Richard S Nowakowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4792260/publications.pdf

Version: 2024-02-01

91 papers 9,886 citations

45 h-index 86 g-index

92 all docs 92 docs citations

times ranked

92

8488 citing authors

#	Article	IF	CITATIONS
1	The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genetics, 2004, 36, 1133-1137.	21.4	1,034
2	Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. Journal of Neurocytology, 1989, 18, 311-318.	1.5	687
3	The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. Journal of Neuroscience, 1995, 15, 6046-6057.	3.6	631
4	Use of bromodeoxyuridine-immunohistochemistry to examine the proliferation, migration and time of origin of cells in the central nervous system. Brain Research, 1988, 457, 44-52.	2.2	570
5	Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends in Neurosciences, 1995, 18, 379-383.	8.6	537
6	The nature and identification of quantitative trait loci: a community's view. Nature Reviews Genetics, 2003, 4, 911-916.	16.3	390
7	The Leaving or Q Fraction of the Murine Cerebral Proliferative Epithelium: A General Model of Neocortical Neuronogenesis. Journal of Neuroscience, 1996, 16, 6183-6196.	3.6	311
8	Cell cycle parameters and patterns of nuclear movement in the neocortical proliferative zone of the fetal mouse. Journal of Neuroscience, 1993, 13, 820-833.	3.6	307
9	Sequence of Neuron Origin and Neocortical Laminar Fate: Relation to Cell Cycle of Origin in the Developing Murine Cerebral Wall. Journal of Neuroscience, 1999, 19, 10357-10371.	3.6	294
10	The time of origin of neurons in the hippocampal region of the rhesus monkey. Journal of Comparative Neurology, 1981, 196, 99-128.	1.6	289
11	BUdR as an S-phase marker for quantitative studies of cytokinetic behaviour in the murine cerebral ventricular zone. Journal of Neurocytology, 1992, 21, 185-197.	1.5	238
12	The site of origin and route and rate of migration of neurons to the hippocampal region of the rhesus monkey. Journal of Comparative Neurology, 1981, 196, 129-154.	1.6	213
13	Left out axoms make men right: A hypothesis for the origin of handedness and functional asymmetry. Neuropsychologia, 1991, 29, 327-333.	1.6	212
14	Early ontogeny of the secondary proliferative population of the embryonic murine cerebral wall. Journal of Neuroscience, 1995, 15, 6058-6068.	3.6	197
15	Dynamics of cell proliferation in the adult dentate gyrus of two inbred strains of mice. Developmental Brain Research, 2002, 134, 77-85.	1.7	178
16	Fibroblast Growth Factor 2 Is Required for Maintaining the Neural Stem Cell Pool in the Mouse Brain Subventricular Zone. Developmental Neuroscience, 2004, 26, 181-196.	2.0	172
17	Cell Output, Cell Cycle Duration and Neuronal Specification: a Model of Integrated Mechanisms of the Neocortical Proliferative Process. Cerebral Cortex, 2003, 13, 592-598.	2.9	170
18	Effect of Prenatal Exposure to Ethanol on the Cell Cycle Kinetics and Growth Fraction in the Proliferative Zones of Fetal Rat Cerebral Cortex. Alcoholism: Clinical and Experimental Research, 1991, 15, 229-232.	2.4	167

#	Article	IF	Citations
19	The mode of migration of neurons to the hippocampus: a Golgi and electron microscopic analysis in foetal rhesus monkey. Journal of Neurocytology, 1979, 8, 697-718.	1.5	164
20	Mode of cell proliferation in the developing mouse neocortex Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 375-379.	7.1	147
21	Targeted mutagenesis of <i>Lis1</i> disrupts cortical development and LIS1 homodimerization. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6429-6434.	7.1	139
22	Exploiting the Dynamics of S-Phase Tracers in Developing Brain: Interkinetic Nuclear Migration for Cells Entering versus Leavingthe S-Phase. Developmental Neuroscience, 2000, 22, 44-55.	2.0	136
23	Cdk5rap2 exposes the centrosomal root of microcephaly syndromes. Trends in Cell Biology, 2011, 21, 470-480.	7.9	110
24	Spatiotemporal Features of Early Neuronogenesis Differ in Wild-Type and Albino Mouse Retina. Journal of Neuroscience, 2002, 22, 4249-4263.	3.6	105
25	Interkinetic and Migratory Behavior of a Cohort of Neocortical Neurons Arising in the Early Embryonic Murine Cerebral Wall. Journal of Neuroscience, 1996, 16, 5762-5776.	3.6	104
26	A gradient in the duration of the G1 phase in the murine neocortical proliferative epithelium. Cerebral Cortex, 1997, 7, 678-689.	2.9	104
27	New Neurons: Extraordinary Evidence or Extraordinary Conclusion?. Science, 2000, 288, 771a-771.	12.6	99
28	Cell birth, cell death, cell diversity and DNA breaks: how do they all fit together?. Trends in Neurosciences, 2000, 23, 100-105.	8.6	97
29	Independent Controls for Neocortical Neuron Production and Histogenetic Cell Death. Developmental Neuroscience, 2000, 22, 125-138.	2.0	91
30	Overexpression of p27Kip1, Probability of Cell Cycle Exit, and Laminar Destination of Neocortical Neurons. Cerebral Cortex, 2005, 15, 1343-1355.	2.9	91
31	Genetics of the hippocampal transcriptome in mouse: a systematic survey and online neurogenomics resource. Frontiers in Neuroscience, 2009, 3, 55.	2.8	84
32	Role of Founder Cell Deficit and Delayed Neuronogenesis in Microencephaly of the Trisomy 16 Mouse. Journal of Neuroscience, 2000, 20, 4156-4164.	3.6	82
33	Neocortical neurogenesis: morphogenetic gradients and beyond. Trends in Neurosciences, 2009, 32, 443-450.	8.6	77
34	Local Homogeneity of Cell Cycle Length in Developing Mouse Cortex. Journal of Neuroscience, 1997, 17, 2079-2087.	3.6	76
35	CNS development: An overview. Development and Psychopathology, 1999, 11, 395-417.	2.3	71
36	Differential effects of acellular embryonic matrices on pluripotent stem cell expansion and neural differentiation. Biomaterials, 2015, 73, 231-242.	11.4	69

#	Article	IF	Citations
37	Sexâ€biased hippocampal pathology in the 5XFAD mouse model of Alzheimer's disease: A multiâ€omic analysis. Journal of Comparative Neurology, 2019, 527, 462-475.	1.6	67
38	Population Dynamics During Cell Proliferation and Neuronogenesis in the Developing Murine Neocortex. Results and Problems in Cell Differentiation, 2002, 39, 1-25.	0.7	59
39	Size distribution of retrovirally marked lineages matches prediction from population measurements of cell cycle behavior. Journal of Neuroscience Research, 2002, 69, 731-744.	2.9	58
40	The Mathematics of Neocortical Neuronogenesis. Developmental Neuroscience, 1997, 19, 17-22.	2.0	57
41	Synchrony of Clonal Cell Proliferation and Contiguity of Clonally Related Cells: Production of Mosaicism in the Ventricular Zone of Developing Mouse Neocortex. Journal of Neuroscience, 1997, 17, 2088-2100.	3.6	57
42	Stable neuron numbers from cradle to grave. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12219-12220.	7.1	56
43	Sex differences in the molecular signature of the developing mouse hippocampus. BMC Genomics, 2017, 18, 237.	2.8	53
44	Bioinformatic analysis reveals the expression of unique transcriptomic signatures in Zika virus infected human neural stem cells. Cell and Bioscience, 2016, 6, 42.	4.8	51
45	Genetic factors and the measurement of exploratory activity. Behavioral and Neural Biology, 1987, 48, 90-103.	2.2	48
46	The Mode of Inheritance of a Defect in Lamination in the Hippocampus of BALB/c Mice. Journal of Neurogenetics, 1984, 1, 249-258.	1.4	46
47	An Examination of Dynamic Gene Expression Changes in the Mouse Brain During Pregnancy and the Postpartum Period. G3: Genes, Genomes, Genetics, 2016, 6, 221-233.	1.8	46
48	Morphological abnormalities in the hippocampus of the weaver mutant mouse. Brain Research, 1995, 696, 262-267.	2.2	45
49	Stability of Wake-Sleep Cycles Requires Robust Degradation of the PERIOD Protein. Current Biology, 2017, 27, 3454-3467.e8.	3.9	44
50	Distribution of EphA5 receptor protein in the developing and adult mouse nervous system. Journal of Comparative Neurology, 2009, 514, 310-328.	1.6	42
51	Postembryonic neuronogenesis in the procerebrum of the terrestrial snail, Helix lucorum L, 1998, 35, 271-276.		40
52	Histogenetic Processes Leading to the Laminated Neocortex: Migration Is Only a Part of the Story. Developmental Neuroscience, 2008, 30, 82-95.	2.0	39
53	Competitive interactions during dendritic growth: a simple stochastic growth algorithm. Brain Research, 1992, 576, 152-156.	2.2	36
54	The G1 restriction point as critical regulator of neocortical neuronogenesis. Neurochemical Research, 1999, 24, 497-506.	3.3	36

#	Article	IF	Citations
55	Dendritic arbors and dendritic excrescences of abnormally positioned neurons in area CA3c of mice carrying the mutation "Hippocampal lamination defect― Journal of Comparative Neurology, 1985, 239, 267-275.	1.6	31
56	Cytoarchitectonic abnormalities in hippocampal formation and cerebellum of dreher mutant mouse. Developmental Brain Research, 1992, 67, 105-112.	1.7	31
57	Navigating Neocortical Neurogenesis and Neuronal Specification: A Positional Information System Encoded by Neurogenetic Gradients. Journal of Neuroscience, 2007, 27, 10777-10784.	3.6	29
58	Loss of Brap Results in Premature G1/S Phase Transition and Impeded Neural Progenitor Differentiation. Cell Reports, 2017, 20, 1148-1160.	6.4	29
59	The stability of the transcriptome during the estrous cycle in four regions of the mouse brain. Journal of Comparative Neurology, 2017, 525, 3360-3387.	1.6	28
60	Stem Cells The Promises and Pitfalls. Neuropsychopharmacology, 2001, 25, 799-804.	5.4	26
61	Glial cell differentiation in neuron-free and neuron-rich regions. Anatomy and Embryology, 1991, 184, 559-569.	1.5	25
62	Unsupervised Selection of Highly Coexpressed and Noncoexpressed Genes Using a Consensus Clustering Approach. OMICS A Journal of Integrative Biology, 2009, 13, 219-237.	2.0	25
63	Transcriptomic analysis of the hippocampus from six inbred strains of mice suggests a basis for sexâ€specific susceptibility and severity of neurological disorders. Journal of Comparative Neurology, 2016, 524, 2696-2710.	1.6	24
64	Glial cell differentiation in neuron-free and neuron-rich regions. Anatomy and Embryology, 1991, 184, 549-558.	1.5	22
65	Disruption of neuronal migration in the neocortex of the dreher mutant mouse. Developmental Brain Research, 1994, 77, 37-43.	1.7	22
66	An integrated approach to design novel therapeutic interventions for demyelinating disorders. European Journal of Neuroscience, 2012, 35, 1879-1886.	2.6	22
67	The correlation of the time of origin of neurons with their axonal projection: the combined use of [3H]thymidine autoradiography and horseradish peroxidase histochemistry. Brain Research, 1975, 99, 343-348.	2.2	19
68	CLEARANCE RATE OF EXOGENOUS3H-THYMIDINE FROM THE PLASMA OF PREGNANT RHESUS MONKEYS. Cell Proliferation, 1974, 7, 189-194.	5. 3	18
69	Radiation, retardation and the developing brain: time is the crucial variable. Acta Paediatrica, International Journal of Paediatrics, 2008, 97, 527-531.	1.5	18
70	A multi-resource data integration approach: identification of candidate genes regulating cell proliferation during neocortical development. Frontiers in Neuroscience, 2014, 8, 257.	2.8	18
71	Neocortical malformation as consequence of nonadaptive regulation of neuronogenetic sequence. Mental Retardation and Developmental Disabilities Research Reviews, 2000, 6, 22-33.	3.6	17
72	Developmental regulation of the effects of fibroblast growth factorâ€⊋ and 1â€octanol on neuronogenesis: Implications for a hypothesis relating to mitogen–antimitogen opposition. Journal of Neuroscience Research, 2002, 69, 714-722.	2.9	15

#	Article	IF	Citations
7 3	An Immortalized Mouse Neuroepithelial Cell Line with Neuronal and Glial Phenotypes. Developmental Neuroscience, 1995, 17, 311-323.	2.0	13
74	The abnormal distribution of mossy fiber bundles and morphological abnormalities in hippocampal formation of dreherJ (drJdrJ) mouse. Developmental Brain Research, 1996, 92, 31-38.	1.7	13
75	Heterozygote Effects inDreherMice. Journal of Neurogenetics, 1990, 6, 173-181.	1.4	10
76	Regulation of Normal Proliferation in the Developing Cerebrum Potential Actions of Trophic Factors. Experimental Neurology, 1996, 137, 357-366.	4.1	10
77	Morphology and distribution of astrocytes in the molecular layer of the dentate gyrus in NZB/BLNJ, dreher, and C57BL/6J mice. Glia, 1994, 10, 1-9.	4.9	9
78	Time course and sequence of pathological changes in the cerebellum of microsphere-embolized rats. Experimental Neurology, 2005, 191, 266-275.	4.1	9
79	Identification of a Chr 11 quantitative trait locus that modulates proliferation in the rostral migratory stream of the adult mouse brain. European Journal of Neuroscience, 2010, 32, 523-537.	2.6	9
80	Rapid appearance of pathological changes of neurons and glia cells in the cerebellum of microsphere-embolized rats. Brain Research, 2003, 978, 228-232.	2.2	8
81	Abnormalities of foliation and neuronal position in the cerebellum of NZB/BINJ mouse. Developmental Brain Research, 1991, 64, 189-195.	1.7	7
82	Differentiation of Amyloid Plaques Between Alzheimer's Disease and Non-Alzheimer's Disease Individuals Based on Gray-Level Co-occurrence Matrix Texture Analysis. Microscopy and Microanalysis, 2021, 27, 1146-1153.	0.4	7
83	Abnormal distribution of acetylcholinesterase activity in the hippocampal formation of the dreher mutant mouse. Brain Research, 1993, 622, 203-210.	2.2	6
84	Review: Cell Cycle as Operational Unit of Neocortical Neuronogenesis. Neuroscientist, 1999, 5, 155-163.	3.5	6
85	Cerebellar microfolia and other abnormalities of neuronal growth, migration, and lamination in the Pit1dw-Jhomozygote mutant mouse., 1998, 400, 363-374.		5
86	Reply. Trends in Neurosciences, 2000, 23, 408-409.	8.6	4
87	Fractionationâ€dependent improvements in proteome resolution in the mouse hippocampus by IEF LCâ€MS/MS. Electrophoresis, 2016, 37, 2054-2062.	2.4	3
88	Neuronal Migration and Differentiation during Normal and Genetically Perturbed Development of the Hippocampal Formation. , 1991 , , $29-60$.		3
89	Neuronal Migration in the Hippocampal Lamination Defect (Hld) Mutant Mouse., 1985,, 133-154.		2
90	Holoprosencephaly and microcephaly vera: perturbations of proliferation., 0,, 37-54.		0

#	Article	IF	CITATIONS
91	Neural Stem Cells: A Perspective and Synopsis of the Current Status. Developmental Neuroscience, 2004, 26, 81-81.	2.0	0