Ulf Göransson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4792072/publications.pdf

Version: 2024-02-01

121 papers 8,332 citations

45 h-index 88 g-index

125 all docs 125 docs citations

125 times ranked

7236 citing authors

#	Article	IF	Citations
1	The involvement of cyclotides in mutual interactions of violets and the two-spotted spider mite. Scientific Reports, 2022, 12, 1914.	3.3	5
2	Spatial Distribution and Stability of Cholinesterase Inhibitory Protoberberine Alkaloids from <i>Papaver setiferum</i> . Journal of Natural Products, 2022, 85, 215-224.	3.0	6
3	A stable cyclized antimicrobial peptide derived from LL-37 with host immunomodulatory effects and activity against uropathogens. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	14
4	Exploring natural products-based cancer therapeutics derived from egyptian flora. Journal of Ethnopharmacology, 2021, 269, 113626.	4.1	23
5	Solution NMR and racemic crystallography provide insights into a novel structural class of cyclic plant peptides. RSC Chemical Biology, 2021, 2, 1682-1691.	4.1	1
6	Editorial: Natural Antimicrobial Peptides: Hope for New Antibiotic Lead Molecules. Frontiers in Pharmacology, 2021, 12, 640938.	3.5	7
7	Antioxidant properties and phenolic profiling by UPLC-QTOF-MS of Ajwah, Safawy and Sukkari cultivars of date palm. Biochemistry and Biophysics Reports, 2021, 25, 100909.	1.3	15
8	Cyclotide host-defense tailored for species and environments in violets from the Canary Islands. Scientific Reports, 2021, 11, 12452.	3.3	12
9	Tropical vibes from Sri Lanka - cyclotides from Viola betonicifolia by transcriptome and mass spectrometry analysis. Phytochemistry, 2021, 187, 112749.	2.9	11
10	Functional Characterization of the Nemertide \hat{l}_{\pm} Family of Peptide Toxins. Journal of Natural Products, 2021, 84, 2121-2128.	3.0	4
11	Barrettides: A Peptide Family Specifically Produced by the Deep-Sea Sponge <i>Geodia barretti</i> Journal of Natural Products, 2021, 84, 3138-3146.	3.0	6
12	Recent insights into chemical and pharmacological studies of bee bread. Trends in Food Science and Technology, 2020, 97, 300-316.	15.1	67
13	Screening for bioactive secondary metabolites in Sri Lankan medicinal plants by microfractionation and targeted isolation of antimicrobial flavonoids from Derris scandens. Journal of Ethnopharmacology, 2020, 246, 112158.	4.1	36
14	The life cycle of cyclotides: biosynthesis and turnover in plant cells. Plant Cell Reports, 2020, 39, 1359-1367.	5.6	7
15	Ethnobotany and Antimicrobial Peptides From Plants of the Solanaceae Family: An Update and Future Prospects. Frontiers in Pharmacology, 2020, 11, 565.	3.5	41
16	Backbone Cyclization and Dimerization of LL-37-Derived Peptides Enhance Antimicrobial Activity and Proteolytic Stability. Frontiers in Microbiology, 2020, 11, 168.	3.5	56
17	Sulfadiazine Masquerading as a Natural Product from <i>Scilla madeirensis</i> (Scilloideae). Journal of Natural Products, 2020, 83, 1305-1308.	3.0	4
18	Marine Natural Products: A Source of Novel Anticancer Drugs. Marine Drugs, 2019, 17, 491.	4.6	324

#	Article	IF	CITATIONS
19	The Membrane-Active Phytopeptide Cycloviolacin O2 Simultaneously Targets HIV-1-infected Cells and Infectious Viral Particles to Potentiate the Efficacy of Antiretroviral Drugs. Medicines (Basel,) Tj ETQq $1\ 1\ 0.784314$	· I ggBT /Ove	e ds ck 10 T
20	The Toxins of Nemertean Worms. Toxins, 2019, 11, 120.	3.4	34
21	Stabilized Cyclic Peptides as Scavengers of Autoantibodies: Neutralization of Anticitrullinated Protein/Peptide Antibodies in Rheumatoid Arthritis. ACS Chemical Biology, 2018, 13, 1525-1535.	3.4	17
22	Hydroxycinnamic Acids: Natural Sources, Biosynthesis, Possible Biological Activities, and Roles in Islamic Medicine. Studies in Natural Products Chemistry, 2018, 55, 269-292.	1.8	28
23	Alanine and Lysine Scans of the LLâ€37â€Derived Peptide Fragment KRâ€12 Reveal Key Residues for Antimicrobial Activity. ChemBioChem, 2018, 19, 931-939.	2.6	26
24	Peptide ion channel toxins from the bootlace worm, the longest animal on Earth. Scientific Reports, 2018, 8, 4596.	3.3	22
25	How Does the Sweet Violet (Viola odorata L.) Fight Pathogens and Pests – Cyclotides as a Comprehensive Plant Host Defense System. Frontiers in Plant Science, 2018, 9, 1296.	3.6	51
26	35 Years of Marine Natural Product Research in Sweden: Cool Molecules and Models from Cold Waters. Progress in Molecular and Subcellular Biology, 2017, 55, 1-34.	1.6	4
27	Resistance to the Cyclotide Cycloviolacin O2 in Salmonella enterica Caused by Different Mutations That Often Confer Cross-Resistance or Collateral Sensitivity to Other Antimicrobial Peptides. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	11
28	Singleâ€step purification of cyclotides using affinity chromatography. Biopolymers, 2017, 108, e23010.	2.4	4
29	The "PepSAVI-MS―Pipeline for Natural Product Bioactive Peptide Discovery. Analytical Chemistry, 2017, 89, 1194-1201.	6.5	34
30	Bactericidal activity of cyclotides where phosphatidylethanolamine-lipid selectivity determines antimicrobial spectra. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1986-2000.	2.6	56
31	Cyclotide Evolution: Insights from the Analyses of Their Precursor Sequences, Structures and Distribution in Violets (Viola). Frontiers in Plant Science, 2017, 8, 2058.	3.6	25
32	Chemical Proteomics for Target Discovery of Head-to-Tail Cyclized Mini-Proteins. Frontiers in Chemistry, 2017, 5, 73.	3.6	6
33	The Bacterial (Vibrio alginolyticus) Production of Tetrodotoxin in the Ribbon Worm Lineus longissimusâ€"Just a False Positive?. Marine Drugs, 2016, 14, 63.	4.6	19
34	Immunolocalization of cyclotides in plant cells, tissues and organ supports their role in host defense. Planta, 2016, 244, 1029-1040.	3.2	30
35	Oral activity of a nature-derived cyclic peptide for the treatment of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3960-3965.	7.1	119
36	<scp>N</scp> omenclature of homodetic cyclic peptides produced from ribosomal precursors:An IUPAC task group interim report. Biopolymers, 2016, 106, 917-924.	2.4	8

#	Article	IF	CITATIONS
37	Improved method for quantitative analysis of the cyclotide kalata B1 in plasma and brain homogenate. Biopolymers, 2016, 106, 910-916.	2.4	6
38	Selective membrane disruption by the cyclotide kalata B7: complex ions and essential functional groups in the phosphatidylethanolamine binding pocket. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1317-1327.	2.6	25
39	Cyclotides in the Violaceae. Advances in Botanical Research, 2015, 76, 15-49.	1.1	10
40	Targeting of anti-citrullinated protein/peptide antibodies in rheumatoid arthritis using peptides mimicking endogenously citrullinated fibrinogen antigens. Arthritis Research and Therapy, 2015, 17, 155.	3 . 5	34
41	Distribution of circular proteins in plants: large-scale mapping of cyclotides in the Violaceae. Frontiers in Plant Science, 2015, 6, 855.	3.6	58
42	Penicillium nalgiovense Laxa isolated from Antarctica is a new source of the antifungal metabolite amphotericin B. Fungal Biology and Biotechnology, 2015, 2, 1.	5.1	37
43	Exogenous plant hormones and cyclotide expression in Viola uliginosa (Violaceae). Phytochemistry, 2015, 117, 527-536.	2.9	29
44	Affinity states of biocides determine bioavailability and release rates in marine paints. Biofouling, 2015, 31, 201-210.	2.2	4
45	A Cactusâ€Derived Toxinâ€Like Cystine Knot Peptide with Selective Antimicrobial Activity. ChemBioChem, 2015, 16, 1068-1077.	2.6	18
46	Synthesis, Structural Characterization, and Bioactivity of the Stable Peptide RCB-1 from <i>Ricinus communis</i> . Journal of Natural Products, 2015, 78, 2545-2551.	3.0	7
47	Isolation, Characterization, and Synthesis of the Barrettides: Disulfide-Containing Peptides from the Marine Sponge <i>Geodia barretti</i> . Journal of Natural Products, 2015, 78, 1886-1893.	3.0	23
48	Micropropagation of Viola uliginosa (Violaceae) for endangered species conservation and for somaclonal variation-enhanced cyclotide biosynthesis. Plant Cell, Tissue and Organ Culture, 2015, 120, 179-190.	2.3	60
49	Chemistry and Biology of Cyclotides: Circular Plant Peptides Outside the Box. Journal of Natural Products, 2014, 77, 724-736.	3.0	86
50	Antigenotoxic and antioxidant effects of the Mongolian medicinal plant Leptopyrum fumarioides (L): An in vitro study. Journal of Ethnopharmacology, 2014, 155, 599-606.	4.1	19
51	Cyclotide Structure–Activity Relationships: Qualitative and Quantitative Approaches Linking Cytotoxic and Anthelmintic Activity to the Clustering of Physicochemical Forces. PLoS ONE, 2014, 9, e91430.	2.5	21
52	Induction of Gliotoxin Secretion in Aspergillus fumigatus by Bacteria-Associated Molecules. PLoS ONE, 2014, 9, e93685.	2.5	19
53	An <i>in vitro</i> Study on the DNA Damaging Effects of Phytochemicals Partially Isolated from an Extract of <i>Glinus lotoides</i> Phytotherapy Research, 2013, 27, 507-514.	5.8	9
54	Making Ends Meet: Microwave-Accelerated Synthesis of Cyclic and Disulfide Rich Proteins Via In Situ Thioesterification and Native Chemical Ligation. International Journal of Peptide Research and Therapeutics, 2013, 19, 43-54.	1.9	37

#	Article	IF	CITATIONS
55	A systematic approach to document cyclotide distribution in plant species from genomic, transcriptomic, and peptidomic analysis. Biopolymers, 2013, 100, 433-437.	2.4	26
56	Oxytocic plant cyclotides as templates for peptide G protein-coupled receptor ligand design. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 21183-21188.	7.1	129
57	Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Natural Product Reports, 2013, 30, 108-160.	10.3	1,692
58	The traditional medical uses and cytotoxic activities of sixty-one Egyptian plants: Discovery of an active cardiac glycoside from Urginea maritima. Journal of Ethnopharmacology, 2013, 145, 746-757.	4.1	99
59	Bioassayâ€guided Supercritical Fluid Extraction of Cyclooxygenaseâ€2 Inhibiting Substances in <i>Plantago major</i> L Phytochemical Analysis, 2013, 24, 176-183.	2.4	18
60	Cycloviolacin O2 (CyO2) suppresses productive infection and augments the antiviral efficacy of nelfinavir in HIV \hat{a} infected monocytic cells. Biopolymers, 2013, 100, 471-479.	2.4	26
61	Chemical Composition and Repellency of Essential Oils From Four Medicinal Plants Against <i>lxodes ricinus</i> Nymphs (Acari: lxodidae). Journal of Medical Entomology, 2012, 49, 1067-1075.	1.8	36
62	Antimicrobial activity of filamentous fungi isolated from highly antibiotic-contaminated river sediment. Infection Ecology and Epidemiology, 2012, 2, 11591.	0.8	30
63	Circular Proteins from Plants and Fungi. Journal of Biological Chemistry, 2012, 287, 27001-27006.	3.4	58
64	Biosynthesis, Natural Sources, Dietary Intake, Pharmacokinetic Properties, and Biological Activities of Hydroxycinnamic Acids. Journal of Agricultural and Food Chemistry, 2012, 60, 10877-10895.	5.2	334
65	Genotoxicity and cellular uptake of cyclotides: Evidence for multiple modes of action. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 747, 176-181.	1.7	11
66	Optimization of cyclotide extraction parameters. Phytochemistry Letters, 2012, 5, 776-781.	1.2	16
67	Anti-schistosomiasis triterpene glycoside from the Egyptian medicinal plant Asparagus stipularis. Revista Brasileira De Farmacognosia, 2012, 22, 314-318.	1.4	17
68	Interlocking Disulfides in Circular Proteins: Toward Efficient Oxidative Folding of Cyclotides. Antioxidants and Redox Signaling, 2011, 14, 77-86.	5.4	45
69	Cyclotides from an Extreme Habitat: Characterization of Cyclic Peptides from <i>Viola abyssinica</i> of the Ethiopian Highlands. Journal of Natural Products, 2011, 74, 727-731.	3.0	44
70	Cyclotide–membrane interactions: Defining factors of membrane binding, depletion and disruption. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2665-2673.	2.6	76
71	Two Brominated Cyclic Dipeptides Released by the Coldwater Marine Sponge <i>Geodia barretti</i> Act in Synergy As Chemical Defense. Journal of Natural Products, 2011, 74, 449-454.	3.0	24
72	Cytotoxic potency of small macrocyclic knot proteins: Structureâ€"activity and mechanistic studies of native and chemically modified cyclotides. Organic and Biomolecular Chemistry, 2011, 9, 4306.	2.8	41

#	Article	IF	Citations
73	Strategies and Methods for a Sustainable Search for Bioactive Compounds. , 2011, , 1-36.		o
74	A liquid chromatography–electrospray ionization-mass spectrometry method for quantification of cyclotides in plants avoiding sorption during sample preparation. Journal of Chromatography A, 2011, 1218, 7964-7970.	3.7	12
75	Biomedicine in the environment: Cyclotides constitute potent natural toxins in plants and soil bacteria. Environmental Toxicology and Chemistry, 2011, 30, 1190-1196.	4.3	39
76	Cystine Knot Folding in Cyclotides. , 2011, , 43-61.		5
77	An Efficient Approach for the Total Synthesis of Cyclotides by Microwave Assisted Fmoc-SPPS. International Journal of Peptide Research and Therapeutics, 2010, 16, 167-176.	1.9	19
78	Natural products in modern life science. Phytochemistry Reviews, 2010, 9, 279-301.	6.5	64
79	Evaluation of toxicity and antitumor activity of cycloviolacin O2 in mice. Biopolymers, 2010, 94, 626-634.	2.4	39
80	Anticancer and chemosensitizing abilities of cycloviolacin O2 from <i>Viola odorata</i> and psyle cyclotides from <i>Psychotria leptothyrsa</i> Biopolymers, 2010, 94, 617-625.	2.4	95
81	Cyclotide proteins and precursors from the genus Gloeospermum: Filling a blank spot in the cyclotide map of Violaceae. Phytochemistry, 2010, 71, 13-20.	2.9	44
82	The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria. Journal of Antimicrobial Chemotherapy, 2010, 65, 1964-1971.	3.0	179
83	Isolation, Characterization, and Bioactivity of Cyclotides from the Micronesian Plant <i>Psychotria leptothyrsa</i> . Journal of Natural Products, 2010, 73, 1207-1213.	3.0	69
84	Naturally Occurring Xanthones; Latest Investigations: Isolation, Structure Elucidation and Chemosystematic Significance. Current Medicinal Chemistry, 2009, 16, 2581-2626.	2.4	72
85	Combined X-ray and NMR Analysis of the Stability of the Cyclotide Cystine Knot Fold That Underpins Its Insecticidal Activity and Potential Use as a Drug Scaffold. Journal of Biological Chemistry, 2009, 284, 10672-10683.	3.4	96
86	The Conserved Glu in the Cyclotide Cycloviolacin O2 Has a Key Structural Role. ChemBioChem, 2009, 10, 2354-2360.	2.6	62
87	Monitoring the antiâ€cancer effects and chemosensitizing abilities of novel cyclotides from Psychotria leptothyrsa. FASEB Journal, 2009, 23, 756.10.	0.5	1
88	Ultraâ€Stable Peptide Scaffolds for Protein Engineeringâ€"Synthesis and Folding of the Circular Cystine Knotted Cyclotide Cycloviolacin O2. ChemBioChem, 2008, 9, 103-113.	2.6	87
89	The alpine violet, Viola biflora, is a rich source of cyclotides with potent cytotoxicity. Phytochemistry, 2008, 69, 939-952.	2.9	131
90	Antifouling Activity of a Dibrominated Cyclopeptide from the Marine Sponge <i>Geodia barretti</i> Journal of Natural Products, 2008, 71, 330-333.	3.0	64

#	Article	IF	CITATIONS
91	Anti-HIV Cyclotides from the Chinese Medicinal Herb <i>Viola yedoensis</i> . Journal of Natural Products, 2008, 71, 47-52.	3.0	163
92	Distribution and Evolution of Circular Miniproteins in Flowering Plants. Plant Cell, 2008, 20, 2471-2483.	6.6	234
93	The Flavouring Phytochemical 2-Pentanone Reduces Prostaglandin Production and COX-2 Expression in Colon Cancer Cells. Biological and Pharmaceutical Bulletin, 2008, 31, 534-537.	1.4	25
94	Modern pharmacognosy: Connecting biology and chemistry. Pure and Applied Chemistry, 2007, 79, 763-774.	1.9	13
95	Mechanism of Action of Cytotoxic Cyclotides:Â Cycloviolacin O2 Disrupts Lipid Membranes. Journal of Natural Products, 2007, 70, 643-647.	3.0	131
96	The Cyclotide Fingerprint inOldenlandia affinis: Elucidation of Chemically Modified, Linear and Novel Macrocyclic Peptides. ChemBioChem, 2007, 8, 1001-1011.	2.6	108
97	Cyclopeptide alkaloids. Phytochemistry Reviews, 2007, 6, 143-165.	6.5	31
98	Brominated Cyclodipeptides from the Marine SpongeGeodiabarrettias Selective 5-HT Ligands. Journal of Natural Products, 2006, 69, 1421-1424.	3.0	49
99	Antifouling activity of synthesized peptide analogs of the sponge metabolite barettin. Peptides, 2006, 27, 2058-2064.	2.4	44
100	Key role of glutamic acid for the cytotoxic activity of the cyclotide cycloviolacin O2. Cellular and Molecular Life Sciences, 2006, 63, 235-245.	5.4	99
101	A Continent of Plant Defense Peptide Diversity: Cyclotides in Australian Hybanthus (Violaceae). Plant Cell, 2005, 17, 3176-3189.	6.6	156
102	Novel Strategies for Isolation and Characterization of Cyclotides: The Discovery of Bioactive Macrocyclic Plant Polypeptides in the Violaceae. Current Protein and Peptide Science, 2004, 5, 317-329.	1.4	77
103	Recruitment in the field ofbalanus improvisusandmytilus edulisin response to the antifouling cyclopeptides barettin and 8,9-dihydrobarettin from the marine spongegeodia barretti. Biofouling, 2004, 20, 291-297.	2.2	38
104	Cyclization of pyrrhocoricin retains structural elements crucial for the antimicrobial activity of the native peptide. Biopolymers, 2004, 76, 446-458.	2.4	21
105	Reversible Antifouling Effect of the Cyclotide Cycloviolacin O2 against Barnacles. Journal of Natural Products, 2004, 67, 1287-1290.	3.0	144
106	Cytotoxic Cyclotides fromViolatricolor⊥. Journal of Natural Products, 2004, 67, 144-147.	3.0	176
107	Antifouling Activity of Brominated Cyclopeptides from the Marine SpongeGeodia barretti. Journal of Natural Products, 2004, 67, 368-372.	3.0	104
108	Variations in Cyclotide Expression in Viola Species. Journal of Natural Products, 2004, 67, 806-810.	3.0	82

#	Article	IF	CITATIONS
109	Diversity in the disulfide folding pathways of cystine knot peptides. International Journal of Peptide Research and Therapeutics, 2003, 10, 523-531.	0.1	12
110	Expression of Viola cyclotides by liquid chromatography–mass spectrometry and tandem mass spectrometry sequencing of intercysteine loops after introduction of charges and cleavage sites by aminoethylation. Analytical Biochemistry, 2003, 318, 107-117.	2.4	62
111	Primary and 3-D modelled structures of two cyclotides from Viola odorata. Phytochemistry, 2003, 64, 135-142.	2.9	59
112	Diversity in the disulfide folding pathways of cystine knot peptides. International Journal of Peptide Research and Therapeutics, 2003, 10, 523-531.	1.9	3
113	Microcin J25 Has a Threaded Sidechain-to-Backbone Ring Structure and Not a Head-to-Tail Cyclized Backbone. Journal of the American Chemical Society, 2003, 125, 12464-12474.	13.7	248
114	Disulfide Mapping of the Cyclotide Kalata B1. Journal of Biological Chemistry, 2003, 278, 48188-48196.	3.4	136
115	A Neutrophil Multitarget Functional Bioassay to Detect Anti-inflammatory Natural Products. Journal of Natural Products, 2002, 65, 32-41.	3.0	48
116	Selective Cytotoxicity Evaluation in Anticancer Drug Screening of Fractionated Plant Extracts. Journal of Biomolecular Screening, 2002, 7, 333-340.	2.6	38
117	Selective Cytotoxicity Evaluation in Anticancer Drug Screening of Fractionated Plant Extracts. Journal of Biomolecular Screening, 2002, 7, 333-340.	2.6	3
118	Cyclotides: a novel type of cytotoxic agents. Molecular Cancer Therapeutics, 2002, 1, 365-9.	4.1	181
119	First cyclotide from Hybanthus (Violaceae). Phytochemistry, 2001, 58, 47-51.	2.9	80
120	Seven Novel Macrocyclic Polypeptides from Violaarvensis. Journal of Natural Products, 1999, 62, 283-286.	3.0	162
121	Fractionation Protocol for the Isolation of Polypeptides from Plant Biomass. Journal of Natural Products, 1998, 61, 77-81.	3.0	143