
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4791908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	mTOR-AKT Signaling in Cellular Clock Resetting Triggered by Osmotic Stress. Antioxidants and Redox Signaling, 2022, 37, 631-646.	5.4	3
2	ASK1 signaling regulates phase-specific glial interactions during neuroinflammation. Proceedings of the United States of America, 2022, 119, .	7.1	6
3	NAMPT-dependent NAD+ salvage is crucial for the decision between apoptotic and necrotic cell death under oxidative stress. Cell Death Discovery, 2022, 8, 195.	4.7	6
4	ASK1 suppresses NK cellâ€mediated intravascular tumor cell clearance in lung metastasis. Cancer Science, 2021, 112, 1633-1643.	3.9	5
5	FGF21 Induced by the ASK1-p38 Pathway Promotes Mechanical Cell Competition by Attracting Cells. Current Biology, 2021, 31, 1048-1057.e5.	3.9	18
6	Cells recognize osmotic stress through liquid–liquid phase separation lubricated with poly(ADP-ribose). Nature Communications, 2021, 12, 1353.	12.8	62
7	A Novel Lens for Cell Volume Regulation: Liquid-Liquid Phase Separation. Cellular Physiology and Biochemistry, 2021, 55, 135-160.	1.6	4
8	Functional cooperation between ASK1 and p21Waf1/Cip1 in the balance of cell-cycle arrest, cell death and tumorigenesis of stressed keratinocytes. Cell Death Discovery, 2021, 7, 75.	4.7	2
9	The mitochondrial Ca ²⁺ uptake regulator, MICU1, is involved in cold stressâ€induced ferroptosis. EMBO Reports, 2021, 22, e51532.	4.5	41
10	ERAD components Derlin-1 and Derlin-2 are essential for postnatal brain development and motor function. IScience, 2021, 24, 102758.	4.1	11
11	Elevated placental histone H3K4 methylation via upregulated histone methyltransferases SETD1A and SMYD3 in preeclampsia and its possible involvement in hypoxia-induced pathophysiological process. Placenta, 2021, 115, 60-69.	1.5	10
12	Molecular functions of ASK family in diseases caused by stress-induced inflammation and apoptosis. Journal of Biochemistry, 2021, 169, 395-407.	1.7	0
13	ASKA technology-based pull-down method reveals a suppressive effect of ASK1 on the inflammatory NOD-RIPK2 pathway in brown adipocytes. Scientific Reports, 2021, 11, 22009.	3.3	0
14	The CCR4–NOT deadenylase complex safeguards thymic positive selection by down-regulating aberrant pro-apoptotic gene expression. Nature Communications, 2020, 11, 6169.	12.8	11
15	Apoptosis signal-regulating kinase 1 (ASK1) as a therapeutic target for neurological diseases. Expert Opinion on Therapeutic Targets, 2020, 24, 1061-1064.	3.4	7
16	Cryo-EM structure of the volume-regulated anion channel LRRC8D isoform identifies features important for substrate permeation. Communications Biology, 2020, 3, 240.	4.4	35
17	The mitochondrial protein PGAM5 suppresses energy consumption in brown adipocytes by repressing expression of uncoupling protein 1. Journal of Biological Chemistry, 2020, 295, 5588-5601.	3.4	9
18	Genome-wide siRNA screening reveals that DCAF4-mediated ubiquitination of optineurin stimulates autophagic degradation of Cu,Zn-superoxide dismutase. Journal of Biological Chemistry, 2020, 295, 3148-3158.	3.4	1

#	Article	IF	CITATIONS
19	ASK1 promotes uterine inflammation leading to pathological preterm birth. Scientific Reports, 2020, 10, 1887.	3.3	6
20	β-adrenergic receptor signaling evokes the PKA-ASK axis in mature brown adipocytes. PLoS ONE, 2020, 15, e0232645.	2.5	4
21	ER-resident sensor PERK is essential for mitochondrial thermogenesis in brown adipose tissue. Life Science Alliance, 2020, 3, e201900576.	2.8	27
22	Cell volume regulation in cancer cell migration driven by osmotic water flow. Cancer Science, 2019, 110, 2337-2347.	3.9	43
23	Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1398-1409.	2.4	283
24	A PP6-ASK3 Module Coordinates the Bidirectional Cell Volume Regulation under Osmotic Stress. Cell Reports, 2018, 22, 2809-2817.	6.4	54
25	ASK family kinases mediate cellular stress and redox signaling to circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3646-3651.	7.1	29
26	Apoptosis signal-regulating kinase 1 in regulated necrosis. Cell Cycle, 2018, 17, 5-6.	2.6	5
27	mASKing cancer cells in a tumor microenvironment. Cell Cycle, 2018, 17, 139-140.	2.6	1
28	A small-molecule inhibitor of SOD1-Derlin-1 interaction ameliorates pathology in an ALS mouse model. Nature Communications, 2018, 9, 2668.	12.8	19
29	β-TrCP-dependent degradation of ASK1 suppresses the induction of the apoptotic response by oxidative stress. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2271-2280.	2.4	11
30	Cryo-EM structures of the human volume-regulated anion channel LRRC8. Nature Structural and Molecular Biology, 2018, 25, 797-804.	8.2	104
31	The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis. Science Translational Medicine, 2017, 9, .	12.4	182
32	Ask1 regulates murine platelet granule secretion, thromboxane A2 generation, and thrombus formation. Blood, 2017, 129, 1197-1209.	1.4	49
33	Cold stressâ€induced ferroptosis involves the <scp>ASK</scp> 1â€p38 pathway. EMBO Reports, 2017, 18, 2067-2078.	4.5	99
34	ASK1 facilitates tumor metastasis through phosphorylation of an ADP receptor P2Y12 in platelets. Cell Death and Differentiation, 2017, 24, 2066-2076.	11.2	34
35	TRIM48 Promotes ASK1 Activation and Cell Death through Ubiquitination-Dependent Degradation of the ASK1-Negative Regulator PRMT1. Cell Reports, 2017, 21, 2447-2457.	6.4	45
36	Structures of PGAM5 Provide Insight into Active Site Plasticity and Multimeric Assembly. Structure, 2017, 25, 1089-1099.e3.	3.3	27

#	Article	IF	CITATIONS
37	Involvement of apoptosis signal-regulating kinase-1 in house dust mite-induced allergic asthma in mice. Allergology International, 2017, 66, S50-S52.	3.3	2
38	Pleiotropic properties of ASK1. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3030-3038.	2.4	51
39	Foreword. Advances in Biological Regulation, 2017, 66, 1.	2.3	Ο
40	Role of ASK1/p38 Cascade in a Mouse Model of Alzheimer's Disease and Brain Aging. Journal of Alzheimer's Disease, 2017, 61, 259-263.	2.6	17
41	The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction. ELife, 2016, 5, .	6.0	137
42	The Ablation of Mitochondrial Protein Phosphatase Pgam5 Confers Resistance Against Metabolic Stress. EBioMedicine, 2016, 5, 82-92.	6.1	22
43	Osmotic stress induces the phosphorylation of WNK4 Ser575 via the p38MAPK-MK pathway. Scientific Reports, 2016, 6, 18710.	3.3	16
44	ASK1 signalling regulates brown and beige adipocyte function. Nature Communications, 2016, 7, 11158.	12.8	59
45	Mitogen-activated protein kinases as key players in osmotic stress signaling. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2037-2052.	2.4	67
46	SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS. Advances in Biological Regulation, 2016, 60, 95-104.	2.3	112
47	The ASK1-specific inhibitors K811 and K812 prolong survival in a mouse model of amyotrophic lateral sclerosis. Human Molecular Genetics, 2016, 25, 245-253.	2.9	40
48	KLHDC10 Deficiency Protects Mice against TNFα-Induced Systemic Inflammation. PLoS ONE, 2016, 11, e0163118.	2.5	6
49	Mislocalization, aggregation formation and defect in proteolysis in ALS. AIMS Molecular Science, 2016, 3, 246-268.	0.5	2
50	<i>In vivo</i> gene manipulation reveals the impact of stressâ€responsive <scp>MAPK</scp> pathways on tumor progression. Cancer Science, 2015, 106, 785-796.	3.9	29
51	ASK1 is involved in cognitive impairment caused by long-term high-fat diet feeding in mice. Scientific Reports, 2015, 5, 10844.	3.3	24
52	Role of Apoptosis Signal-regulating Kinase 1 (ASK1) as an Activator of the GAPDH-Siah1 Stress-Signaling Cascade. Journal of Biological Chemistry, 2015, 290, 56-64.	3.4	18
53	The ASK family kinases differentially mediate induction of type I interferon and apoptosis during the antiviral response. Science Signaling, 2015, 8, ra78.	3.6	29
54	Inhibition of Cytohesins Protects against Genetic Models of Motor Neuron Disease. Journal of Neuroscience, 2015, 35, 9088-9105.	3.6	20

#	Article	lF	CITATIONS
55	Apoptosis Signal-regulating Kinase 1 (ASK1)-p38 Pathway-dependent Cytoplasmic Translocation of the Orphan Nuclear Receptor NR4A2 Is Required for Oxidative Stress-induced Necrosis. Journal of Biological Chemistry, 2015, 290, 10791-10803.	3.4	43
56	ASK1 restores the antiviral activity of APOBEC3G by disrupting HIV-1 Vif-mediated counteraction. Nature Communications, 2015, 6, 6945.	12.8	32
57	A systematic immunoprecipitation approach reinforces the concept of common conformational alterations in amyotrophic lateral sclerosis-linked SOD1 mutants. Neurobiology of Disease, 2015, 82, 478-486.	4.4	7
58	Pre-emptive Quality Control Protects the ER from Protein Overload via the Proximity of ERAD Components and SRP. Cell Reports, 2015, 13, 944-956.	6.4	60
59	Apoptosis signal-regulating kinase 1 modulates the phenotype of α-synuclein transgenic mice. Neurobiology of Aging, 2015, 36, 519-526.	3.1	23
60	Mitochondrial proteolysis: Its emerging roles in stress responses. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 274-280.	2.4	27
61	Regulation of Cellular Signalling by Thioredoxin. , 2015, , 255-274.		Ο
62	The Expression of Fn14 via Mechanical Stress-activated JNK Contributes to Apoptosis Induction in Osteoblasts. Journal of Biological Chemistry, 2014, 289, 6438-6450.	3.4	37
63	Roquin-2 Promotes Ubiquitin-Mediated Degradation of ASK1 to Regulate Stress Responses. Science Signaling, 2014, 7, ra8.	3.6	59
64	The DEAH-Box RNA Helicase DHX15 Activates NF-κB and MAPK Signaling Downstream of MAVS During Antiviral Responses. Science Signaling, 2014, 7, ra40.	3.6	77
65	Apoptosis Signal–Regulating Kinase 1 Is a Novel Target Molecule for Cognitive Impairment Induced by Chronic Cerebral Hypoperfusion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 616-625.	2.4	69
66	Depletion of Apoptosis Signal-Regulating Kinase 1 Prevents Bile Duct Ligation–Induced Necroinflammation and Subsequent Peribiliary Fibrosis. American Journal of Pathology, 2014, 184, 644-661.	3.8	32
67	The Lysosome Rupture-activated TAK1-JNK Pathway Regulates NLRP3 Inflammasome Activation. Journal of Biological Chemistry, 2014, 289, 32926-32936.	3.4	164
68	Apoptosis signal-regulating kinase 1 as a therapeutic target. Expert Opinion on Therapeutic Targets, 2014, 18, 651-664.	3.4	82
69	ASK1 promotes the contact hypersensitivity response through IL-17 production. Scientific Reports, 2014, 4, 4714.	3.3	14
70	Involvement of ASK1–p38 pathway in the pathogenesis of diabetes triggered by pancreatic ß cell exhaustion. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3656-3663.	2.4	23
71	Apoptosis Signal–Regulating Kinase 1 Deficiency Attenuates Vascular Injury–Induced Neointimal Hyperplasia by Suppressing Apoptosis in Smooth Muscle Cells. American Journal of Pathology, 2013, 182, 597-609.	3.8	37
72	SOD1 as a Molecular Switch for Initiating the Homeostatic ER Stress Response under Zinc Deficiency. Molecular Cell, 2013, 52, 75-86.	9.7	114

#	Article	IF	CITATIONS
73	Activation mechanisms of ASK1 in response to various stresses and its significance in intracellular signaling. Advances in Biological Regulation, 2013, 53, 135-144.	2.3	103
74	Integration of Apoptosis Signal-Regulating Kinase 1-Mediated Stress Signaling with the Akt/Protein Kinase B-IκB Kinase Cascade. Molecular and Cellular Biology, 2013, 33, 2252-2259.	2.3	28
75	Requirement of Apoptosis-Inducing Kinase 1 for the Induction of Bronchial Asthma following Stimulation with Ovalbumin. International Archives of Allergy and Immunology, 2013, 162, 104-114.	2.1	11
76	Oxidative Stress-Induced Diseases via the ASK1 Signaling Pathway. International Journal of Cell Biology, 2012, 2012, 1-5.	2.5	127
77	Novel mechanism of angiotensin II-induced cardiac injury in hypertensive rats: the critical role of ASK1 and VEGF. Hypertension Research, 2012, 35, 194-200.	2.7	41
78	The Phosphorylation-Dependent Regulation of Mitochondrial Proteins in Stress Responses. Journal of Signal Transduction, 2012, 2012, 1-12.	2.0	44
79	Deletion of Apoptosis Signal–Regulating Kinase–1 Prevents Ventilator-Induced Lung Injury in Mice. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 461-469.	2.9	16
80	Therapeutic targets in the ASK1-dependent stress signaling pathways. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2012, 88, 434-453.	3.8	102
81	Rhomboid Protease PARL Mediates the Mitochondrial Membrane Potential Loss-induced Cleavage of PGAM5. Journal of Biological Chemistry, 2012, 287, 34635-34645.	3.4	151
82	The Kelch Repeat Protein KLHDC10 Regulates Oxidative Stress-Induced ASK1 Activation by Suppressing PP5. Molecular Cell, 2012, 48, 692-704.	9.7	70
83	A novel monoclonal antibody reveals a conformational alteration shared by amyotrophic lateral sclerosisâ€linked SOD1 mutants. Annals of Neurology, 2012, 72, 739-749.	5.3	65
84	Apoptosis signalâ€regulating kinaseâ€1 inhibitor as a potent therapeutic drug for the treatment of gastric cancer. Cancer Science, 2012, 103, 2181-2185.	3.9	47
85	ASK3 responds to osmotic stress and regulates blood pressure by suppressing WNK1-SPAK/OSR1 signaling in the kidney. Nature Communications, 2012, 3, 1285.	12.8	66
86	ASK1 promotes apoptosis of normal and malignant plasma cells. Blood, 2012, 120, 1039-1047.	1.4	28
87	Apoptosis Signal-Regulating Kinase 1 Mediates MPTP Toxicity and Regulates Glial Activation. PLoS ONE, 2012, 7, e29935.	2.5	57
88	Prevention of Apoptosis by Mitochondrial Phosphatase PGAM5 in the Mushroom Body Is Crucial for Heat Shock Resistance in Drosophila melanogaster. PLoS ONE, 2012, 7, e30265.	2.5	19
89	Roles for the Stress-Responsive Kinases ASK1 and ASK2 in Tumorigenesis. , 2012, , 145-153.		0
90	Mitogen-Activated Protein Kinases in Mammalian Oxidative Stress Responses. Antioxidants and Redox Signaling, 2011, 15, 205-218.	5.4	146

#	Article	IF	CITATIONS
91	Apoptosis signal-regulating kinase 1 deficiency eliminates cardiovascular injuries induced by high-salt diet. Journal of Hypertension, 2011, 29, 76-84.	0.5	16
92	Apoptosis signal-regulating kinase 1 inhibits hepatocarcinogenesis by controlling the tumor-suppressing function of stress-activated mitogen-activated protein kinase. Hepatology, 2011, 54, 185-195.	7.3	74
93	Identification of novel ASK1 inhibitors using virtual screening. Bioorganic and Medicinal Chemistry, 2011, 19, 486-489.	3.0	21
94	Regulation of Anoxic Death in <i>Caenorhabditis elegans</i> by Mammalian Apoptosis Signal-Regulating Kinase (ASK) Family Proteins. Genetics, 2011, 187, 785-792.	2.9	29
95	p38 MAPKs regulate the expression of genes in the dopamine synthesis pathway through phosphorylation of NR4A nuclear receptors. Journal of Cell Science, 2011, 124, 3006-3016.	2.0	33
96	Apoptosis signal-regulating kinase 1 and cyclin D1 compose a positive feedback loop contributing to tumor growth in gastric cancer. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 780-785.	7.1	96
97	Apoptosis Signaling Kinases: From Stress Response to Health Outcomes. Antioxidants and Redox Signaling, 2011, 15, 719-761.	5.4	46
98	Apoptosis Signal–Regulating Kinase 1 Deficiency Accelerates Hyperlipidemia-Induced Atheromatous Plaques via Suppression of Macrophage Apoptosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1555-1564.	2.4	38
99	HSV Infection Induces Production of ROS, which Potentiate Signaling from Pattern Recognition Receptors: Role for S-glutathionylation of TRAF3 and 6. PLoS Pathogens, 2011, 7, e1002250.	4.7	107
100	Regulation of the severity of neuroinflammation and demyelination by TLRâ€ASK1â€p38 pathway. EMBO Molecular Medicine, 2010, 2, 504-515.	6.9	123
101	CHIP-dependent termination of MEKK2 regulates temporal ERK activation required for proper hyperosmotic response. EMBO Journal, 2010, 29, 2501-2514.	7.8	44
102	Reciprocal Negative Regulation of PDK1 and ASK1 Signaling by Direct Interaction and Phosphorylation. Journal of Biological Chemistry, 2010, 285, 2397-2414.	3.4	34
103	Fra-2 mediates oxygen-sensitive induction of transforming growth factor Î ² in cardiac fibroblasts. Cardiovascular Research, 2010, 87, 647-655.	3.8	35
104	The Loss of PGAM5 Suppresses the Mitochondrial Degeneration Caused by Inactivation of PINK1 in Drosophila. PLoS Genetics, 2010, 6, e1001229.	3.5	72
105	Regulation of Apoptosis Signal-Regulating Kinase 1 in Redox Signaling. Methods in Enzymology, 2010, 474, 277-288.	1.0	60
106	Apoptosis Signal-Regulating Kinase 1 Regulates Colitis and Colitis-Associated Tumorigenesis by the Innate Immune Responses. Gastroenterology, 2010, 138, 1055-1067.e4.	1.3	50
107	Hyperactivity in novel environment with increased dopamine and impaired novelty preference in apoptosis signal-regulating kinase 1 (ASK1)-deficient mice. Neuroscience Research, 2010, 66, 313-320.	1.9	23
108	Critical role for apoptosis signal-regulating kinase 1 in the development of inflammatory K/BxN serum-induced arthritis. International Immunopharmacology, 2010, 10, 1170-1176.	3.8	31

#	Article	IF	CITATIONS
109	Mechanical stress modulates bone remodeling signals. , 2010, , 129-132.		Ο

110 å"[°]ä¹³éjžç[°]èfžã®ã,¹ãf[°]ãf[¬]ã,¹å⊷å^{®1}ãf»ä¹⁄4é[°]機æ§‹ãëãã,Œã«èµ·å›ã™ã,‹ç−¾æ,£. Kagaku To Seibutsu, 2010, 480,4771-4770

111	Oxidizable Residues Mediating Protein Stability and Cytoprotective Interaction of DJ-1 with Apoptosis Signal-regulating Kinase 1. Journal of Biological Chemistry, 2009, 284, 14245-14257.	3.4	130
112	Selective Activation of the p38 MAPK Pathway by Synthetic Monophosphoryl Lipid A. Journal of Biological Chemistry, 2009, 284, 31982-31991.	3.4	77
113	Serine 58 of 14-3-3ζ Is a Molecular Switch Regulating ASK1 and Oxidant Stress-Induced Cell Death. Molecular and Cellular Biology, 2009, 29, 4167-4176.	2.3	64
114	Critical Role of Apoptosis Signal-Regulating Kinase 1 in Aldosterone/Salt-Induced Cardiac Inflammation and Fibrosis. Hypertension, 2009, 54, 544-551.	2.7	67
115	Stress-Activated MAP Kinase Cascades in Cellular Senescence. Current Medicinal Chemistry, 2009, 16, 1229-1235.	2.4	77
116	Mitochondrial phosphoglycerate mutase 5 uses alternate catalytic activity as a protein serine/threonine phosphatase to activate ASK1. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12301-12305.	7.1	132
117	Apoptosis signal-regulating kinase (ASK)-1 mediates apoptosis through activation of JNK1 following engagement of membrane immunoglobulin. Experimental Cell Research, 2009, 315, 3467-3476.	2.6	19
118	The roles of ASK family proteins in stress responses and diseases. Cell Communication and Signaling, 2009, 7, 9.	6.5	163
119	ASK1 and ASK2 differentially regulate the counteracting roles of apoptosis and inflammation in tumorigenesis. EMBO Journal, 2009, 28, 843-853.	7.8	119
120	A TNF- and c-Cbl-dependent FLIPS-degradation pathway and its function in Mycobacterium tuberculosis–induced macrophage apoptosis. Nature Immunology, 2009, 10, 918-926.	14.5	66
121	USP14 inhibits ER-associated degradation via interaction with IRE1α. Biochemical and Biophysical Research Communications, 2009, 379, 995-1000.	2.1	39
122	Ubiquitin-like Sequence in ASK1 Plays Critical Roles in the Recognition and Stabilization by USP9X and Oxidative Stress-Induced Cell Death. Molecular Cell, 2009, 36, 805-818.	9.7	128
123	Targeting ASK1 in ER stress-related neurodegenerative diseases. Expert Opinion on Therapeutic Targets, 2009, 13, 653-664.	3.4	42
124	ASK1-p38 MAPK-p47phox activation is essential for inflammatory responses during tuberculosis via TLR2-ROS signalling. Cellular Microbiology, 2008, 10, 741-754.	2.1	122
125	Deletion of Apoptosis Signal-Regulating Kinase 1 Attenuates Acetaminophen-Induced Liver Injury by Inhibiting c-Jun N-Terminal Kinase Activation. Gastroenterology, 2008, 135, 1311-1321.	1.3	228
126	Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 1325-1336.	2.4	424

#	Article	IF	CITATIONS
127	Apoptosis Signal-Regulating Kinase 1 in Stress and Immune Response. Annual Review of Pharmacology and Toxicology, 2008, 48, 199-225.	9.4	207
128	Apoptosis Signal-Regulating Kinase 1/p38 Signaling Pathway Negatively Regulates Physiological Hypertrophy. Circulation, 2008, 117, 545-552.	1.6	52
129	Requirement of Reactive Oxygen Species-dependent Activation of ASK1-p38 MAPK Pathway for Extracellular ATP-induced Apoptosis in Macrophage. Journal of Biological Chemistry, 2008, 283, 7657-7665.	3.4	170
130	ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes and Development, 2008, 22, 1451-1464.	5.9	432
131	Olmesartan Prevents Cardiovascular Injury and Hepatic Steatosis in Obesity and Diabetes, Accompanied by Apoptosis Signal Regulating Kinase-1 Inhibition. Hypertension, 2008, 52, 573-580.	2.7	94
132	Molecular Mechanism of Reactive Oxygen Species-dependent ASK1 Activation in Innate Immunity. Immune Network, 2008, 8, 1.	3.6	1
133	ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds. Journal of Cell Biology, 2007, 176, 903-909.	5.2	77
134	Thioredoxin and TRAF Family Proteins Regulate Reactive Oxygen Species-Dependent Activation of ASK1 through Reciprocal Modulation of the N-Terminal Homophilic Interaction of ASK1. Molecular and Cellular Biology, 2007, 27, 8152-8163.	2.3	244
135	Apoptosis Signal-regulating Kinase (ASK) 2 Functions as a Mitogen-activated Protein Kinase Kinase Kinase in a Heteromeric Complex with ASK1. Journal of Biological Chemistry, 2007, 282, 7522-7531.	3.4	115
136	Apoptosis Signal-Regulating Kinase-1 Is Involved in Vascular Endothelial and Cardiac Remodeling Caused by Nitric Oxide Deficiency. Hypertension, 2007, 50, 519-524.	2.7	30
137	Novel Mechanism and Role of Angiotensin II–Induced Vascular Endothelial Injury in Hypertensive Diastolic Heart Failure. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2569-2575.	2.4	70
138	Pathophysiological Roles of ASK1-MAP Kinase Signaling Pathways. BMB Reports, 2007, 40, 1-6.	2.4	173
139	Regulation of apoptosis signal-regulating kinase 1 by protein phosphatase 2Cïµ. Biochemical Journal, 2007, 405, 591-596.	3.7	40
140	ASK1 is activated by arsenic trioxide in leukemic cells through accumulation of reactive oxygen species and may play a negative role in induction of apoptosis. Biochemical and Biophysical Research Communications, 2007, 355, 1038-1044.	2.1	19
141	Important role of apoptosis signal-regulating kinase 1 in ischemic acute kidney injury. Biochemical and Biophysical Research Communications, 2007, 364, 1043-1049.	2.1	44
142	GTP Binding Is Essential to the Protein Kinase Activity of LRRK2, a Causative Gene Product for Familial Parkinson's Diseaseâ€. Biochemistry, 2007, 46, 1380-1388.	2.5	246
143	Chk2 kinase is required for methylglyoxalâ€induced G ₂ /M cellâ€cycle checkpoint arrest: implication of cellâ€cycle checkpoint regulation in diabetic oxidative stress signaling. Genes To Cells, 2007, 12, 919-928.	1.2	22
144	Stress signaling in cancer. Cancer Science, 2007, 98, 1521-1527.	3.9	26

#	Article	IF	CITATIONS
145	Interaction of ASK1 and the Î ² -amyloid precursor protein in a stress-signaling complex. Neurobiology of Disease, 2007, 28, 65-75.	4.4	18
146	ASK Family Proteins in Stress Response and Disease. Molecular Biotechnology, 2007, 37, 13-18.	2.4	53
147	ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds. Journal of Experimental Medicine, 2007, 204, i9-i9.	8.5	1
148	Role of Apoptosis Signal-Regulating Kinase 1 in Stress-Induced Neural Cell Apoptosis in Vivo. American Journal of Pathology, 2006, 168, 261-269.	3.8	104
149	ASKI Signalosome: a Signaling Complex Essential for Cellular Stress Responses. Journal of Oral Biosciences, 2006, 48, 7-11.	2.2	0
150	Release of RASSF1C from the nucleus by Daxx degradation links DNA damage and SAPK/JNK activation. EMBO Journal, 2006, 25, 3286-3297.	7.8	76
151	The ASK1–MAP kinase pathways in immune and stress responses. Microbes and Infection, 2006, 8, 1098-1107.	1.9	82
152	Apoptosis signal regulating kinase-1 connects reactive oxygen species to p38 MAPK-induced mitochondrial apoptosis in UVB-irradiated human keratinocytes. Free Radical Biology and Medicine, 2006, 41, 1361-1371.	2.9	84
153	Thioredoxin and protein kinases in redox signaling. Seminars in Cancer Biology, 2006, 16, 427-435.	9.6	132
154	Identification of Op18/stathmin as a potential target of ASK1-p38 MAP kinase cascade. Journal of Cellular Physiology, 2006, 206, 363-370.	4.1	32
155	The ASK1-MAP Kinase Signaling in ER Stress and Neurodegenerative Diseases. Current Molecular Medicine, 2006, 6, 87-97.	1.3	132
156	Cutting Edge: Apoptosis-Regulating Signal Kinase 1 Is Required for Reactive Oxygen Species-Mediated Activation of IFN Regulatory Factor 3 by Lipopolysaccharide. Journal of Immunology, 2006, 176, 5720-5724.	0.8	82
157	Direct Interaction and Reciprocal Regulation between ASK1 and Calcineurin-NFAT Control Cardiomyocyte Death and Growth. Molecular and Cellular Biology, 2006, 26, 3785-3797.	2.3	86
158	Apoptosis Signal-Regulating Kinase 1 Mediates Cellular Senescence Induced by High Glucose in Endothelial Cells. Diabetes, 2006, 55, 1660-1665.	0.6	144
159	Induction of a Ribotoxic Stress Response That Stimulates Stress-Activated Protein Kinases by 13-Deoxytedanolide, an Antitumor Marine Macrolide. Bioscience, Biotechnology and Biochemistry, 2006, 70, 161-171.	1.3	14
160	Impact of Mitochondrial Reactive Oxygen Species and Apoptosis Signal-Regulating Kinase 1 on Insulin Signaling. Diabetes, 2006, 55, 1197-1204.	0.6	111
161	ASK1 Signalosome: a Signaling Complex Essential for Cellular Stress Responses. Journal of Oral Biosciences, 2006, 48, 7-11.	2.2	0
162	Enhanced TNF-α–induced apoptosis in Fanconi anemia type C–deficient cells is dependent on apoptosis signal-regulating kinase 1. Blood, 2005, 106, 4124-4130.	1.4	36

#	Article	IF	CITATIONS
163	ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nature Immunology, 2005, 6, 587-592.	14.5	605
164	Amyloid \hat{I}^2 induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death and Differentiation, 2005, 12, 19-24.	11.2	369
165	Apoptosis signal-regulating kinase 1 in leukotriene D4-induced activator protein-1 activation in airway smooth muscle cells. European Journal of Pharmacology, 2005, 517, 11-16.	3.5	9
166	New mechanisms of skin innate immunity: ASK1-mediated keratinocyte differentiation regulates the expression of β-defensins, LL37, and TLR2. European Journal of Immunology, 2005, 35, 1886-1895.	2.9	66
167	Important Role of Apoptosis Signal-Regulating Kinase 1 in Ischemia-Induced Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1877-1883.	2.4	34
168	Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9691-9696.	7.1	299
169	Stress-Responsive Protein Kinases in Redox-Regulated Apoptosis Signaling. Antioxidants and Redox Signaling, 2005, 7, 472-481.	5.4	254
170	Recruitment of Tumor Necrosis Factor Receptor-associated Factor Family Proteins to Apoptosis Signal-regulating Kinase 1 Signalosome Is Essential for Oxidative Stress-induced Cell Death. Journal of Biological Chemistry, 2005, 280, 37033-37040.	3.4	196
171	Physiological roles of stress-activated protein kinases in skin. International Congress Series, 2005, 1284, 305-309.	0.2	0
172	Apoptosis signal-regulating kinase 1 is involved not only in apoptosis but also in non-apoptotic cardiomyocyte death. Biochemical and Biophysical Research Communications, 2005, 333, 562-567.	2.1	58
173	Role of c-Jun NH-terminal kinase in G-protein-coupled receptor agonist-induced cardiac plasminogen activator inhibitor-1 expression. Journal of Molecular and Cellular Cardiology, 2005, 38, 583-592.	1.9	16
174	Involvement of Apoptosis Signal-Regulating Kinase-1 on Angiotensin II-Induced Monocyte Chemoattractant Protein-1 Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 270-275.	2.4	31
175	Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide. Nature Medicine, 2004, 10, 1128-1132.	30.7	317
176	Involvement of ASK1 in Ca 2+ â€induced p38 MAP kinase activation. EMBO Reports, 2004, 5, 161-166.	4.5	175
177	The ASK1-MAP Kinase Cascades in Mammalian Stress Response. Journal of Biochemistry, 2004, 136, 261-265.	1.7	300
178	Calcium signalingvia voltage-dependent L-type Ca2+ channels. Signal Transduction, 2004, 4, 195-205.	0.4	3
179	Inhibition of Mammalian Target of Rapamycin Activates Apoptosis Signal-regulating Kinase 1 Signaling by Suppressing Protein Phosphatase 5 Activity. Journal of Biological Chemistry, 2004, 279, 36490-36496.	3.4	102
180	Interaction of apoptosis signal-regulating kinase 1 with isoforms of 14-3-3 proteins. Experimental Cell Research, 2004, 294, 581-591.	2.6	48

#	Article	IF	CITATIONS
181	Survival and apoptosis signals in ER stress: the role of protein kinases. Journal of Chemical Neuroanatomy, 2004, 28, 93-100.	2.1	121
182	Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis. Journal of Clinical Investigation, 2004, 114, 937-943.	8.2	159
183	Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis. Journal of Clinical Investigation, 2004, 114, 937-943.	8.2	107
184	Role of Rho in rabbit parietal cell. Journal of Cellular Physiology, 2003, 197, 409-417.	4.1	7
185	Role of ADP-ribosylation Factor 6 (ARF6) in Gastric Acid Secretion. Journal of Biological Chemistry, 2003, 278, 36470-36475.	3.4	28
186	Essential Role of E2-25K/Hip-2 in Mediating Amyloid-β Neurotoxicity. Molecular Cell, 2003, 12, 553-563.	9.7	151
187	ASK1 regulates influenza virus infection-induced apoptotic cell death. Biochemical and Biophysical Research Communications, 2003, 307, 870-876.	2.1	51
188	Sustained Activation of the JNK Cascade and Rapamycin-Induced Apoptosis Are Suppressed by p53/p21Cip1. Molecular Cell, 2003, 11, 1491-1501.	9.7	218
189	Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15883-15888.	7.1	222
190	Activation of Apoptosis Signal-Regulating Kinase 1 in Injured Artery and Its Critical Role in Neointimal Hyperplasia. Circulation, 2003, 108, 2812-2818.	1.6	49
191	Identification of a novel antiapoptotic protein that antagonizes ASK1 and CAD activities. Journal of Cell Biology, 2003, 163, 71-81.	5.2	39
192	The Cytoplasmic Domain of Alzheimer's Amyloid-β Protein Precursor Causes Sustained Apoptosis Signal-Regulating Kinase 1/c-Jun NH2-Terminal Kinase-Mediated Neurotoxic Signal via Dimerization. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 889-902.	2.5	70
193	Apoptosis-Signal Regulating Kinase-1 Is Involved in the Low Potassium-Induced Activation of p38 Mitogen-Activated Protein Kinase and c-Jun in Cultured Cerebellar Granule Neurons. Journal of Biochemistry, 2003, 133, 719-724.	1.7	17
194	Type 1 Insulin-like Growth Factor Receptor (IGF-IR) Signaling Inhibits Apoptosis Signal-regulating Kinase 1 (ASK1). Journal of Biological Chemistry, 2003, 278, 13325-13332.	3.4	77
195	Apoptosis Signal-Regulating Kinase 1 Plays a Pivotal Role in Angiotensin II–Induced Cardiac Hypertrophy and Remodeling. Circulation Research, 2003, 93, 874-883.	4.5	217
196	Key Roles of Phe1112and Ser1115in the Pore-Forming IIIS5-S6 Linker of L-Type Ca2+Channel α1CSubunit (CaV1.2) in Binding of Dihydropyridines and Action of Ca2+Channel Agonists. Molecular Pharmacology, 2003, 64, 235-248.	2.3	51
197	Apoptosis Signal-Regulating Kinase 1–Mediated Signaling Pathway Regulates Nitric Oxide–Induced Activator Protein-1 Activation in Human Bronchial Epithelial Cells. American Journal of Respiratory and Critical Care Medicine, 2003, 167, 856-861.	5.6	34
198	Apoptosis signal-regulating kinase 1-mediated signaling pathway regulates hydrogen peroxide-induced apoptosis in human pulmonary vascular endothelial cells. Critical Care Medicine, 2003, 31, 2776-2781.	0.9	49

HIDENORI ICHIJO

#	Article	IF	CITATIONS
199	Roles of MAPKKK ASK1 in Stress-Induced Cell Death Cell Structure and Function, 2003, 28, 23-29.	1.1	208
200	L-type Ca2+ channels serve as a sensor of the SR Ca2+ for tuning the efficacy of Ca2+-induced Ca2+ release in rat ventricular myocytes. Journal of Physiology, 2003, 552, 415-424.	2.9	33
201	Map Kinases in Redox Signaling. , 2003, , 223-236.		Ο
202	Phosphorylation and Inactivation of Myeloid Cell Leukemia 1 by JNK in Response to Oxidative Stress. Journal of Biological Chemistry, 2002, 277, 43730-43734.	3.4	191
203	Oxidation-triggered c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways for apoptosis in human leukaemic cells stimulated by epigallocatechin-3-gallate (EGCG): a distinct pathway from those of chemically induced and receptor-mediated apoptosis. Biochemical lournal. 2002. 368, 705-720.	3.7	118
204	Liver Protection from Apoptosis Requires Both Blockage of Initiator Caspase Activities and Inhibition of ASK1/JNK Pathway via Glutathione S-Transferase Regulation. Journal of Biological Chemistry, 2002, 277, 49220-49229.	3.4	101
205	ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes and Development, 2002, 16, 1345-1355.	5.9	1,200
206	Phosphorylation-dependent Scaffolding Role of JSAP1/JIP3 in the ASK1-JNK Signaling Pathway. Journal of Biological Chemistry, 2002, 277, 40703-40709.	3.4	89
207	Physiological Roles of ASK1-Mediated Signal Transduction in Oxidative Stress- and Endoplasmic Reticulum Stress-Induced Apoptosis: Advanced Findings from ASK1 Knockout Mice. Antioxidants and Redox Signaling, 2002, 4, 415-425.	5.4	224
208	Activation of apoptosis signal-regulating kinase 1 by the stress-induced activating phosphorylation of pre-formed oligomer. Journal of Cellular Physiology, 2002, 191, 95-104.	4.1	329
209	Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system. Genes To Cells, 2002, 7, 1099-1111.	1.2	142
210	Reaper-mediated inhibition of DIAP1-induced DTRAF1 degradation results in activation of JNK in Drosophila. Nature Cell Biology, 2002, 4, 705-710.	10.3	125
211	ASK1-Signaling Promotes c-Myc Protein Stability during Apoptosis. Biochemical and Biophysical Research Communications, 2001, 281, 1313-1320.	2.1	29
212	Glutathione S-Transferase Mu Modulates the Stress-activated Signals by Suppressing Apoptosis Signal-regulating Kinase 1. Journal of Biological Chemistry, 2001, 276, 12749-12755.	3.4	357
213	Molecular Mechanisms of the Decision between Life and Death: Regulation of Apoptosis by Apoptosis Signal-Regulating Kinase 1. Journal of Biochemistry, 2001, 130, 1-8.	1.7	155
214	ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Reports, 2001, 2, 222-228.	4.5	1,103
215	Negative feedback regulation of ASK1 by protein phosphatase 5 (PP5) in response to oxidative stress. EMBO Journal, 2001, 20, 6028-6036.	7.8	277
216	HIV-1 Nef inhibits ASK1-dependent death signalling providing a potential mechanism for protecting the infected host cell. Nature, 2001, 410, 834-838.	27.8	294

#	Article	IF	CITATIONS
217	Apoptosis Signal-regulating Kinase 1 (ASK1) Is an Intracellular Inducer of Keratinocyte Differentiation. Journal of Biological Chemistry, 2001, 276, 999-1004.	3.4	119
218	The Cell Cycle-Regulatory CDC25A Phosphatase Inhibits Apoptosis Signal-Regulating Kinase 1. Molecular and Cellular Biology, 2001, 21, 4818-4828.	2.3	93
219	ASK1 Inhibits Interleukin-1-induced NF-κB Activity through Disruption of TRAF6-TAK1 Interaction. Journal of Biological Chemistry, 2000, 275, 32747-32752.	3.4	52
220	Activation of Apoptosis Signal-Regulating Kinase 1 (ASK1) by Tumor Necrosis Factor Receptor-Associated Factor 2 Requires Prior Dissociation of the ASK1 Inhibitor Thioredoxin. Molecular and Cellular Biology, 2000, 20, 2198-2208.	2.3	492
221	Execution of Apoptosis Signal-regulating Kinase 1 (ASK1)-induced Apoptosis by the Mitochondria-dependent Caspase Activation. Journal of Biological Chemistry, 2000, 275, 26576-26581.	3.4	309
222	Role of Apoptosis Signal-Regulating Kinase in Regulation of the c-Jun N-Terminal Kinase Pathway and Apoptosis in Sympathetic Neurons. Molecular and Cellular Biology, 2000, 20, 196-204.	2.3	161
223	Apoptosis Signal-regulating Kinase 1 (ASK1) Induces Neuronal Differentiation and Survival of PC12 Cells. Journal of Biological Chemistry, 2000, 275, 9805-9813.	3.4	152
224	Roles of Bone Morphogenetic Protein Type I Receptors and Smad Proteins in Osteoblast and Chondroblast Differentiation. Molecular Biology of the Cell, 1999, 10, 3801-3813.	2.1	392
225	Microtubule Dysfunction Induced by Paclitaxel Initiates Apoptosis through Both c-Jun N-terminal Kinase (JNK)-dependent and -Independent Pathways in Ovarian Cancer Cells. Journal of Biological Chemistry, 1999, 274, 8208-8216.	3.4	190
226	Triggering of neuronal cell death by accumulation of activated SEK1 on nuclear polyglutamine aggregations in PML bodies. Genes To Cells, 1999, 4, 743-756.	1.2	57
227	ASK1 mediates apoptotic cell death induced by genotoxic stress. Oncogene, 1999, 18, 173-180.	5.9	169
228	From receptors to stress-activated MAP kinases. Oncogene, 1999, 18, 6087-6093.	5.9	490
229	Induction of Apoptosis Signal Regulating Kinase 1 (ASK1) after Spinal Cord Injury in Rats. Journal of Neuropathology and Experimental Neurology, 1999, 58, 442-450.	1.7	100
230	BCL-2 Is Phosphorylated and Inactivated by an ASK1/Jun N-Terminal Protein Kinase Pathway Normally Activated at G ₂ /M. Molecular and Cellular Biology, 1999, 19, 8469-8478.	2.3	951
231	Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO Journal, 1998, 17, 2596-2606.	7.8	2,150
232	ASK1 Is Essential for JNK/SAPK Activation by TRAF2. Molecular Cell, 1998, 2, 389-395.	9.7	625
233	Induction of Smad6 mRNA by Bone Morphogenetic Proteins. Biochemical and Biophysical Research Communications, 1998, 244, 26-29.	2.1	147
234	Cloning and Characterization of p70S6KβDefines a Novel Family of p70 S6 Kinases. Biochemical and Biophysical Research Communications, 1998, 253, 470-476.	2.1	49

HIDENORI ICHIJO

#	Article	IF	CITATIONS
235	Activation of Apoptosis Signal-Regulating Kinase 1 (ASK1) by the Adapter Protein Daxx. , 1998, 281, 1860-1863.		550
236	Regulation of Apoptosis by α-Subunits of G12 and G13 Proteins via Apoptosis Signal-regulating Kinase-1. Journal of Biological Chemistry, 1998, 273, 27816-27823.	3.4	67
237	Identification of a Novel Bone Morphogenetic Protein-responsive Gene That May Function as a Noncoding RNA. Journal of Biological Chemistry, 1998, 273, 17079-17085.	3.4	49
238	Microtubule-interfering Agents Activate c-Jun N-terminal Kinase/Stress-activated Protein Kinase through Both Ras and Apoptosis Signal-regulating Kinase Pathways. Journal of Biological Chemistry, 1998, 273, 4928-4936.	3.4	320
239	Latent transforming growth factor- <i>β</i> complex in Chinese hamster ovary cells contains the multifunctional cysteine-rich fibroblast growth factor receptor, also termed E-selectin-ligand or MG-160. Biochemical Journal, 1997, 324, 427-434.	3.7	28
240	Molecular Cloning and Characterization of the Mouse Apoptosis Signal-Regulating Kinase 1. Biochemical and Biophysical Research Communications, 1997, 239, 905-910.	2.1	76
241	Growth/Differentiation Factor-5 Induces Angiogenesisin Vivo. Experimental Cell Research, 1997, 235, 218-226.	2.6	99
242	Identification of Important Regions in the Cytoplasmic Juxtamembrane Domain of Type I Receptor That Separate Signaling Pathways of Transforming Growth Factor-β. Journal of Biological Chemistry, 1996, 271, 2769-2775.	3.4	99
243	Characterization of the Interaction of FKBP12 with the Transforming Growth Factor-Î ² Type I Receptor in Vivo. Journal of Biological Chemistry, 1996, 271, 21687-21690.	3.4	73
244	Identification of Type I and Type II Serine/Threonine Kinase Receptors for Growth/Differentiation Factor-5. Journal of Biological Chemistry, 1996, 271, 21345-21352.	3.4	292
245	Efficient Association of an Amino-terminally Extended Form of Human Latent Transforming Growth Factor-β Binding Protein with the Extracellular Matrix. Journal of Biological Chemistry, 1995, 270, 31294-31297.	3.4	80
246	Localization of Transforming Growth Factor-Î ² Type I and Type II Receptors in Mouse Development. Experimental Cell Research, 1995, 219, 339-347.	2.6	62
247	Identification and characterization of autocrineâ€motilityâ€factorâ€like activity in oral squamousâ€cellâ€carcinoma cells. International Journal of Cancer, 1994, 59, 783-788.	5.1	27
248	Serine/threonine kinase receptors. Progress in Growth Factor Research, 1994, 5, 55-72.	1.6	72
249	Different Signals Mediate Transforming Growth Factor-β1-Induced Growth Inhibition and Extracellular Matrix Production in Prostatic Carcinoma Cells. Experimental Cell Research, 1993, 207, 1-7.	2.6	68
250	Transforming Growth Factor-Î ² : Latent Forms, Binding Proteins and Receptors. Growth Factors, 1993, 8, 11-22.	1.7	217
251	Receptors for Transforming Growth Factor- \hat{l}^2 . Advances in Immunology, 1993, , 181-220.	2.2	148
252	Decreased Level of Transforming Growth Factor-β in Blood Lymphocytes of Patients with Aplastic Anemia. Growth Factors, 1992, 6, 85-90.	1.7	12

#	Article	IF	CITATIONS
253	Molecular cloning and characterization of the human and porcine transforming growth factor-β type III receptors. Biochemical and Biophysical Research Communications, 1992, 189, 356-362.	2.1	84
254	Biological effects and binding properties of transforming growth factor-β on human oral squamous cell carcinoma cells. Experimental Cell Research, 1990, 187, 263-269.	2.6	52
255	Latent form of transforming growth factor-Ĵ²1 acts as a potent growth inhibitor on a human erythroleukemia cell line. Biochemical and Biophysical Research Communications, 1990, 167, 27-32.	2.1	23
256	Variant sublines with different metastatic potentials selected in nude mice from human oral squamous cell carcinomas. Journal of Oral Pathology and Medicine, 1989, 18, 391-395.	2.7	186
257	ASK1. The AFCS-nature Molecule Pages, 0, , .	0.2	2