Xingyu Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4793285/publications.pdf

Version: 2024-02-01

403 papers

31,374 citations

89 h-index 157 g-index

429 all docs 429 docs citations

times ranked

429

33361 citing authors

#	Article	IF	CITATIONS
1	Cellulosic substrate materials with multi-scale building blocks: fabrications, properties and applications in bioelectronic devices. Chemical Engineering Journal, 2022, 430, 132562.	12.7	17
2	Aggregation-Induced Fluorogens in Bio-Detection, Tumor Imaging, and Therapy: A Review. CCS Chemistry, 2022, 4, 420-436.	7.8	25
3	Liquid metal-polymer conductor-based wireless, battery-free epidermal patch. Biosensors and Bioelectronics, 2022, 197, 113765.	10.1	13
4	Development of antimicrobial oxidized cellulose film for active food packaging. Carbohydrate Polymers, 2022, 278, 118922.	10.2	26
5	Room-Temperature Harvesting Oxidase-Mimicking Enzymes with Exogenous ROS Generation in One Step. Inorganic Chemistry, 2022, 61, 1169-1177.	4.0	9
6	Bioeffects of Inhaled Nanoplastics on Neurons and Alteration of Animal Behaviors through Deposition in the Brain. Nano Letters, 2022, 22, 1091-1099.	9.1	62
7	Multiplexed Lab-on-a-Chip Bioassays for Testing Antibodies against SARS-CoV-2 and Its Variants in Multiple Individuals. Analytical Chemistry, 2022, 94, 2510-2516.	6.5	7
8	Modulating the catalytic activity of gold nanoparticles using amine-terminated ligands. Chemical Science, 2022, 13, 1080-1087.	7.4	16
9	Aminophenol-modified gold nanoparticles kill bacteria with minimal ototoxicity. Chemical Communications, 2022, , .	4.1	3
10	Screening on-chip fabricated nanoparticles for penetrating the blood–brain barrier. Nanoscale, 2022, 14, 3234-3241.	5.6	9
11	Methyltransferase like 7B is a potential therapeutic target for reversing EGFR-TKIs resistance in lung adenocarcinoma. Molecular Cancer, 2022, 21, 43.	19.2	26
12	Heterogeneous Iron Oxide/Dysprosium Oxide Nanoparticles Target Liver for Precise Magnetic Resonance Imaging of Liver Fibrosis. ACS Nano, 2022, 16, 5647-5659.	14.6	12
13	Automated Centrifugal Microfluidic Chip Integrating Pretreatment and Molecular Diagnosis for Hepatitis B Virus Genotyping from Whole Blood. Analytical Chemistry, 2022, 94, 5196-5203.	6.5	25
14	Wetâ€Adhesive Elastomer for Liquid Metalâ€Based Conformal Epidermal Electronics. Advanced Functional Materials, 2022, 32, .	14.9	59
15	Flexible Electronic Catheter Based on Nanofibers for the <i>In Vivo</i> Elimination of Circulating Tumor Cells. ACS Nano, 2022, 16, 5274-5283.	14.6	15
16	Principles of Plasmonic Gold Nanoprobe-Based Bioassays. , 2022, , 403-447.		0
17	Facile and Controllable Synthesis of the Renal-Clearable "Luminous Pearls―for <i>in Vivo</i> Afterglow/Magnetic Resonance Imaging. ACS Nano, 2022, 16, 462-472.	14.6	15
18	Dual Gold Nanoparticle/Chemiluminescent Immunoassay for Sensitive Detection of Multiple Analytes. Analytical Chemistry, 2022, 94, 6628-6634.	6.5	25

#	Article	IF	CITATIONS
19	Multifunctional glass fibre filter modified with vertical graphene for one-step dynamic water filtration and disinfection. Journal of Materials Chemistry A, 2022, 10, 12125-12131.	10.3	4
20	Aminophenol-Decorated Gold Nanoparticles for Curing Bacterial Infections. Nano Letters, 2022, 22, 3576-3582.	9.1	26
21	Boronic Acid-Decorated Multivariate Photosensitive Metal–Organic Frameworks for Combating Multi-Drug-Resistant Bacteria. ACS Nano, 2022, 16, 7732-7744.	14.6	42
22	$\langle i \rangle$ In Situ $\langle i \rangle$ Deposition of Skin-Adhesive Liquid Metal Particles with Robust Wear Resistance for Epidermal Electronics. Nano Letters, 2022, 22, 4482-4490.	9.1	41
23	Modulating the antibacterial activity of gold nanoparticles by balancing their monodispersity and aggregation. Chemical Communications, 2022, 58, 7690-7693.	4.1	4
24	Skin Electronics from Biocompatible In Situ Welding Enabled By Intrinsically Sticky Conductors. Advanced Science, 2022, 9, .	11.2	36
25	Breathable and Stretchable Dressings for Accelerating Healing of Infected Wounds. Advanced Healthcare Materials, 2022, 11 , .	7.6	8
26	Deploying Gold Nanomaterials in Combating Multi-Drug-Resistant Bacteria. ACS Nano, 2022, 16, 10066-10087.	14.6	55
27	Dual-CRISPR/Cas12a-Assisted RT-RAA for Ultrasensitive SARS-CoV-2 Detection on Automated Centrifugal Microfluidics. Analytical Chemistry, 2022, 94, 9603-9609.	6.5	35
28	Synthetic multi-layer nanoparticles for CRISPR-Cas9 genome editing. Advanced Drug Delivery Reviews, 2021, 168, 55-78.	13.7	46
29	Bioinspired membrane provides periosteum-mimetic microenvironment for accelerating vascularized bone regeneration. Biomaterials, 2021, 268, 120561.	11.4	60
30	Composite Film with Antibacterial Gold Nanoparticles and Silk Fibroin for Treating Multidrug-Resistant <i>E. coli</i> -Infected Wounds. ACS Biomaterials Science and Engineering, 2021, 7, 1827-1835.	5.2	27
31	Highly Stretchable Metal–Polymer Conductor Electrode Array for Electrophysiology. Advanced Healthcare Materials, 2021, 10, e2000641.	7.6	25
32	Universal and high-fidelity DNA single nucleotide polymorphism detection based on a CRISPR/Cas12a biochip. Chemical Science, 2021, 12, 4455-4462.	7.4	72
33	DNA cleavage and chemical transformation of nano-plastics mediated by surface ligand and size. Chemical Communications, 2021, 57, 9740-9743.	4.1	3
34	Microfluidic devices for viral detection. , 2021, , 587-615.		0
35	Oral Administration of Starting Materials for <i>In Vivo</i> Nanoparticles for Curing Remote Infections. Nano Letters, 2021, 21, 1124-1131.	9.1	27
36	The antibacterial activities of MoS ₂ nanosheets towards multi-drug resistant bacteria. Chemical Communications, 2021, 57, 2998-3001.	4.1	33

#	Article	IF	Citations
37	Evaluation of the <i>in vivo</i> behavior of antibacterial gold nanoparticles for potential biomedical applications. Journal of Materials Chemistry B, 2021, 9, 3025-3031.	5.8	7
38	Biodegradable freestanding rare-earth nanosheets promote multimodal imaging and delivers CRISPR–Cas9 plasmid against tumor. Chemical Communications, 2021, 57, 9386-9389.	4.1	1
39	Integrated Microfluidic Synthesis of Aptamer Functionalized Biozeolitic Imidazolate Framework (BioZIF-8) Targeting Lymph Node and Tumor. Nano Letters, 2021, 21, 1335-1344.	9.1	33
40	Reversing Bacterial Resistance to Gold Nanoparticles by Size Modulation. Nano Letters, 2021, 21, 1992-2000.	9.1	46
41	Electroluminescent Fabric Woven by Ultrastretchable Fibers for Arbitrarily Controllable Pattern Display. ACS Applied Materials & Display. ACS ACS Applied Materials & Display. ACS ACS ACS APPLIED & DISPLAY. ACS	8.0	31
42	DNA Cleavage by Chemically Exfoliated Molybdenum Disulfide Nanosheets. Environmental Science & Environmental &	10.0	5
43	Printed Stretchable Liquid Metal Electrode Arrays for In Vivo Neural Recording. Small, 2021, 17, e2006612.	10.0	67
44	Enhancing gene editing efficiency for cells by CRISPR/Cas9 system-loaded multilayered nanoparticles assembled via microfluidics. Chinese Journal of Chemical Engineering, 2021, 38, 216-216.	3.5	6
45	Integrating a Concentration Gradient Generator and a Single ell Trapper Array for Highâ€₹hroughput Screening the Bioeffects of Nanomaterials. Angewandte Chemie, 2021, 133, 12427-12430.	2.0	1
46	Integrating a Concentration Gradient Generator and a Singleâ€Cell Trapper Array for Highâ€Throughput Screening the Bioeffects of Nanomaterials. Angewandte Chemie - International Edition, 2021, 60, 12319-12322.	13.8	19
47	Nanoscale Metal–Organic Frameworks That are Both Fluorescent and Hollow for Self-Indicating Drug Delivery. ACS Applied Materials & Interfaces, 2021, 13, 18554-18562.	8.0	15
48	Reversing the Chirality of Surface Ligands Can Improve the Biosafety and Pharmacokinetics of Cationic Gold Nanoclusters. Angewandte Chemie - International Edition, 2021, 60, 13829-13834.	13.8	45
49	Point-of-Care Immunoassays with Tunable Detection Range for Detecting Infection in Intensive Care Unit. CCS Chemistry, 2021, 3, 1562-1572.	7.8	8
50	On-Chip Multicolor Photoacoustic Imaging Flow Cytometry. Analytical Chemistry, 2021, 93, 8134-8142.	6.5	17
51	Reversing the Chirality of Surface Ligands Can Improve the Biosafety and Pharmacokinetics of Cationic Gold Nanoclusters. Angewandte Chemie, 2021, 133, 13948-13953.	2.0	7
52	Digital Hybridization Human Papillomavirus Assay with Attomolar Sensitivity without Amplification. ACS Nano, 2021, 15, 13077-13084.	14.6	24
53	Small Molecule-Capped Gold Nanoclusters for Curing Skin Infections. ACS Applied Materials & Samp; Interfaces, 2021, 13, 35306-35314.	8.0	16
54	Anticoagulant Hydrogel Tubes with Poly(É>â€Caprolactone) Sheaths for Smallâ€Diameter Vascular Grafts. Advanced Healthcare Materials, 2021, 10, e2100839.	7.6	13

#	Article	IF	Citations
55	A Soft and Absorbable Temporary Epicardial Pacing Wire. Advanced Materials, 2021, 33, e2101447.	21.0	25
56	Dialdehyde Nanocrystalline Cellulose as Antibiotic Substitutes against Multidrug-Resistant Bacteria. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 33802-33811.	8.0	24
57	Epidermal Sensor for Potentiometric Analysis of Metabolite and Electrolyte. Analytical Chemistry, 2021, 93, 11525-11531.	6.5	32
58	Novel nanomedicines to overcome cancer multidrug resistance. Drug Resistance Updates, 2021, 58, 100777.	14.4	93
59	Optimisation of a Microfluidic Method for the Delivery of a Small Peptide. Pharmaceutics, 2021, 13, 1505.	4.5	3
60	Multilayered electronic transfer tattoo that can enable the crease amplification effect. Science Advances, 2021, 7, .	10.3	112
61	Micropatterned Coculture Platform for Screening Nerve-Related Anticancer Drugs. ACS Nano, 2021, 15, 637-649.	14.6	5
62	Wearable chem-biosensing devices: from basic research to commercial market. Lab on A Chip, 2021, 21, 4285-4310.	6.0	29
63	Controlling the pyridinium–zwitterionic ligand ratio on atomically precise gold nanoclusters allowing for eradicating Gram-positive drug-resistant bacteria and retaining biocompatibility. Chemical Science, 2021, 12, 14871-14882.	7.4	23
64	Fluorescent and Antibacterial Aminobenzeneboronic Acid (ABA)-Modified Gold Nanoclusters for Self-Monitoring Residual Dosage and Smart Wound Care. ACS Nano, 2021, 15, 17885-17894.	14.6	42
65	Two dimensional nanosheets as immunoregulator improve HIV vaccine efficacy. Chemical Science, 2021, 13, 178-187.	7.4	4
66	Impact of nanomaterials on the intestinal mucosal barrier and its application in treating intestinal diseases. Nanoscale Horizons, 2021, 7, 6-30.	8.0	13
67	Microfluidics for Biomedical Analysis. Small Methods, 2020, 4, 1900451.	8.6	107
68	Gold Nanoclusters-Coated Orthodontic Devices Can Inhibit the Formation of <i>Streptococcus mutans</i> Biofilm. ACS Biomaterials Science and Engineering, 2020, 6, 1239-1246.	5.2	43
69	Isothermal kinase-triggered supramolecular assemblies as drug sensitizers. Chemical Science, 2020, 11, 1132-1139.	7.4	12
70	Metal-hygroscopic polymer conductors that can secrete solders for connections in stretchable devices. Materials Horizons, 2020, 7, 1186-1194.	12.2	24
71	Reagents-Loaded, Automated Assay that Integrates Recombinase-Aided Amplification and Cas12a Nucleic Acid Detection for a Point-of-Care Test. Analytical Chemistry, 2020, 92, 14846-14852.	6. 5	86
72	A Soft, Conductive External Stent Inhibits Intimal Hyperplasia in Vein Grafts by Electroporation and Mechanical Restriction. ACS Nano, 2020, 14, 16770-16780.	14.6	22

#	Article	IF	CITATIONS
73	Use of Microfluidics to Fabricate Bioerodable Lipid Hybrid Nanoparticles Containing Hydromorphone or Ketamine for the Relief of Intractable Pain. Pharmaceutical Research, 2020, 37, 211.	3.5	9
74	Electronic Blood Vessel. Matter, 2020, 3, 1664-1684.	10.0	58
75	Near-Infrared Light-Activated Phototherapy by Gold Nanoclusters for Dispersing Biofilms. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9041-9049.	8.0	95
76	Four-in-One: Advanced Copper Nanocomposites for Multianalyte Assays and Multicoding Logic Gates. ACS Nano, 2020, 14, 9107-9116.	14.6	10
77	Highly Stretchable and Biocompatible Liquid Metalâ€Elastomer Conductors for Selfâ€Healing Electronics. Small, 2020, 16, e2005336.	10.0	89
78	Bright Aggregation-Induced Emission Nanoparticles for Two-Photon Imaging and Localized Compound Therapy of Cancers. ACS Nano, 2020, 14, 16840-16853.	14.6	72
79	Bimetallic nanoparticles against multi-drug resistant bacteria. Chemical Communications, 2020, 56, 10918-10921.	4.1	32
80	Surface-modified mesoporous nanofibers for microfluidic immunosensor with an ultra-sensitivity and high signal-to-noise ratio. Biosensors and Bioelectronics, 2020, 166, 112444.	10.1	13
81	Biological Safe Gold Nanoparticle-Modified Dental Aligner Prevents the <i>Porphyromonas gingivalis</i> Biofilm Formation. ACS Omega, 2020, 5, 18685-18692.	3.5	34
82	Ligand-regulated self-assembly of luminescent Au nanoparticles towards diverse controllable superstructures. Chemical Communications, 2020, 56, 14023-14026.	4.1	6
83	Activating the Antibacterial Effect of 4,6â€Diaminoâ€2â€pyrimidinethiolâ€Modified Gold Nanoparticles by Reducing their Sizes. Angewandte Chemie - International Edition, 2020, 59, 23471-23475.	13.8	44
84	Enzyme-Regulated Peptide-Liquid Metal Hybrid Hydrogels as Cell Amber for Single-Cell Manipulation. ACS Applied Materials & Diterfaces, 2020, 12, 45807-45813.	8.0	3
85	Subâ€10 nm Aggregationâ€Induced Emission Quantum Dots Assembled by Microfluidics for Enhanced Tumor Targeting and Reduced Retention in the Liver. Angewandte Chemie, 2020, 132, 22083-22087.	2.0	8
86	Uracil-DNA-glycosylase-assisted loop-mediated isothermal amplification for detection of bacteria from urine samples with reduced contamination. Analyst, The, 2020, 145, 7048-7055.	3.5	11
87	Subâ€10â€nm Aggregationâ€Induced Emission Quantum Dots Assembled by Microfluidics for Enhanced Tumor Targeting and Reduced Retention in the Liver. Angewandte Chemie - International Edition, 2020, 59, 21899-21903.	13.8	45
88	Activating the Antibacterial Effect of 4,6â€Diaminoâ€2â€pyrimidinethiolâ€Modified Gold Nanoparticles by Reducing their Sizes. Angewandte Chemie, 2020, 132, 23677-23681.	2.0	9
89	CB1-Antibody Modified Liposomes for Targeted Modulation of Epileptiform Activities Synchronously Detected by Microelectrode Arrays. ACS Applied Materials & Samp; Interfaces, 2020, 12, 41148-41156.	8.0	15
90	Mercaptophenylboronic Acid-Activated Gold Nanoparticles as Nanoantibiotics against Multidrug-Resistant Bacteria. ACS Applied Materials & Interfaces, 2020, 12, 51148-51159.	8.0	38

#	Article	IF	Citations
91	Nanoliposome-encapsulated caged-GABA for modulating neural electrophysiological activity with simultaneous detection by microelectrode arrays. Nano Research, 2020, 13, 1756-1763.	10.4	11
92	Cellophane or Nanopaper: Which Is Better for the Substrates of Flexible Electronic Devices?. ACS Sustainable Chemistry and Engineering, 2020, 8, 7774-7784.	6.7	23
93	Supramolecular assemblies mimicking neutrophil extracellular traps for MRSE infection control. Biomaterials, 2020, 253, 120124.	11.4	22
94	The Density of Surface Coating Can Contribute to Different Antibacterial Activities of Gold Nanoparticles. Nano Letters, 2020, 20, 5036-5042.	9.1	90
95	Water-processable liquid metal nanoparticles by single-step polymer encapsulation. Nanoscale, 2020, 12, 13731-13741.	5.6	38
96	Rapid Fabrication of Selfâ€Healing, Conductive, and Injectable Gel as Dressings for Healing Wounds in Stretchable Parts of the Body. Advanced Functional Materials, 2020, 30, 2002370.	14.9	146
97	Stretchable conductive adhesives for connection of electronics in wearable devices based on metal-polymer conductors and carbon nanotubes. Composites Science and Technology, 2020, 197, 108237.	7.8	28
98	Small molecule-decorated gold nanoparticles for preparing antibiofilm fabrics. Nanoscale Advances, 2020, 2, 2293-2302.	4.6	28
99	Increasing the Assembly Efficacy of Peptidic \hat{l}^2 -Sheets for a Highly-Sensitive HIV Detection. Analytical Chemistry, 2020, 92, 11089-11094.	6.5	6
100	2D AuPd alloy nanosheets: one-step synthesis as imaging-guided photonic nano-antibiotics. Nanoscale Advances, 2020, 2, 3550-3560.	4.6	13
101	Titanium Incorporation into Zrâ€Porphyrinic Metal–Organic Frameworks with Enhanced Antibacterial Activity against Multidrugâ€Resistant Pathogens. Small, 2020, 16, e1906240.	10.0	116
102	Surface chemistry of gold nanoparticles for health-related applications. Chemical Science, 2020, 11, 923-936.	7.4	191
103	An immunoassay based on lab-on-a-chip for simultaneous and sensitive detection of clenbuterol and ractopamine. Chinese Chemical Letters, 2020, 31, 1835-1838.	9.0	14
104	Detection of Circulating Tumor Cells by Fluorescence Microspheres-Mediated Amplification. Analytical Chemistry, 2020, 92, 6968-6976.	6.5	29
105	Benzeneselenol-modified gold nanoclusters for cancer therapy. Chemical Communications, 2020, 56, 6664-6667.	4.1	16
106	Delivery of CRISPR/Cas9 by Novel Strategies for Gene Therapy. ChemBioChem, 2019, 20, 634-643.	2.6	48
107	Microfluidics for Biomedical Applications. , 2019, , 368-383.		1
108	High-throughput blood sample preparation for single nucleotide polymorphism genotyping in less than 25†min. Talanta, 2019, 191, 119-125.	5 . 5	0

#	Article	IF	CITATIONS
109	Manufacture of Hydrophobic Nanocomposite Films with High Printability. ACS Sustainable Chemistry and Engineering, 2019, 7, 15404-15412.	6.7	16
110	Tripleâ€Targeting Delivery of CRISPR/Cas9 To Reduce the Risk of Cardiovascular Diseases. Angewandte Chemie, 2019, 131, 12534-12538.	2.0	13
111	Tripleâ€Targeting Delivery of CRISPR/Cas9 To Reduce the Risk of Cardiovascular Diseases. Angewandte Chemie - International Edition, 2019, 58, 12404-12408.	13.8	107
112	Hierarchically structured microchip for point-of-care immunoassays with dynamic detection ranges. Lab on A Chip, 2019, 19, 2750-2757.	6.0	28
113	Microfluidics-based approaches for separation and analysis of circulating tumor cells. TrAC - Trends in Analytical Chemistry, 2019, 117, 84-100.	11.4	42
114	A hinge-based aligner for fast, large-scale assembly of microfluidic chips. Biomedical Microdevices, 2019, 21, 69.	2.8	8
115	Nanomaterials for the theranostics of obesity. Biomaterials, 2019, 223, 119474.	11.4	27
116	Microfluidic Synthesis of Gdâ€Based Nanoparticles for Fast and Ultralong MRI Signals in the Solid Tumor. Advanced Healthcare Materials, 2019, 8, 1900672.	7.6	22
117	Albumin Broadens the Antibacterial Capabilities of Nonantibiotic Small Molecule-Capped Gold Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2019, 11, 45381-45389.	8.0	39
118	Large-Scale Fabrication of Highly Elastic Conductors on a Broad Range of Surfaces. ACS Applied Materials & Samp; Interfaces, 2019, 11, 7138-7147.	8.0	72
119	Multivalent Aminosaccharide-Based Gold Nanoparticles as Narrow-Spectrum Antibiotics in Vivo. ACS Applied Materials & Divo. ACS	8.0	37
120	Barcoded point-of-care bioassays. Chemical Society Reviews, 2019, 48, 850-884.	38.1	120
121	Construction of Dopamine-Releasing Gold Surfaces Mimicking Presynaptic Membrane by On-Chip Electrochemistry. Journal of the American Chemical Society, 2019, 141, 8816-8824.	13.7	15
122	Cell-Based Assays on Microfluidics for Drug Screening. ACS Sensors, 2019, 4, 1465-1475.	7.8	44
123	Plasma Treatment Conversion of Phenolic Compounds into Fluorescent Organic Nanoparticles for Cell Imaging. Analytical Chemistry, 2019, 91, 6754-6760.	6.5	11
124	Profiling protein–protein interactions of single cancer cells with in situ lysis and co-immunoprecipitation. Lab on A Chip, 2019, 19, 1922-1928.	6.0	14
125	High-efficiency transfer of fingerprints from various surfaces using nanofibrillated cellulose. Nanoscale Horizons, 2019, 4, 953-959.	8.0	18
126	Gold Nanoparticles Cure Bacterial Infection with Benefit to Intestinal Microflora. ACS Nano, 2019, 13, 5002-5014.	14.6	73

#	Article	IF	Citations
127	Bio-functional electrospun nanomaterials: From topology design to biological applications. Progress in Polymer Science, 2019, 91, 1-28.	24.7	92
128	Highly efficient capture of circulating tumor cells with low background signals by using pyramidal microcavity array. Analytica Chimica Acta, 2019, 1060, 133-141.	5.4	18
129	Molecular Design of βâ€Sheet Peptide for the Multiâ€Modal Analysis of Disease. Angewandte Chemie, 2019, 131, 1640-1645.	2.0	2
130	Advances in Reagents Storage and Release in Selfâ€Contained Pointâ€ofâ€Care Devices. Advanced Materials Technologies, 2019, 4, 1800625.	5.8	30
131	Microfluidicsâ€Based Biomaterials and Biodevices. Advanced Materials, 2019, 31, e1805033.	21.0	102
132	Molecular Design of βâ€Sheet Peptide for the Multiâ€Modal Analysis of Disease. Angewandte Chemie - International Edition, 2019, 58, 1626-1631.	13.8	30
133	Gold Nanoclusters for Targeting Methicillinâ€Resistant <i>Staphylococcusâ€aureus</i> Inâ€Vivo. Angewandte Chemie, 2018, 130, 4022-4026.	2.0	15
134	Controllable Assembly of Enzymes for Multiplexed Labâ€onâ€aâ€Chip Bioassays with a Tunable Detection Range. Angewandte Chemie - International Edition, 2018, 57, 7503-7507.	13.8	77
135	Straightforward and Ultrastable Surface Modification of Microfluidic Chips with Norepinephrine Bitartrate Improves Performance in Immunoassays. Analytical Chemistry, 2018, 90, 3697-3702.	6.5	13
136	Controllable Assembly of Enzymes for Multiplexed Labâ€onâ€aâ€Chip Bioassays with a Tunable Detection Range. Angewandte Chemie, 2018, 130, 7625-7629.	2.0	10
137	Rapid Detection of Copper in Biological Systems Using Click Chemistry. Small, 2018, 14, e1703857.	10.0	39
138	Functionalized Gold Nanoclusters Identify Highly Reactive Oxygen Species in Living Organisms. Advanced Functional Materials, 2018, 28, 1702026.	14.9	92
139	T ₁ -Mediated Nanosensor for Immunoassay Based on an Activatable MnO ₂ Nanoassembly. Analytical Chemistry, 2018, 90, 2765-2771.	6.5	21
140	Gold Nanoclusters for Targeting Methicillinâ€Resistant <i>Staphylococcusâ€aureus</i> Inâ€Vivo. Angewandte Chemie - International Edition, 2018, 57, 3958-3962.	13.8	190
141	Cu-T ₁ Sensor for Versatile Analysis. Analytical Chemistry, 2018, 90, 2833-2838.	6.5	25
142	Hand-powered centrifugal microfluidic platform inspired by the spinning top for sample-to-answer diagnostics of nucleic acids. Lab on A Chip, 2018, 18, 610-619.	6.0	81
143	Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles. Advanced Drug Delivery Reviews, 2018, 128, 101-114.	13.7	107
144	Thermoâ€triggered Release of CRISPRâ€Cas9 System by Lipidâ€Encapsulated Gold Nanoparticles for Tumor Therapy. Angewandte Chemie - International Edition, 2018, 57, 1491-1496.	13.8	306

#	Article	IF	Citations
145	Reverse Reconstruction and Bioprinting of Bacterial Celluloseâ€Based Functional Total Intervertebral Disc for Therapeutic Implantation. Small, 2018, 14, 1702582.	10.0	51
146	Fabrication of cellulose/graphene paper as a stable-cycling anode materials without collector. Carbohydrate Polymers, 2018, 184, 30-36.	10.2	23
147	Versatile T ₁ -Based Chemical Analysis Platform Using Fe ³⁺ /Fe ²⁺ Interconversion. Analytical Chemistry, 2018, 90, 1234-1240.	6.5	30
148	Thermoâ€triggered Release of CRISPRâ€Cas9 System by Lipidâ€Encapsulated Gold Nanoparticles for Tumor Therapy. Angewandte Chemie, 2018, 130, 1507-1512.	2.0	17
149	Stereodivergent Allylation of Azaaryl Acetamides and Acetates by Synergistic Iridium and Copper Catalysis. Journal of the American Chemical Society, 2018, 140, 1239-1242.	13.7	195
150	A Strategy for Rapid Construction of Blood Vesselâ€Like Structures with Complex Cell Alignments. Macromolecular Bioscience, 2018, 18, e1700408.	4.1	10
151	Cascade Reaction-Mediated Assembly of Magnetic/Silver Nanoparticles for Amplified Magnetic Biosensing. Analytical Chemistry, 2018, 90, 6906-6912.	6.5	48
152	Cellulose nanocrystals as reinforcements for collagen-based casings with low gas transmission. Cellulose, 2018, 25, 463-471.	4.9	31
153	Synthesizing Living Tissues with Microfluidics. Accounts of Chemical Research, 2018, 51, 3166-3173.	15.6	25
154	Synergistic enzymatic and bioorthogonal reactions for selective prodrug activation in living systems. Nature Communications, 2018, 9, 5032.	12.8	141
155	The construction of drug-resistant cancer cell lines by CRISPR/Cas9 system for drug screening. Science Bulletin, 2018, 63, 1411-1419.	9.0	16
156	Interaction between Surface Charge-Modified Gold Nanoparticles and Phospholipid Membranes. Langmuir, 2018, 34, 12583-12589.	3.5	32
157	Iron oxide nanoparticles for targeted imaging of liver tumors with ultralow hepatotoxicity. Journal of Materials Chemistry B, 2018, 6, 6413-6423.	5.8	20
158	Hydrogels Incorporating Au@Polydopamine Nanoparticles: Robust Performance for Optical Sensing. Analytical Chemistry, 2018, 90, 11423-11430.	6.5	52
159	Bacterial Cellulose as a Supersoft Neural Interfacing Substrate. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33049-33059.	8.0	58
160	A Bifunctional Aggregationâ€Induced Emission Luminogen for Monitoring and Killing of Multidrugâ€Resistant Bacteria. Advanced Functional Materials, 2018, 28, 1804632.	14.9	105
161	Ag ⁺ â€Gated Surface Chemistry of Gold Nanoparticles and Colorimetric Detection of Acetylcholinesterase. Small, 2018, 14, e1801680.	10.0	47
162	D-alanyl-D-alanine-Modified Gold Nanoparticles Form a Broad-Spectrum Sensor for Bacteria. Theranostics, 2018, 8, 1449-1457.	10.0	34

#	Article	IF	Citations
163	Fe-T ₁ Sensor Based on Coordination Chemistry for Sensitive and Versatile Bioanalysis. Analytical Chemistry, 2018, 90, 9148-9155.	6.5	22
164	Nanocatalyst Complex Can Dephosphorylate Key Proteins in MAPK Pathway for Cancer Therapy. Advanced Healthcare Materials, 2018, 7, e1800533.	7.6	3
165	A Self-Contained Chemiluminescent Lateral Flow Assay for Point-of-Care Testing. Analytical Chemistry, 2018, 90, 9132-9137.	6.5	73
166	Aminosaccharide–gold nanoparticle assemblies as narrow-spectrum antibiotics against methicillin-resistant Staphylococcus aureus. Nano Research, 2018, 11, 6237-6243.	10.4	20
167	An on-chip valve-assisted microfluidic chip for quantitative and multiplexed detection of biomarkers. Analytical Methods, 2018, 10, 2470-2480.	2.7	13
168	Indole Derivative-Capped Gold Nanoparticles as an Effective Bactericide in Vivo. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 29398-29406.	8.0	78
169	Peptide-Mediated Controllable Cross-Linking of Gold Nanoparticles for Immunoassays with Tunable Detection Range. Analytical Chemistry, 2018, 90, 8234-8240.	6.5	35
170	Mixing-to-Answer Iodide Sensing with Commercial Chemicals. Analytical Chemistry, 2018, 90, 8276-8282.	6.5	17
171	Printable Metal-Polymer Conductors for Highly Stretchable Bio-Devices. IScience, 2018, 4, 302-311.	4.1	119
172	Nanocelluloseâ€Based Antibacterial Materials. Advanced Healthcare Materials, 2018, 7, e1800334.	7.6	149
173	Surface Modification of Gold Nanoparticles with Small Molecules for Biochemical Analysis. Accounts of Chemical Research, 2017, 50, 310-319.	15.6	380
174	Organic nanostructure-based probes for two-photon imaging of mitochondria and microbes with emission between 430 nm and 640 nm. Nanoscale, 2017, 9, 4770-4776.	5.6	34
175	Drug Delivery: Oneâ€Step Microfluidic Synthesis of Nanocomplex with Tunable Rigidity and Acidâ€Switchable Surface Charge for Overcoming Drug Resistance (Small 9/2017). Small, 2017, 13, .	10.0	1
176	Preparation of green and gelatin-free nanocrystalline cellulose capsules. Carbohydrate Polymers, 2017, 164, 358-363.	10.2	34
177	Peptidic \hat{l}^2 -sheets induce Congo red-derived fluorescence to improve the sensitivity of HIV-1 p24 detection. Analytical Methods, 2017, 9, 1185-1189.	2.7	2
178	Double-Enzymes-Mediated Bioluminescent Sensor for Quantitative and Ultrasensitive Point-of-Care Testing. Analytical Chemistry, 2017, 89, 5422-5427.	6.5	72
179	Bioorthogonal Reaction-Mediated ELISA Using Peroxide Test Strip as Signal Readout for Point-of-Care Testing. Analytical Chemistry, 2017, 89, 6113-6119.	6. 5	51
180	Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer. Nature Communications, 2017, 8, 15130.	12.8	246

#	Article	IF	Citations
181	Streptavidin-biotin-peroxidase nanocomplex-amplified microfluidics immunoassays for simultaneous detection of inflammatory biomarkers. Analytica Chimica Acta, 2017, 982, 138-147.	5.4	66
182	Nanocrystalline cellulose mediated seed-growth for ultra-robust colorimetric detection of hydrogen sulfide. Nanoscale, 2017, 9, 9811-9817.	5.6	28
183	Selfâ€Adjusting, Polymeric Multilayered Roll that can Keep the Shapes of the Blood Vessel Scaffolds during Biodegradation. Advanced Materials, 2017, 29, 1700171.	21.0	104
184	Composites of Bacterial Cellulose and Small Molecule-Decorated Gold Nanoparticles for Treating Gram-Negative Bacteria-Infected Wounds. Small, 2017, 13, 1700130.	10.0	119
185	Iridiumâ€Catalyzed Enantioselective Allylic Substitution of Aliphatic Esters with Silyl Ketene Acetals as the Ester Enolates. Angewandte Chemie - International Edition, 2017, 56, 8887-8891.	13.8	42
186	Pharmaceutical Intermediate-Modified Gold Nanoparticles: Against Multidrug-Resistant Bacteria and Wound-Healing Application <i>via</i> an Electrospun Scaffold. ACS Nano, 2017, 11, 5737-5745.	14.6	307
187	An automated and portable microfluidic chemiluminescence immunoassay for quantitative detection of biomarkers. Lab on A Chip, 2017, 17, 2225-2234.	6.0	93
188	Hollow carbon nanospheres for targeted delivery of chemotherapeutics in breast cancer therapy. Journal of Materials Chemistry B, 2017, 5, 6601-6607.	5.8	19
189	Hollow carbon nanospheres as a versatile platform for co-delivery of siRNA and chemotherapeutics. Carbon, 2017, 121, 79-89.	10.3	28
190	Universal Coating from Electrostatic Self-Assembly to Prevent Multidrug-Resistant Bacterial Colonization on Medical Devices and Solid Surfaces. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21181-21189.	8.0	42
191	Iridiumâ€Catalyzed Enantioselective Allylic Substitution of Aliphatic Esters with Silyl Ketene Acetals as the Ester Enolates. Angewandte Chemie, 2017, 129, 9013-9017.	2.0	14
192	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	14.6	976
193	Construction of Smallâ€Diameter Vascular Graft by Shapeâ€Memory and Selfâ€Rolling Bacterial Cellulose Membrane. Advanced Healthcare Materials, 2017, 6, 1601343.	7.6	79
194	Materials for Microfluidic Immunoassays: A Review. Advanced Healthcare Materials, 2017, 6, 1601403.	7.6	112
195	Oneâ€Step Microfluidic Synthesis of Nanocomplex with Tunable Rigidity and Acidâ€Switchable Surface Charge for Overcoming Drug Resistance. Small, 2017, 13, 1603109.	10.0	56
196	Detection and differentiation of influenza viruses with glycan-functionalized gold nanoparticles. Biosensors and Bioelectronics, 2017, 91, 46-52.	10.1	49
197	Stereodivergent Allylic Substitutions with Aryl Acetic Acid Esters by Synergistic Iridium and Lewis Base Catalysis. Journal of the American Chemical Society, 2017, 139, 87-90.	13.7	250
198	Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy. NPG Asia Materials, 2017, 9, e441-e441.	7.9	132

#	Article	IF	Citations
199	Inkjet-printed barcodes for a rapid and multiplexed paper-based assay compatible with mobile devices. Lab on A Chip, 2017, 17, 3874-3882.	6.0	44
200	2,3-Dialdehyde nanofibrillated cellulose as a potential material for the treatment of MRSA infection. Journal of Materials Chemistry B, 2017, 5, 7876-7884.	5.8	79
201	Why microfluidics? Merits and trends in chemical synthesis. Lab on A Chip, 2017, 17, 3960-3978.	6.0	190
202	The Effects of Physicochemical Properties of Nanomaterials on Their Cellular Uptake In Vitro and In Vivo. Small, 2017, 13, 1701815.	10.0	48
203	Genome Editing for Cancer Therapy: Delivery of Cas9 Protein/sgRNA Plasmid via a Gold Nanocluster/Lipid Core–Shell Nanocarrier. Advanced Science, 2017, 4, 1700175.	11.2	166
204	Small Molecular TGF-Î ² 1-Inhibitor-Loaded Electrospun Fibrous Scaffolds for Preventing Hypertrophic Scars. ACS Applied Materials & Scars. ACS	8.0	53
205	Biomaterials: Selfâ€Adjusting, Polymeric Multilayered Roll that can Keep the Shapes of the Blood Vessel Scaffolds during Biodegradation (Adv. Mater. 28/2017). Advanced Materials, 2017, 29, .	21.0	0
206	Pre-synaptic TrkB in basolateral amygdala neurons mediates BDNF signaling transmission in memory extinction. Cell Death and Disease, 2017, 8, e2959-e2959.	6.3	11
207	Biomimetic nanofibers can construct effective tissue-engineered intervertebral discs for therapeutic implantation. Nanoscale, 2017, 9, 13095-13103.	5.6	45
208	pH Switchable Nanoassembly for Imaging a Broad Range of Malignant Tumors. ACS Nano, 2017, 11, 12446-12452.	14.6	42
209	Skiving stacked sheets of paper into test paper for rapid and multiplexed assay. Science Advances, 2017, 3, eaao4862.	10.3	71
210	JIP1 and JIP3 cooperate to mediate TrkB anterograde axonal transport by activating kinesin-1. Cellular and Molecular Life Sciences, 2017, 74, 4027-4044.	5.4	33
211	An enzyme-mediated competitive colorimetric sensor based on Au@Ag bimetallic nanoparticles for highly sensitive detection of disease biomarkers. Analyst, The, 2017, 142, 2954-2960.	3.5	42
212	In Vitro Evaluation of Essential Mechanical Properties and Cell Behaviors of a Novel Polylactic-co-Glycolic Acid (PLGA)-Based Tubular Scaffold for Small-Diameter Vascular Tissue Engineering. Polymers, 2017, 9, 318.	4.5	19
213	A Predictive Model for Yeast Cell Polarization in Pheromone Gradients. PLoS Computational Biology, 2016, 12, e1004795.	3.2	18
214	Click Chemistry-Mediated Nanosensors for Biochemical Assays. Theranostics, 2016, 6, 969-985.	10.0	83
215	Peptidic \hat{l}^2 -sheet binding with Congo Red allows both reduction of error variance and signal amplification for immunoassays. Biosensors and Bioelectronics, 2016, 86, 211-218.	10.1	16
216	Targeted tumor delivery and controlled release of neuronal drugs with ferritin nanoparticles to regulate pancreatic cancer progression. Journal of Controlled Release, 2016, 232, 131-142.	9.9	83

#	Article	IF	Citations
217	Point-of-Care Detection of \hat{l}^2 -Lactamase in Milk with a Universal Fluorogenic Probe. Analytical Chemistry, 2016, 88, 5605-5609.	6.5	19
218	Microfluidic Chip-Based Immunoassay for Reliable Detection of Cloxacillin in Poultry. Food Analytical Methods, 2016, 9, 3163-3169.	2.6	12
219	Gene regulation with carbon-based siRNA conjugates for cancer therapy. Biomaterials, 2016, 104, 269-278.	11.4	66
220	A strategy for rapid and facile fabrication of controlled, layered blood vessel-like structures. RSC Advances, 2016, 6, 55054-55063.	3.6	18
221	A dual-readout chemiluminescent-gold lateral flow test for multiplex and ultrasensitive detection of disease biomarkers in real samples. Nanoscale, 2016, 8, 15205-15212.	5.6	93
222	Nanocrystalline Cellulose-Assisted Generation of Silver Nanoparticles for Nonenzymatic Glucose Detection and Antibacterial Agent. Biomacromolecules, 2016, 17, 2472-2478.	5.4	83
223	N-Heterocyclic molecule-capped gold nanoparticles as effective antibiotics against multi-drug resistant bacteria. Nanoscale, 2016, 8, 13223-13227.	5.6	60
224	An Earlyâ€Stage Atherosclerosis Research Model Based on Microfluidics. Small, 2016, 12, 2022-2034.	10.0	67
225	Quantitative Detection of MicroRNA in One Step <i>via</i> Next Generation Magnetic Relaxation Switch Sensing. ACS Nano, 2016, 10, 6685-6692.	14.6	127
226	Iridiumâ€Catalyzed Diastereoselective and Enantioselective Allylic Substitutions with Acyclic αâ€Alkoxy Ketones. Angewandte Chemie - International Edition, 2016, 55, 5819-5823.	13.8	90
227	Microfluidics-mediated assembly of functional nanoparticles for cancer-related pharmaceutical applications. Nanoscale, 2016, 8, 12430-12443.	5.6	105
228	A microfluidic indirect competitive immunoassay for multiple and sensitive detection of testosterone in serum and urine. Analyst, The, 2016, 141, 815-819.	3.5	22
229	Integration of nanomaterials for colorimetric immunoassays with improved performance: a functional perspective. Analyst, The, 2016, 141, 1196-1208.	3.5	52
230	One-step detection of pathogens and cancer biomarkers by the naked eye based on aggregation of immunomagnetic beads. Nanoscale, 2016, 8, 1100-1107.	5.6	44
231	Recyclable Colorimetric Detection of Trivalent Cations in Aqueous Media Using Zwitterionic Gold Nanoparticles. Analytical Chemistry, 2016, 88, 4140-4146.	6.5	43
232	Podosome Formation and Development in Monocytes Restricted by the Nanoscale Spatial Distribution of ICAM1. Nano Letters, 2016, 16, 2114-2121.	9.1	13
233	Polyvinylpyrrolidone–Poly(ethylene glycol) Modified Silver Nanorods Can Be a Safe, Noncarrier Adjuvant for HIV Vaccine. ACS Nano, 2016, 10, 3589-3596.	14.6	39
234	The biocompatibility evaluation of iron oxide nanoparticles synthesized by a one pot process for intravenous iron supply. RSC Advances, 2016, 6, 14329-14334.	3.6	14

#	Article	IF	Citations
235	An on-chip model for investigating the interaction between neurons and cancer cells. Integrative Biology (United Kingdom), 2016, 8, 359-367.	1.3	44
236	Nanocrystalline Cellulose Improves the Biocompatibility and Reduces the Wear Debris of Ultrahigh Molecular Weight Polyethylene <i>via</i> Weak Binding. ACS Nano, 2016, 10, 298-306.	14.6	30
237	Organic nanoparticles formed by aggregation-induced fluorescent molecules for detection of hydrogen sulfide in living cells. Science China Chemistry, 2016, 59, 106-113.	8.2	27
238	In situ deposition of a personalized nanofibrous dressing via a handy electrospinning device for skin wound care. Nanoscale, 2016, 8, 3482-3488.	5.6	146
239	In situ formation of peptidic nanofibers can fundamentally optimize the quality of immune responses against HIV vaccine. Nanoscale Horizons, 2016, 1, 135-143.	8.0	24
240	Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties. Nanoscale, 2016, 8, 973-978.	5.6	81
241	High-throughput sample-to-answer detection of DNA/RNA in crude samples within functionalized micro-pipette tips. Biosensors and Bioelectronics, 2016, 75, 28-33.	10.1	55
242	Investigation of Tumor Cell Behaviors on a Vascular Microenvironment-Mimicking Microfluidic Chip. Scientific Reports, 2015, 5, 17768.	3.3	33
243	Plant Cells Use Auxin Efflux to Explore Geometry. Scientific Reports, 2015, 4, 5852.	3.3	10
244	A Dispersion-Dominated Chromogenic Strategy for Colorimetric Sensing of Glutathione at the Nanomolar Level Using Gold Nanoparticles. Small, 2015, 11, 5510-5514.	10.0	90
245	Rationally Designed Peptide Interface for Potential Modulated Cell Adhesion and Migration. Advanced Materials Interfaces, 2015, 2, 1500335.	3.7	9
246	Barcoded Microchips for Biomolecular Assays. Analytical Chemistry, 2015, 87, 900-906.	6.5	34
247	Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers. Lab on A Chip, 2015, 15, 1168-1177.	6.0	150
248	Evaluation of the Effect of the Structure of Bacterial Cellulose on Full Thickness Skin Wound Repair on a Microfluidic Chip. Biomacromolecules, 2015, 16, 780-789.	5.4	107
249	Microfluidic Synthesis of Rigid Nanovesicles for Hydrophilic Reagents Delivery. Angewandte Chemie - International Edition, 2015, 54, 3952-3956.	13.8	134
250	One-Step Detection of Pathogens and Viruses: Combining Magnetic Relaxation Switching and Magnetic Separation. ACS Nano, 2015, 9, 3184-3191.	14.6	182
251	Microfluidic based high throughput synthesis of lipid-polymer hybrid nanoparticles with tunable diameters. Biomicrofluidics, 2015, 9, 052604.	2.4	84
252	Colorimetric detection of Al(<scp>iii</scp>) in vermicelli samples based on ionic liquid group coated gold nanoparticles. RSC Advances, 2015, 5, 62260-62264.	3.6	21

#	Article	IF	Citations
253	Old is new again: a chemical probe for targeting mitochondria and monitoring mitochondrial membrane potential in cells. Analyst, The, 2015, 140, 5849-5854.	3.5	50
254	Surface modification of nano-silica on the ligament advanced reinforcement system for accelerated bone formation: primary human osteoblasts testing in vitro and animal testing in vivo. Nanoscale, 2015, 7, 8071-8075.	5.6	6
255	Bacterial cellulose–hyaluronan nanocomposite biomaterials as wound dressings for severe skin injury repair. Journal of Materials Chemistry B, 2015, 3, 3498-3507.	5.8	108
256	Microfluidic Synthesis of Hybrid Nanoparticles with Controlled Lipid Layers: Understanding Flexibility-Regulated Cell–Nanoparticle Interaction. ACS Nano, 2015, 9, 9912-9921.	14.6	163
257	Horseradish Peroxidase-Mediated, lodide-Catalyzed Cascade Reaction for Plasmonic Immunoassays. Analytical Chemistry, 2015, 87, 10688-10692.	6.5	83
258	Label-Free Isolation and mRNA Detection of Circulating Tumor Cells from Patients with Metastatic Lung Cancer for Disease Diagnosis and Monitoring Therapeutic Efficacy. Analytical Chemistry, 2015, 87, 11893-11900.	6.5	101
259	Tunable Rigidity of (Polymeric Core)–(Lipid Shell) Nanoparticles for Regulated Cellular Uptake. Advanced Materials, 2015, 27, 1402-1407.	21.0	383
260	Detection of the nanomolar level of total Cr[(<scp>iii</scp>) and (<scp>vi</scp>)] by functionalized gold nanoparticles and a smartphone with the assistance of theoretical calculation models. Nanoscale, 2015, 7, 2042-2049.	5.6	113
261	Future Perspectives Towards the Use of Nanomaterials for Smart Food Packaging and Quality Control. Particle and Particle Systems Characterization, 2015, 32, 408-416.	2.3	33
262	Multiplexed microfluidic blotting of proteins and nucleic acids by parallel, serpentine microchannels. Lab on A Chip, 2015, 15, 105-112.	6.0	21
263	Inertial migration of deformable droplets in a microchannel. Physics of Fluids, 2014, 26, .	4.0	55
264	A Plasmonic Nanosensor for Immunoassay <i>via</i> Enzyme-Triggered Click Chemistry. ACS Nano, 2014, 8, 12741-12747.	14.6	176
265	Micro-Scale Patterning of Cells and their Environment. , 2014, , 359-384.		0
266	Precise manipulation of cell behaviors on surfaces for construction of tissue/organs. Colloids and Surfaces B: Biointerfaces, 2014, 124, 97-110.	5.0	14
267	Assembly of Functional Threeâ€Dimensional Neuronal Networks on a Microchip. Small, 2014, 10, 2530-2536.	10.0	20
268	Recent advances in electrospinning technology and biomedical applications of electrospun fibers. Journal of Materials Chemistry B, 2014, 2, 2369.	5.8	108
269	Analysis of Influenza Virus Receptor Specificity Using Glycan-Functionalized Gold Nanoparticles. ACS Nano, 2014, 8, 4600-4607.	14.6	66
270	Nanoscale materials and approaches for optical glucose assays. Current Opinion in Chemical Engineering, 2014, 4, 144-151.	7.8	15

#	Article	IF	Citations
271	A Peptide-Based Nanofibrous Hydrogel as a Promising DNA Nanovector for Optimizing the Efficacy of HIV Vaccine. Nano Letters, 2014, 14, 1439-1445.	9.1	157
272	Organs on microfluidic chips: A mini review. Science China Chemistry, 2014, 57, 356-364.	8.2	33
273	Neuronal Networks: Assembly of Functional Three-Dimensional Neuronal Networks on a Microchip (Small 13/2014). Small, 2014, 10, 2736-2736.	10.0	0
274	An on-chip study on the influence of geometrical confinement and chemical gradient on cell polarity. Biomicrofluidics, 2014, 8, 052010.	2.4	7
275	Mesosilica-coated ultrafine fibers for highly efficient laccase encapsulation. Nanoscale, 2014, 6, 6468.	5.6	13
276	Airflow-directed in situ electrospinning of a medical glue of cyanoacrylate for rapid hemostasis in liver resection. Nanoscale, 2014, 6, 7792.	5.6	77
277	Ordered self-assembly of proteins for computation in mammalian cells. Chemical Communications, 2014, 50, 676-678.	4.1	16
278	Antithrombotic functions of small molecule-capped gold nanoparticles. Nanoscale, 2014, 6, 8543.	5.6	21
279	Integrated Microcapillary for Sample-to-Answer Nucleic Acid Pretreatment, Amplification, and Detection. Analytical Chemistry, 2014, 86, 10461-10466.	6.5	91
280	Screening reactive oxygen species scavenging properties of platinum nanoparticles on a microfluidic chip. Biofabrication, 2014, 6, 045004.	7.1	26
281	Functional Nanomaterials Can Optimize the Efficacy of Vaccines. Small, 2014, 10, 4505-4520.	10.0	52
282	Colorimetric Logic Gates through Molecular Recognition and Plasmonic Nanoparticles. Small, 2014, 10, 4833-4838.	10.0	41
283	Facile, One-Pot Synthesis, and Antibacterial Activity of Mesoporous Silica Nanoparticles Decorated with Well-Dispersed Silver Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2014, 6, 12038-12045.	8.0	172
284	Tuning the Composition of AuPt Bimetallic Nanoparticles for Antibacterial Application. Angewandte Chemie - International Edition, 2014, 53, 8127-8131.	13.8	208
285	Identification of Bacteria in Water by a Fluorescent Array. Angewandte Chemie - International Edition, 2014, 53, 13734-13739.	13.8	149
286	Diffusion of self-assembled monolayers of thiols on the gold surfaces covered with polydimethylsiloxane stamps. Journal of Materials Science, 2014, 49, 4394-4398.	3.7	5
287	Point-of-Care Multiplexed Assays of Nucleic Acids Using Microcapillary-based Loop-Mediated Isothermal Amplification. Analytical Chemistry, 2014, 86, 7057-7062.	6.5	100
288	A microfluidic tubing method and its application for controlled synthesis of polymeric nanoparticles. Lab on A Chip, 2014, 14, 1673-1677.	6.0	75

#	Article	IF	CITATIONS
289	Chemiluminescence immunoassay based on microfluidic chips for \hat{l}_{\pm} -fetoprotein. Clinica Chimica Acta, 2014, 431, 113-117.	1.1	44
290	Using carboxylated nanocrystalline cellulose as an additive in cellulosic paper and poly (vinyl) Tj ETQq0 0 0 rgBT /	Overlock I	10 ₃₂ 50 702
291	Label-Free Colorimetric Detection of Cadmium Ions in Rice Samples Using Gold Nanoparticles. Analytical Chemistry, 2014, 86, 8530-8534.	6.5	188
292	Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics. Chemical Society Reviews, 2014, 43, 6239-6253.	38.1	290
293	AxonQuant: A Microfluidic Chamber Culture-Coupled Algorithm That Allows High-Throughput Quantification of Axonal Damage. NeuroSignals, 2014, 22, 14-29.	0.9	13
294	Tissue-specific mechanical and geometrical control of cell viability and actin cytoskeleton alignment. Scientific Reports, 2014, 4, 6160.	3.3	33
295	A microfluidic origami chip for synthesis of functionalized polymeric nanoparticles. Nanoscale, 2013, 5, 5262.	5. 6	85
296	Enzymatic Assay for Cu(II) with Horseradish Peroxidase and Its Application in Colorimetric Logic Gate. Analytical Chemistry, 2013, 85, 7029-7032.	6.5	65
297	Multiple strategies to activate gold nanoparticles as antibiotics. Nanoscale, 2013, 5, 8340.	5.6	157
298	Synergy of Non-antibiotic Drugs and Pyrimidinethiol on Gold Nanoparticles against Superbugs. Journal of the American Chemical Society, 2013, 135, 12940-12943.	13.7	170
299	Gold nanorods core/AgPt alloy nanodots shell: A novel potent antibacterial nanostructure. Nano Research, 2013, 6, 822-835.	10.4	62
300	Stressâ€Induced Selfâ€Assembly of Complex Three Dimensional Structures by Elastic Membranes. Small, 2013, 9, 2410-2414.	10.0	29
301	Inertial microfluidics for circulating tumor cell separation and detection. , 2013, , .		2
302	Patterned polymernanowire arrays as an effective protein immobilizer for biosensing and HIV detection. Nanoscale, 2013, 5, 527-531.	5.6	15
303	Change of laminin density stimulates axon branching <i>via</i> growth cone myosin II-mediated adhesion. Integrative Biology (United Kingdom), 2013, 5, 1244-1252.	1.3	15
304	A micropatterned coculture system for axon guidance reveals that Slit promotes axon fasciculation and regulates the expression of L1CAM. Integrative Biology (United Kingdom), 2013, 5, 617-623.	1.3	12
305	Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. Carbon, 2013, 52, 583-589.	10.3	483
306	Engineering a 3D vascular network in hydrogel for mimicking a nephron. Lab on A Chip, 2013, 13, 1612.	6.0	93

#	Article	IF	Citations
307	An ultrasensitive, non-enzymatic glucose assay via gold nanorod-assisted generation of silver nanoparticles. Nanoscale, 2013, 5, 6303.	5.6	53
308	Culturing Primary Human Osteoblasts on Electrospun Poly(lactic-co-glycolic acid) and Poly(lactic-co-glycolic acid)/Nanohydroxyapatite Scaffolds for Bone Tissue Engineering. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5921-5926.	8.0	61
309	Microfluidic Tools for DNA Analysis. , 2013, , 113-153.		1
310	Nanomaterials for Ultrasensitive Protein Detection. Advanced Materials, 2013, 25, 3802-3819.	21.0	174
311	Highly sensitive colorimetric detection of organophosphate pesticides using copper catalyzed click chemistry. Talanta, 2013, 103, 110-115.	5.5	62
312	Micro/nano-scale materials and structures for constructing neuronal networks and addressing neurons. Journal of Materials Chemistry C, 2013, 1, 7652.	5.5	12
313	Microfluidics for Manipulating Cells. Small, 2013, 9, 9-21.	10.0	175
314	A Strategy for the Construction of Controlled, Threeâ€Dimensional, Multilayered, Tissueâ€Like Structures. Advanced Functional Materials, 2013, 23, 42-46.	14.9	71
315	Precise Control of Cell Adhesion by Combination of Surface Chemistry and Soft Lithography. Advanced Healthcare Materials, 2013, 2, 95-108.	7.6	81
316	A Microfluidic Cell Size/Density Sensor by Resistive Pulse Detection. Electroanalysis, 2013, 25, 1023-1028.	2.9	13
317	Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels. Biomicrofluidics, 2013, 7, 011802.	2.4	129
318	Two dimensional barcode-inspired automatic analysis for arrayed microfluidic immunoassays. Biomicrofluidics, 2013, 7, 34110.	2.4	12
319	Recent research progress of nanocellulose crystal and its composites with polymers. Chinese Science Bulletin, 2013, 58, 2385-2392.	0.7	2
320	Quantification of Proteins by Functionalized Gold Nanoparticles Using Click Chemistry. Analytical Chemistry, 2012, 84, 4267-4270.	6.5	82
321	A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab on A Chip, 2012, 12, 3441.	6.0	134
322	Fluid flow stress induced contraction and re-spread of mesenchymal stem cells: a microfluidic study. Integrative Biology (United Kingdom), 2012, 4, 1102.	1.3	29
323	Matrix-localization for fast analysis of arrayed microfluidic immunoassays. Analytical Methods, 2012, 4, 3466.	2.7	11
324	Towards a high-throughput label-free detection system combining localized-surface plasmon resonance and microfluidics. Lab on A Chip, 2012, 12, 3012.	6.0	43

#	Article	IF	Citations
325	Mussel-Inspired Anchoring for Patterning Cells Using Polydopamine. Langmuir, 2012, 28, 2131-2136.	3.5	84
326	Cu ²⁺ Detection with Gold Nanoparticles by Patterning Colorimetric Strips on a Filter Membrane Assembled in a Microfluidic Chip. Chinese Journal of Chemistry, 2012, 30, 2047-2051.	4.9	7
327	Co-cultured endometrial stromal cells and peritoneal mesothelial cells for an in vitro model of endometriosis. Integrative Biology (United Kingdom), 2012, 4, 1090.	1.3	22
328	Double spiral microchannel for label-free tumor cell separation and enrichment. Lab on A Chip, 2012, 12, 3952.	6.0	242
329	Highly Robust, Recyclable Displacement Assay for Mercuric Ions in Aqueous Solutions and Living Cells. ACS Nano, 2012, 6, 10999-11008.	14.6	62
330	Microscale methods to assemble mammalian cells into tissue-like structures. Science China Life Sciences, 2012, 55, 862-871.	4.9	5
331	A Highly Sensitive, Dual-Readout Assay Based on Gold Nanoparticles for Organophosphorus and Carbamate Pesticides. Analytical Chemistry, 2012, 84, 4185-4191.	6.5	389
332	Rapid casein quantification in milk powder with aggregation induced emission character of tetraphenylethene derivative. Analyst, The, 2012, 137, 4654.	3.5	35
333	Stable fluorescent gold nanoparticles for detection of Cu ²⁺ with good sensitivity and selectivity. Analyst, The, 2012, 137, 301-304.	3.5	109
334	Electrospun Fiber Template for Replica Molding of Microtopographical Neural Growth Guidance. Small, 2012, 8, 676-681.	10.0	30
335	A portable and integrated nucleic acid amplification microfluidic chip for identifying bacteria. Lab on A Chip, 2012, 12, 1495.	6.0	76
336	A Highly Sensitive Goldâ€Nanoparticleâ€Based Assay for Acetylcholinesterase in Cerebrospinal Fluid of Transgenic Mice with Alzheimer's Disease. Advanced Healthcare Materials, 2012, 1, 90-95.	7.6	88
337	A Rapid Screening Method for Wound Dressing by Cellâ€onâ€aâ€Chip Device. Advanced Healthcare Materials, 2012, 1, 560-566.	7.6	26
338	Facile Preparation of Ag ₂ S/Ag Semiconductor/Metal Heteronanostructures with Remarkable Antibacterial Properties. ChemPhysChem, 2012, 13, 2531-2535.	2.1	59
339	Surface Coating as a Key Parameter in Engineering Neuronal Network Structures In Vitro. Biointerphases, 2012, 7, 29.	1.6	43
340	Microfluidic assay without blocking for rapid HIV screening and confirmation. Biomedical Microdevices, 2012, 14, 631-640.	2.8	12
341	The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials, 2012, 33, 2327-2333.	11.4	670
342	A Strategy for Depositing Different Types of Cells in Three Dimensions to Mimic Tubular Structures in Tissues. Advanced Materials, 2012, 24, 890-896.	21.0	222

#	Article	IF	Citations
343	Accelerating microfluidic immunoassays on filter membranes by applying vacuum. Biomedical Microdevices, 2012, 14, 17-23.	2.8	18
344	A microchip-based model wound with multiple types of cells. Lab on A Chip, 2011, 11, 2819.	6.0	37
345	Microfluidic Devices Constructed by a Marker Pen on a Silica Gel Plate for Multiplex Assays. Analytical Chemistry, 2011, 83, 3596-3599.	6.5	23
346	Using Self-Polymerized Dopamine to Modify the Antifouling Property of Oligo(ethylene glycol) Self-Assembled Monolayers and Its Application in Cell Patterning. Langmuir, 2011, 27, 5709-5712.	3.5	52
347	Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale, 2011, 3, 1421.	5.6	392
348	Fabrication of one dimensional superfine polymer fibers by double-spinning. Journal of Materials Chemistry, 2011, 21, 13159.	6.7	51
349	Predicting Viruses Accurately by a Multiplex Microfluidic Loop-Mediated Isothermal Amplification Chip. Analytical Chemistry, 2011, 83, 690-695.	6.5	133
350	Self-Organizing Circuit Assembly through Spatiotemporally Coordinated Neuronal Migration within Geometric Constraints. PLoS ONE, 2011, 6, e28156.	2.5	24
351	Sensitive detection of glucose based on gold nanoparticles assisted silver mirror reaction. Analyst, The, 2011, 136, 2893.	3.5	47
352	Silver(i)–glutathione biocoordination polymer hydrogel: effective antibacterial activity and improved cytocompatibility. Journal of Materials Chemistry, 2011, 21, 19214.	6.7	72
353	Recent progress in the application of microfluidic systems and gold nanoparticles in immunoassays. Science China Chemistry, 2011, 54, 1227-1232.	8.2	18
354	Utilization of unmodified gold nanoparticles in colorimetric detection. Science China: Physics, Mechanics and Astronomy, 2011, 54, 1757-1765.	5.1	27
355	Copperâ€Mediated Amplification Allows Readout of Immunoassays by the Naked Eye. Angewandte Chemie - International Edition, 2011, 50, 3442-3445.	13.8	198
356	Resettable, Multiâ€Readout Logic Gates Based on Controllably Reversible Aggregation of Gold Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 4103-4107.	13.8	229
357	Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. Biosensors and Bioelectronics, 2011, 26, 4064-4069.	10.1	295
358	Electrochemical desorption of self-assembled monolayers and its applications in surface chemistry and cell biology. Journal of Electroanalytical Chemistry, 2011, 656, 223-230.	3.8	22
359	Microcontact Printing. Methods in Molecular Biology, 2011, 671, 239-248.	0.9	3
360	Fabrication of Necklace-like Structures via Electrospinning. Langmuir, 2010, 26, 1186-1190.	3.5	129

#	Article	IF	Citations
361	Small Molecule-Capped Gold Nanoparticles as Potent Antibacterial Agents That Target Gram-Negative Bacteria. Journal of the American Chemical Society, 2010, 132, 12349-12356.	13.7	528
362	Development of neurons on micropatterns reveals that growth cone responds to a sharp change of concentration of laminin. Electrophoresis, 2010, 31, 3144-3151.	2.4	24
363	A General Approach for Patterning Multiple Types of Cells Using Holey PDMS Membranes and Microfluidic Channels. Advanced Functional Materials, 2010, 20, 3715-3720.	14.9	57
364	Biomimetic Collagen Nanofibrous Materials for Bone Tissue Engineering. Advanced Engineering Materials, 2010, 12, B451.	3.5	56
365	Enhanced exciton migration in electrospun poly[2-methoxy-5- (2′-ethylhexyloxy)-1,4-phenylenevinylene]/poly(vinyl pyrrolidone) nanofibers. Applied Physics Letters, 2010, 96, 133309.	3.3	16
366	Size-dependent mechanical properties of PVA nanofibers reduced via air plasma treatment. Nanotechnology, 2010, 21, 095703.	2.6	14
367	Highly Sensitive, Colorimetric Detection of Mercury(II) in Aqueous Media by Quaternary Ammonium Group-Capped Gold Nanoparticles at Room Temperature. Analytical Chemistry, 2010, 82, 9606-9610.	6. 5	315
368	In Vitro Model on Glass Surfaces for Complex Interactions between Different Types of Cells. Langmuir, 2010, 26, 17790-17794.	3.5	22
369	Strategy for the Modification of Electrospun Fibers that Allows Diverse Functional Groups for Biomolecular Entrapment. Chemistry of Materials, 2010, 22, 6212-6214.	6.7	25
370	A simple PDMS-based microfluidic channel design that removes bubbles for long-term on-chip culture of mammalian cells. Lab on A Chip, 2010, 10, 2906.	6.0	102
371	Microfluidic Western Blot. Analytical Chemistry, 2010, 82, 3974-3976.	6. 5	66
372	Loop-Mediated Isothermal Amplification Integrated on Microfluidic Chips for Point-of-Care Quantitative Detection of Pathogens. Analytical Chemistry, 2010, 82, 3002-3006.	6.5	260
373	A stretching device for imaging real-time molecular dynamics of live cells adhering to elastic membranes on inverted microscopes during the entire process of the stretch. Integrative Biology (United Kingdom), 2010, 2, 288.	1.3	57
374	Adsorbed Tween 80 is unique in its ability to improve the stability of gold nanoparticles in solutions of biomolecules. Nanoscale, 2010, 2, 2114.	5.6	62
375	Recent developments employing new materials for readout in lab-on-a-chip. Journal of Materials Chemistry, 2010, 20, 7305.	6.7	19
376	Incorporation of electrospun nanofibrous PVDF membranes into a microfluidic chip assembled by PDMS and scotch tape for immunoassays. Electrophoresis, 2009, 30, 3269-3275.	2.4	56
377	Using Azobenzeneâ€Embedded Selfâ€Assembled Monolayers To Photochemically Control Cell Adhesion Reversibly. Angewandte Chemie - International Edition, 2009, 48, 4406-4408.	13.8	237
378	Patterning Mammalian Cells for Modeling Three Types of Naturally Occurring Cell–Cell Interactions. Angewandte Chemie - International Edition, 2009, 48, 8303-8305.	13.8	90

#	Article	IF	Citations
379	Control of the morphology of micro/nanostructures of polycarbonate via electrospinning. Science Bulletin, 2009, 54, 2911-2917.	1.7	20
380	Combining nanosurface chemistry and microfluidics for molecular analysis and cell biology. Analytica Chimica Acta, 2009, 650, 98-105.	5.4	43
381	Electrospinning of Poly(dimethylsiloxane)/Poly(methyl methacrylate) Nanofibrous Membrane: Fabrication and Application in Protein Microarrays. Biomacromolecules, 2009, 10, 3335-3340.	5.4	83
382	A nano- and micro- integrated protein chip based on quantum dot probes and a microfluidic network. Nano Research, 2008, 1, 490-496.	10.4	52
383	Visual Detection of Copper(II) by Azide―and Alkyneâ€Functionalized Gold Nanoparticles Using Click Chemistry. Angewandte Chemie - International Edition, 2008, 47, 7454-7456.	13.8	408
384	Electrospun Nanofibrous Membranes: A Novel Solid Substrate for Microfluidic Immunoassays for HIV. Advanced Materials, 2008, 20, 4770-4775.	21.0	149
385	Modular microfluidics for gradient generation. Lab on A Chip, 2008, 8, 1536.	6.0	81
386	A fast, high throughput, and low-cost microfluidic bioassays for detecting HIV., 2008,,.		0
387	Micro-Scale Patterning of Cells and Their Environment. , 2007, , 265-278.		1
388	A Method for Patterning Multiple Types of Cells by Using Electrochemical Desorption of Self-Assembled Monolayers within Microfluidic Channels. Angewandte Chemie - International Edition, 2007, 46, 1094-1096.	13.8	141
389	Directing cell migration with asymmetric micropatterns. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 975-978.	7.1	428
390	Microengineering the Environment of Mammalian Cells in Culture. MRS Bulletin, 2005, 30, 194-201.	3.5	100
391	A General Method for Patterning Gradients of Biomolecules on Surfaces Using Microfluidic Networks. Analytical Chemistry, 2005, 77, 2338-2347.	6.5	156
392	Self-Assembled Monolayers in Mammalian Cell Cultures., 2005,, 199-215.		1
393	Potentiometric Titrations in a Poly(dimethylsiloxane)-Based Microfluidic Device. Analytical Chemistry, 2004, 76, 2273-2280.	6.5	35
394	Compatibility of Mammalian Cells on Surfaces of Poly(dimethylsiloxane). Langmuir, 2004, 20, 11684-11691.	3.5	323
395	Palladium as a Substrate for Self-Assembled Monolayers Used in Biotechnology. Analytical Chemistry, 2004, 76, 6116-6121.	6.5	47
396	Rapid Prototyping of 2D Structures with Feature Sizes Larger than 8 μm. Analytical Chemistry, 2003, 75, 2522-2527.	6.5	49

#	Article	IF	CITATIONS
397	A Miniaturized, Parallel, Serially Diluted Immunoassay for Analyzing Multiple Antigens. Journal of the American Chemical Society, 2003, 125, 5294-5295.	13.7	164
398	Electrochemical Desorption of Self-Assembled Monolayers Noninvasively Releases Patterned Cells from Geometrical Confinements. Journal of the American Chemical Society, 2003, 125, 2366-2367.	13.7	243
399	Geometric Determinants of Directional Cell Motility Revealed Using Microcontact Printingâ€. Langmuir, 2003, 19, 1611-1617.	3 . 5	238
400	Gradients of substrate-bound laminin orient axonal specification of neurons. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12542-12547.	7.1	414
401	Controlling Mammalian Cell Spreading and Cytoskeletal Arrangement with Conveniently Fabricated Continuous Wavy Features on Poly(dimethylsiloxane). Langmuir, 2002, 18, 3273-3280.	3. 5	185
402	Soft Lithography in Biology and Biochemistry. Annual Review of Biomedical Engineering, 2001, 3, 335-373.	12.3	2,380
403	Dynamic, self-assembled aggregates of magnetized, millimeter-sized objects rotating at the liquid-air interface:â€f Macroscopic, two-dimensional classical artificial atoms and molecules. Physical Review E, 2001, 64, 011603.	2.1	95