconjugate Chemistry, 2016, 27, 1949-1957.	3.6	16
71	Construction of reverse vesicles from pseudo-graft poly(glycerol methacrylate)s via cyclodextrin–cholesterol interactions. Polymer Chemistry, 2014, 5, 6344-6349.	3.9	15
72	Polymer Brush Decorated MOF Nanoparticles Loaded with AlEgen, Anticancer Drug, and Supramolecular Glue for Regulating and In Situ Observing DOX Release. Macromolecular Bioscience, 2018, 18, e1800317.	4.1	15

#	Article	IF	CITATIONS
73	YQFM alleviated cardiac hypertrophy by apoptosis inhibition and autophagy regulation via PI3K/AKT/mTOR pathway. Journal of Ethnopharmacology, 2022, 285, 114835.	4.1	15
74	Synthesis of amphiphilic polyaspartamide derivatives and construction of reverse micelles. RSC Advances, 2014, 4, 37130-37137.	3.6	14
75	Incorporation of an aggregation-induced-emissive tetraphenylethene derivative into cationic gene delivery vehicles manifested the nuclear translocation of uncomplexed DNA. Chemical Communications, 2016, 52, 3907-3910.	4.1	14
76	Near-infrared AlEgen-functionalized and diselenide-linked oligo-ethylenimine with self-sufficing ROS to exert spatiotemporal responsibility for promoted gene delivery. Journal of Materials Chemistry B, 2018, 6, 6660-6666.	5.8	14
77	Synthesis of cross-linked carboxyl poly(glycerol methacrylate) and its application for the controlled release of doxorubicin. European Journal of Pharmaceutical Sciences, 2012, 47, 556-563.	4.0	13
78	Doxorubicin nanomedicine based on ginsenoside Rg1 with alleviated cardiotoxicity and enhanced antitumor activity. Nanomedicine, 2021, 16, 2587-2604.	3.3	12
79	PH-responsive nano-assemblies of amino poly(glycerol methacrylate). European Polymer Journal, 2011, 47, 1232-1239.	5.4	10
80	Synthesis, characterization and controlled drug release from temperature-responsive poly(ether-urethane) particles based on PEG-diisocyanates and aliphatic diols. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1676-1691.	3.5	10
81	Layerâ€byâ€layer supramolecular assemblies based on linear and starâ€shaped poly(glycerol methacrylate)s for doxorubicin delivery. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2164-2173.	4.0	10
82	Polyplex Micelle with pH-Responsive PEG Detachment and Functional Tetraphenylene Incorporation to Promote Systemic Gene Expression. Bioconjugate Chemistry, 2017, 28, 2849-2858.	3.6	10
83	A multifunctional polymeric gene delivery system for circumventing biological barriers. Journal of Materials Chemistry B, 2019, 7, 384-392.	5.8	10
84	A cyanine-based polymeric nanoplatform with microenvironment-driven cascaded responsiveness for imaging-guided chemo-photothermal combination anticancer therapy. Journal of Materials Chemistry B, 2020, 8, 2115-2122.	5.8	10
85	Precise control of drug release from dually responsive poly(ether urethane) nanoparticles. RSC Advances, 2013, 3, 13859.	3.6	9
86	Construction of micelles based on biocompatible pseudo-graft polymers via \hat{l}^2 -cyclodextrin/cholesterol interaction for protein delivery. RSC Advances, 2014, 4, 40882-40891.	3.6	9
87	Construction of Bovine Serum Albumin/AlEâ€Based Quaternary Complexes for Efficient Gene Transfection. Macromolecular Bioscience, 2019, 19, e1800359.	4.1	9
88	ANTI-TUMOR DRUG DELIVERY OF A pH-SENSITIVE POLY(ASPARTIC ACID)-CONTAINING BLOCK COPOLYMER. Acta Polymerica Sinica, 2012, 012, 427-432.	0.0	9
89	Poly(glycerol methacrylate)-based degradable nanoparticles for delivery of small interfering RNA. Pharmaceutical Development and Technology, 2018, 23, 387-399.	2.4	8
90	A theranostic saponin nano-assembly based on FRET of an aggregation-induced emission photosensitizer and photon up-conversion nanoparticles. Journal of Materials Chemistry B, 2019, 7, 5286-5290.	5.8	8

#	Article	IF	Citations
91	A Biomimetic Nonantibiotic Nanoplatform for Lowâ€Temperature Photothermal Treatment of Urinary Tract Infections Caused by Uropathogenic ⟨i⟩Escherichia coli⟨/i⟩. Advanced Healthcare Materials, 2022, 11, e2101633.	7.6	8
92	Synthesis and characterization of biocompatible zwitterionic sulfobetaine polypeptides and their resistance to protein adsorption. Journal of Polymer Research, 2014, 21, 1.	2.4	7
93	Reactive Oxygen Species Self-Sufficient Multifunctional Nanoplatform for Synergistic Chemo-Photodynamic Therapy with Red/Near-Infrared Dual-Imaging. ACS Applied Bio Materials, 2020, 3, 9135-9144.	4.6	7
94	Construction of traceable cucurbit[7]uril-based virus-mimicking quaternary complexes with aggregation-induced emission for efficient gene transfection. Journal of Materials Chemistry B, 2020, 8, 7475-7482.	5.8	5
95	SYNTHESIS OF POLY(ETHYLENE GLYCOL)-POLY(GLUTAMIC ACID)-POLY(ALANINE ACID) TRIBIOCK COPOLYMER AND THE pH-SENSITIVE DRUG DELIVERY OF NANOPARTICLES THEREFROM. Acta Polymerica Sinica, 2012, 012, 599-605.	0.0	5
96	Ethylenediamino bridged bis(βâ€cyclodextrin)/ poly(<scp>DL</scp> â€lacticâ€ <i>co</i> â€glycolic acid) nanoparticles prepared by modified double emulsion method: Effect of polyvinyl alcohol on nanoparticle properties. Journal of Applied Polymer Science, 2008, 107, 571-576.	2.6	4
97	Multipronged design of theranostic nanovehicles with endogenous and exogenous stimuli-responsiveness for precise cancer therapy. Journal of Materials Chemistry B, 2019, 7, 1160-1166.	5.8	4
98	One step assembly of ginsenoside Rb1-based nanovehicles with fast cellular transport in photothermal-chemical combined cancer therapy. Nanotechnology, 2021, 32, 195103.	2.6	4
99	Self assembling properties of aminated poly(glycerol methacrylate)s. Journal of Controlled Release, 2011, 152, e142-e143.	9.9	3
100	Novel pH-sensitive zwitterionic poly(amino acid) derivatives for drug delivery. Journal of Controlled Release, 2011, 152, e93-e94.	9.9	3
101	Preparation and pH-Sensitive Drug Delivery Study of <i>m</i> PEGpoly(Imidazole) Tj ETQq1 1 0.784314 rgBT /Over	lock 10 Tf	50 342 Td
102	Supramolecular nanoparticles constructed by balancing the forces between attractive host–guest and repulsive electrostatic interactions in two positively charged polymers. RSC Advances, 2015, 5, 96464-96471.	3.6	2
103	Fabrication of macroporous protein-containing films through the reverse emulsions approach featuring \hat{l}^2 -cyclodextrin-conjugated PEG-PLGA copolymers. Chinese Journal of Polymer Science (English) Tj ETQq1	ኔ.ஓ. 7843	1 4 rgBT /0\
104	Introduction of an AIE fluorophore into cationic gene delivery vehicles verified the nuclear translocation of uncomplexed DNA. Journal of Controlled Release, 2017, 259, e48.	9.9	1
105	pH-sensitive sandwich poly(amino acid) micelles. Journal of Controlled Release, 2011, 152, e100-e101.	9.9	O
106	Construction of reverse vesicles based on cyclodextrin–cholesterol inclusion complexation. Journal of Controlled Release, 2015, 213, e115.	9.9	0
107	Biocompatible smectic polymer nanostructures with controlled morphologies and reduction-responsive properties. Journal of Controlled Release, 2015, 213, e41-e42.	9.9	O