Carl F Ware

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4792285/publications.pdf

Version: 2024-02-01

91	7,972	41	86
papers	citations	h-index	g-index
110	110	110	9307
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Randomized, double-blind, controlled trial of human anti-LIGHT monoclonal antibody in COVID-19 acute respiratory distress syndrome. Journal of Clinical Investigation, 2022, 132, .	8.2	15
2	Btla signaling in conventional and regulatory lymphocytes coordinately tempers humoral immunity in the intestinal mucosa. Cell Reports, 2022, 38, 110553.	6.4	9
3	Realigning the LIGHT signaling network to control dysregulated inflammation. Journal of Experimental Medicine, 2022, 219, .	8.5	16
4	Receptors Tumor Necrosis Factor Receptors. , 2021, , 335-341.		0
5	ILC3s control splenic cDC homeostasis via lymphotoxin signaling. Journal of Experimental Medicine, 2021, 218, .	8.5	6
6	Regnase-1 is essential for B cell homeostasis to prevent immunopathology. Journal of Experimental Medicine, 2021, 218, .	8.5	13
7	Lymphotoxin \hat{l}^2 Receptor: a Crucial Role in Innate and Adaptive Immune Responses against Toxoplasma gondii. Infection and Immunity, 2021, 89, .	2.2	1
8	Posttranslational modifications by ADAM10 shape myeloid antigen-presenting cell homeostasis in the splenic marginal zone. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
9	Development of follicular dendritic cells in lymph nodes depends on retinoic acid-mediated signaling. Development (Cambridge), 2021, 148, .	2.5	4
10	LIGHT/TNFSF14 Promotes Osteolytic Bone Metastases in Nonâ€small Cell Lung Cancer Patients. Journal of Bone and Mineral Research, 2020, 35, 671-680.	2.8	31
11	Group 3 Innate Lymphoid Cells Program a Distinct Subset of IL-22BP-Producing Dendritic Cells Demarcating Solitary Intestinal Lymphoid Tissues. Immunity, 2020, 53, 1015-1032.e8.	14.3	41
12	HVEM signaling promotes protective antibody-dependent cellular cytotoxicity (ADCC) vaccine responses to herpes simplex viruses. Science Immunology, 2020, 5, .	11.9	12
13	Levels of the TNF-Related Cytokine LIGHT Increase in Hospitalized COVID-19 Patients with Cytokine Release Syndrome and ARDS. MSphere, 2020, 5, .	2.9	33
14	Deletion of immune evasion genes provides an effective vaccine design for tumor-associated herpesviruses. Npj Vaccines, 2020, 5, 102.	6.0	8
15	Contactin-1 Is Required for Peripheral Innervation and Immune Homeostasis Within the Intestinal Mucosa. Frontiers in Immunology, 2020, 11, 1268.	4.8	9
16	Cutting Edge: The RNA-Binding Protein Ewing Sarcoma Is a Novel Modulator of Lymphotoxin \hat{l}^2 Receptor Signaling. Journal of Immunology, 2020, 204, 1085-1090.	0.8	2
17	LIGHT/TNFSF14 regulates estrogen deficiencyâ€induced bone loss. Journal of Pathology, 2020, 250, 440-451.	4.5	15
18	Lymph node fibroblastic reticular cells deposit fibrosis-associated collagen following organ transplantation. Journal of Clinical Investigation, 2020, 130, 4182-4194.	8.2	16

#	Article	IF	Citations
19	The HVEM-BTLA Axis Restrains T Cell Help to Germinal Center B Cells and Functions as a Cell-Extrinsic Suppressor in Lymphomagenesis. Immunity, 2019, 51, 310-323.e7.	14.3	74
20	IMMU-03. TUMOR NECROSIS FACTOR OVERCOMES IMMUNE EVASION IN P53-MUTANT MEDULLOBLASTOMA. Neuro-Oncology, 2019, 21, ii93-ii93.	1.2	1
21	A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nature Medicine, 2019, 25, 805-813.	30.7	260
22	Co-expression Networks Identify DHX15 RNA Helicase as a B Cell Regulatory Factor. Frontiers in Immunology, 2019, 10, 2903.	4.8	6
23	The TNF Superfamily Molecule LIGHT Promotes the Generation of Circulating and Lung-Resident Memory CD8 T Cells following an Acute Respiratory Virus Infection. Journal of Immunology, 2018, 200, 2894-2904.	0.8	23
24	TNF Superfamily in Inflammation. , 2018, , 1-50.		1
25	Impairment of Bone Remodeling in <i>LIGHT/TNFSF14</i> Deficient Mice. Journal of Bone and Mineral Research, 2018, 33, 704-719.	2.8	16
26	B Cellâ€Mediated Maintenance of Cluster of Differentiation 169–Positive Cells Is Critical for Liver Regeneration. Hepatology, 2018, 68, 2348-2361.	7.3	26
27	A herpesvirus entry mediator mutein with selective agonist action for the inhibitory receptor B and T lymphocyte attenuator. FASEB Journal, 2018, 32, 792.5.	0.5	0
28	A herpesvirus entry mediator mutein with selective agonist action for the inhibitory receptor B and T lymphocyte attenuator. Journal of Biological Chemistry, 2017, 292, 21060-21070.	3.4	17
29	HVEM Imprints Memory Potential on Effector CD8 T Cells Required for Protective Mucosal Immunity. Journal of Immunology, 2017, 199, 2968-2975.	0.8	26
30	Perivascular Fibroblasts of the Developing Spleen Act as $LT\hat{l}\pm 1\hat{l}^2$ 2-Dependent Precursors of Both T and B Zone Organizer Cells. Cell Reports, 2017, 21, 2500-2514.	6.4	26
31	The TNF Receptor Superfamily in Co-stimulating and Co-inhibitory Responses. Immunity, 2016, 44, 1005-1019.	14.3	323
32	Lymphotoxin \hat{I}^2 Receptor Controls T Cell Progenitor Entry to the Thymus. Journal of Immunology, 2016, 197, 2665-2672.	0.8	24
33	The NF- $\hat{l}^{\varrho}B$ subunit RelB controls p100 processing by competing with the kinases NIK and IKK1 for binding to p100. Science Signaling, 2016, 9, ra96.	3.6	16
34	A new HIFâ€1α/RANTESâ€driven pathway to hepatocellular carcinoma mediated by germline haploinsufficiency of SART1/HAF in mice. Hepatology, 2016, 63, 1576-1591.	7.3	35
35	Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Nature, 2016, 529, 546-550.	27.8	141
36	LTÎ ² R signalling preferentially accelerates oncogenic AKT-initiated liver tumours. Gut, 2016, 65, 1765-1775.	12.1	17

#	Article	IF	CITATIONS
37	Tumor Necrosis Factor Superfamily in Innate Immunity and Inflammation. Cold Spring Harbor Perspectives in Biology, 2015, 7, a016279.	5.5	73
38	Deficiency of the B Cell-Activating Factor Receptor Results in Limited CD169 ⁺ Macrophage Function during Viral Infection. Journal of Virology, 2015, 89, 4748-4759.	3.4	22
39	Commensal microbiota influence systemic autoimmune responses. EMBO Journal, 2015, 34, 466-474.	7.8	93
40	p100/lîºBδ sequesters and inhibits NF-κB through kappaBsome formation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15946-15951.	7.1	54
41	Mixing Signals: Molecular Turn Ons and Turn Offs for Innate γδT-Cells. Frontiers in Immunology, 2014, 5, 654.	4.8	9
42	Interactions between Herpesvirus Entry Mediator (TNFRSF14) and Latency-Associated Transcript during Herpes Simplex Virus 1 Latency. Journal of Virology, 2014, 88, 1961-1971.	3.4	36
43	The Thymic Microenvironment Differentially Regulates Development and Trafficking of Invariant NKT Cell Sublineages. Journal of Immunology, 2014, 193, 5960-5972.	0.8	10
44	Extracellular adenosine regulates colitis through effects on lymphoid and nonlymphoid cells. American Journal of Physiology - Renal Physiology, 2014, 307, G338-G346.	3.4	18
45	The Lymphotoxin Network: Orchestrating a Type I interferon response to optimize adaptive immunity. Cytokine and Growth Factor Reviews, 2014, 25, 139-145.	7.2	29
46	NLRs: Sentinels of immunity or cancer culprits?. Oncoscience, 2014, 1, 308-309.	2.2	0
47	The Inhibitory Receptor BTLA Controls $\hat{I}^{3}\hat{I}'$ T Cell Homeostasis and Inflammatory Responses. Immunity, 2013, 39, 1082-1094.	14.3	93
48	Lymphotoxin network pathways shape the tumor microenvironment. Current Opinion in Immunology, 2013, 25, 222-229.	5.5	25
49	Clinical targeting of the TNF and TNFR superfamilies. Nature Reviews Drug Discovery, 2013, 12, 147-168.	46.4	364
50	Protein Therapeutics Targeted at the TNF Superfamily. Advances in Pharmacology, 2013, 66, 51-80.	2.0	15
51	CD160 Activation by Herpesvirus Entry Mediator Augments Inflammatory Cytokine Production and Cytolytic Function by NK Cells. Journal of Immunology, 2013, 191, 828-836.	0.8	84
52	CD8 T Cell Memory to a Viral Pathogen Requires Trans Cosignaling between HVEM and BTLA. PLoS ONE, 2013, 8, e77991.	2.5	64
53	BTLA Interaction with HVEM Expressed on CD8+ T Cells Promotes Survival and Memory Generation in Response to a Bacterial Infection. PLoS ONE, 2013, 8, e77992.	2.5	62
54	Innate B cells: oxymoron or validated concept?. F1000Research, 2012, 1, 8.	1.6	3

#	Article	IF	Citations
55	The tumor necrosis factor family member LIGHT is a target for asthmatic airway remodeling. Nature Medicine, 2011, 17, 596-603.	30.7	160
56	TNF Superfamily Networks: bidirectional and interference pathways of the herpesvirus entry mediator (TNFSF14). Current Opinion in Immunology, 2011, 23, 627-631.	5 . 5	93
57	The signaling networks of the herpesvirus entry mediator (TNFRSF14) in immune regulation. Immunological Reviews, 2011, 244, 169-187.	6.0	176
58	Herpesvirus entry mediator (TNFRSF14) regulates the persistence of T helper memory cell populations. Journal of Experimental Medicine, 2011, 208, 797-809.	8.5	72
59	Critical Roles for LIGHT and Its Receptors in Generating T Cell-Mediated Immunity during Leishmania donovani Infection. PLoS Pathogens, 2011, 7, e1002279.	4.7	26
60	Workshop Summary: Control of Lymphocyte Function and Repertoire by the TNF Superfamily. Advances in Experimental Medicine and Biology, 2011, 691, 351-352.	1.6	0
61	Biphasic role of 4â€1BB in the regulation of mouse cytomegalovirusâ€specific CD8 ⁺ T cells. European Journal of Immunology, 2010, 40, 2762-2768.	2.9	58
62	Polymorphic Variants of LIGHT (TNF Superfamily-14) Alter Receptor Avidity and Bioavailability. Journal of Immunology, 2010, 185, 1949-1958.	0.8	19
63	Allosteric Regulation of the Ubiquitin:NIK and Ubiquitin:TRAF3 E3 Ligases by the Lymphotoxin-β Receptor. Journal of Biological Chemistry, 2010, 285, 17148-17155.	3.4	65
64	$\rm LT\hat{l}^2R$ Signaling Induces Cytokine Expression and Up-Regulates Lymphangiogenic Factors in Lymph Node Anlagen. Journal of Immunology, 2009, 182, 5439-5445.	0.8	135
65	The Adaptor Molecule MyD88 Directly Promotes CD8 T Cell Responses to Vaccinia Virus. Journal of Immunology, 2009, 182, 6278-6286.	0.8	52
66	Unconventional ligand activation of herpesvirus entry mediator signals cell survival. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6244-6249.	7.1	165
67	T Cell Intrinsic Heterodimeric Complexes between HVEM and BTLA Determine Receptivity to the Surrounding Microenvironment. Journal of Immunology, 2009, 183, 7286-7296.	0.8	121
68	Targeting the LIGHT-HVEM Pathway. Advances in Experimental Medicine and Biology, 2009, 647, 146-155.	1.6	42
69	Targeting lymphocyte activation through the lymphotoxin and LIGHT pathways. Immunological Reviews, 2008, 223, 186-201.	6.0	107
70	Cross-regulation between herpesviruses and the TNF superfamily members. Nature Reviews Immunology, 2008, 8, 861-873.	22.7	66
71	Lymphotoxin-Mediated Crosstalk between B Cells and Splenic Stroma Promotes the Initial Type I Interferon Response to Cytomegalovirus. Cell Host and Microbe, 2008, 3, 67-76.	11.0	124
72	The TNF Superfamily-2008. Cytokine and Growth Factor Reviews, 2008, 19, 183-186.	7.2	55

#	Article	IF	Citations
73	Structural Determinants of Herpesvirus Entry Mediator Recognition by Murine B and T Lymphocyte Attenuator. Journal of Immunology, 2008, 180, 940-947.	0.8	33
74	The Lymphotoxin Pathway Regulates Aire-Independent Expression of Ectopic Genes and Chemokines in Thymic Stromal Cells. Journal of Immunology, 2008, 180, 5384-5392.	0.8	96
75	A crucial role for HVEM and BTLA in preventing intestinal inflammation. Journal of Experimental Medicine, 2008, 205, 1463-1476.	8.5	118
76	The Inhibitory HVEM-BTLA Pathway Counter Regulates Lymphotoxin \hat{l}^2 Receptor Signaling to Achieve Homeostasis of Dendritic Cells. Journal of Immunology, 2008, 180, 238-248.	0.8	80
77	Herpesvirus Entry Mediator and Cytomegalovirus ORF UL144 bind a common region of B and T Lymphocyte Attenuator. FASEB Journal, 2008, 22, 1070.28.	0.5	0
78	Signaling via LTβR & HVEMâ€BTLA Pathways Control Dendritic Cell Homeostasis In Vivo. FASEB Journal, 2008, 22, 1070.5.	0.5	0
79	Cytomegalovirus exploits IL-10–mediated immune regulation in the salivary glands. Journal of Experimental Medicine, 2007, 204, 1217-1225.	8.5	115
80	Alternative Entry Receptors for Herpes Simplex Virus and Their Roles in Disease. Cell Host and Microbe, 2007, 2, 19-28.	11.0	116
81	The DARC conspiracy – virus invasion tactics. Trends in Immunology, 2006, 27, 362-367.	6.8	15
82	B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nature Immunology, 2005, 6, 90-98.	14.5	543
83	A Lymphotoxin-IFN-β Axis Essential for Lymphocyte Survival Revealed during Cytomegalovirus Infection. Journal of Immunology, 2005, 174, 7217-7225.	0.8	78
84	From The Cover: Evolutionarily divergent herpesviruses modulate T cell activation by targeting the herpesvirus entry mediator cosignaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13218-13223.	7.1	190
85	NETWORK COMMUNICATIONS: Lymphotoxins, LIGHT, and TNF. Annual Review of Immunology, 2005, 23, 787-819.	21.8	399
86	Intrinsic Lymphotoxin-β Receptor Requirement for Homeostasis of Lymphoid Tissue Dendritic Cells. Immunity, 2005, 22, 439-450.	14.3	304
87	The TNF Superfamily. Cytokine and Growth Factor Reviews, 2003, 14, 181-184.	7.2	108
88	The Lymphotoxin-l ² Receptor Induces Different Patterns of Gene Expression via Two NF-l ² B Pathways. Immunity, 2002, 17, 525-535.	14.3	842
89	Constitutive Expression of LIGHT on T Cells Leads to Lymphocyte Activation, Inflammation, and Tissue Destruction. Journal of Immunology, 2001, 167, 6330-6337.	0.8	217
90	Expression of the lymphotoxin \hat{l}^2 receptor on follicular stromal cells in human lymphoid tissues. Cell Death and Differentiation, 1998, 5, 497-505.	11.2	100

#	Article	IF	CITATIONS
91	LIGHT, a New Member of the TNF Superfamily, and Lymphotoxin $\hat{l}\pm$ Are Ligands for Herpesvirus Entry Mediator. Immunity, 1998, 8, 21-30.	14.3	720