
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4791908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO Journal, 1998, 17, 2596-2606.	3.5	2,150
2	ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes and Development, 2002, 16, 1345-1355.	2.7	1,200
3	ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Reports, 2001, 2, 222-228.	2.0	1,103
4	BCL-2 Is Phosphorylated and Inactivated by an ASK1/Jun N-Terminal Protein Kinase Pathway Normally Activated at G ₂ /M. Molecular and Cellular Biology, 1999, 19, 8469-8478.	1.1	951
5	ASK1 Is Essential for JNK/SAPK Activation by TRAF2. Molecular Cell, 1998, 2, 389-395.	4.5	625
6	ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nature Immunology, 2005, 6, 587-592.	7.0	605
7	Activation of Apoptosis Signal-Regulating Kinase 1 (ASK1) by the Adapter Protein Daxx. , 1998, 281, 1860-1863.		550
8	Activation of Apoptosis Signal-Regulating Kinase 1 (ASK1) by Tumor Necrosis Factor Receptor-Associated Factor 2 Requires Prior Dissociation of the ASK1 Inhibitor Thioredoxin. Molecular and Cellular Biology, 2000, 20, 2198-2208.	1.1	492
9	From receptors to stress-activated MAP kinases. Oncogene, 1999, 18, 6087-6093.	2.6	490
10	ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes and Development, 2008, 22, 1451-1464.	2.7	432
11	Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 1325-1336.	1.1	424
12	Roles of Bone Morphogenetic Protein Type I Receptors and Smad Proteins in Osteoblast and Chondroblast Differentiation. Molecular Biology of the Cell, 1999, 10, 3801-3813.	0.9	392
13	Amyloid β induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death and Differentiation, 2005, 12, 19-24.	5.0	369
14	Glutathione S-Transferase Mu Modulates the Stress-activated Signals by Suppressing Apoptosis Signal-regulating Kinase 1. Journal of Biological Chemistry, 2001, 276, 12749-12755.	1.6	357
15	Activation of apoptosis signal-regulating kinase 1 by the stress-induced activating phosphorylation of pre-formed oligomer. Journal of Cellular Physiology, 2002, 191, 95-104.	2.0	329
16	Microtubule-interfering Agents Activate c-Jun N-terminal Kinase/Stress-activated Protein Kinase through Both Ras and Apoptosis Signal-regulating Kinase Pathways. Journal of Biological Chemistry, 1998, 273, 4928-4936.	1.6	320
17	Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide. Nature Medicine, 2004, 10, 1128-1132.	15.2	317
18	Execution of Apoptosis Signal-regulating Kinase 1 (ASK1)-induced Apoptosis by the Mitochondria-dependent Caspase Activation. Journal of Biological Chemistry, 2000, 275, 26576-26581.	1.6	309

#	Article	IF	CITATIONS
19	The ASK1-MAP Kinase Cascades in Mammalian Stress Response. Journal of Biochemistry, 2004, 136, 261-265.	0.9	300
20	Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9691-9696.	3.3	299
21	HIV-1 Nef inhibits ASK1-dependent death signalling providing a potential mechanism for protecting the infected host cell. Nature, 2001, 410, 834-838.	13.7	294
22	Identification of Type I and Type II Serine/Threonine Kinase Receptors for Growth/Differentiation Factor-5. Journal of Biological Chemistry, 1996, 271, 21345-21352.	1.6	292
23	Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1398-1409.	1.1	283
24	Negative feedback regulation of ASK1 by protein phosphatase 5 (PP5) in response to oxidative stress. EMBO Journal, 2001, 20, 6028-6036.	3.5	277
25	Stress-Responsive Protein Kinases in Redox-Regulated Apoptosis Signaling. Antioxidants and Redox Signaling, 2005, 7, 472-481.	2.5	254
26	GTP Binding Is Essential to the Protein Kinase Activity of LRRK2, a Causative Gene Product for Familial Parkinson's Diseaseâ€. Biochemistry, 2007, 46, 1380-1388.	1.2	246
27	Thioredoxin and TRAF Family Proteins Regulate Reactive Oxygen Species-Dependent Activation of ASK1 through Reciprocal Modulation of the N-Terminal Homophilic Interaction of ASK1. Molecular and Cellular Biology, 2007, 27, 8152-8163.	1.1	244
28	Deletion of Apoptosis Signal-Regulating Kinase 1 Attenuates Acetaminophen-Induced Liver Injury by Inhibiting c-Jun N-Terminal Kinase Activation. Gastroenterology, 2008, 135, 1311-1321.	0.6	228
29	Physiological Roles of ASK1-Mediated Signal Transduction in Oxidative Stress- and Endoplasmic Reticulum Stress-Induced Apoptosis: Advanced Findings from ASK1 Knockout Mice. Antioxidants and Redox Signaling, 2002, 4, 415-425.	2.5	224
30	Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15883-15888.	3.3	222
31	Sustained Activation of the JNK Cascade and Rapamycin-Induced Apoptosis Are Suppressed by p53/p21Cip1. Molecular Cell, 2003, 11, 1491-1501.	4.5	218
32	Transforming Growth Factor-Î ² : Latent Forms, Binding Proteins and Receptors. Growth Factors, 1993, 8, 11-22.	0.5	217
33	Apoptosis Signal-Regulating Kinase 1 Plays a Pivotal Role in Angiotensin II–Induced Cardiac Hypertrophy and Remodeling. Circulation Research, 2003, 93, 874-883.	2.0	217
34	Roles of MAPKKK ASK1 in Stress-Induced Cell Death Cell Structure and Function, 2003, 28, 23-29.	0.5	208
35	Apoptosis Signal-Regulating Kinase 1 in Stress and Immune Response. Annual Review of Pharmacology and Toxicology, 2008, 48, 199-225.	4.2	207
36	Recruitment of Tumor Necrosis Factor Receptor-associated Factor Family Proteins to Apoptosis Signal-regulating Kinase 1 Signalosome Is Essential for Oxidative Stress-induced Cell Death. Journal of Biological Chemistry, 2005, 280, 37033-37040.	1.6	196

#	Article	IF	CITATIONS
37	Phosphorylation and Inactivation of Myeloid Cell Leukemia 1 by JNK in Response to Oxidative Stress. Journal of Biological Chemistry, 2002, 277, 43730-43734.	1.6	191
38	Microtubule Dysfunction Induced by Paclitaxel Initiates Apoptosis through Both c-Jun N-terminal Kinase (JNK)-dependent and -Independent Pathways in Ovarian Cancer Cells. Journal of Biological Chemistry, 1999, 274, 8208-8216.	1.6	190
39	Variant sublines with different metastatic potentials selected in nude mice from human oral squamous cell carcinomas. Journal of Oral Pathology and Medicine, 1989, 18, 391-395.	1.4	186
40	The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis. Science Translational Medicine, 2017, 9, .	5.8	182
41	Involvement of ASK1 in Ca 2+ â€induced p38 MAP kinase activation. EMBO Reports, 2004, 5, 161-166.	2.0	175
42	Pathophysiological Roles of ASK1-MAP Kinase Signaling Pathways. BMB Reports, 2007, 40, 1-6.	1.1	173
43	Requirement of Reactive Oxygen Species-dependent Activation of ASK1-p38 MAPK Pathway for Extracellular ATP-induced Apoptosis in Macrophage. Journal of Biological Chemistry, 2008, 283, 7657-7665.	1.6	170
44	ASK1 mediates apoptotic cell death induced by genotoxic stress. Oncogene, 1999, 18, 173-180.	2.6	169
45	The Lysosome Rupture-activated TAK1-JNK Pathway Regulates NLRP3 Inflammasome Activation. Journal of Biological Chemistry, 2014, 289, 32926-32936.	1.6	164
46	The roles of ASK family proteins in stress responses and diseases. Cell Communication and Signaling, 2009, 7, 9.	2.7	163
47	Role of Apoptosis Signal-Regulating Kinase in Regulation of the c-Jun N-Terminal Kinase Pathway and Apoptosis in Sympathetic Neurons. Molecular and Cellular Biology, 2000, 20, 196-204.	1.1	161
48	Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis. Journal of Clinical Investigation, 2004, 114, 937-943.	3.9	159
49	Molecular Mechanisms of the Decision between Life and Death: Regulation of Apoptosis by Apoptosis Signal-Regulating Kinase 1. Journal of Biochemistry, 2001, 130, 1-8.	0.9	155
50	Apoptosis Signal-regulating Kinase 1 (ASK1) Induces Neuronal Differentiation and Survival of PC12 Cells. Journal of Biological Chemistry, 2000, 275, 9805-9813.	1.6	152
51	Essential Role of E2-25K/Hip-2 in Mediating Amyloid-β Neurotoxicity. Molecular Cell, 2003, 12, 553-563.	4.5	151
52	Rhomboid Protease PARL Mediates the Mitochondrial Membrane Potential Loss-induced Cleavage of PGAM5. Journal of Biological Chemistry, 2012, 287, 34635-34645.	1.6	151
53	Receptors for Transforming Growth Factor-Î ² . Advances in Immunology, 1993, , 181-220.	1.1	148
54	Induction of Smad6 mRNA by Bone Morphogenetic Proteins. Biochemical and Biophysical Research Communications, 1998, 244, 26-29.	1.0	147

#	Article	IF	CITATIONS
55	Mitogen-Activated Protein Kinases in Mammalian Oxidative Stress Responses. Antioxidants and Redox Signaling, 2011, 15, 205-218.	2.5	146
56	Apoptosis Signal-Regulating Kinase 1 Mediates Cellular Senescence Induced by High Glucose in Endothelial Cells. Diabetes, 2006, 55, 1660-1665.	0.3	144
57	Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system. Genes To Cells, 2002, 7, 1099-1111.	0.5	142
58	The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction. ELife, 2016, 5, .	2.8	137
59	Thioredoxin and protein kinases in redox signaling. Seminars in Cancer Biology, 2006, 16, 427-435.	4.3	132
60	The ASK1-MAP Kinase Signaling in ER Stress and Neurodegenerative Diseases. Current Molecular Medicine, 2006, 6, 87-97.	0.6	132
61	Mitochondrial phosphoglycerate mutase 5 uses alternate catalytic activity as a protein serine/threonine phosphatase to activate ASK1. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12301-12305.	3.3	132
62	Oxidizable Residues Mediating Protein Stability and Cytoprotective Interaction of DJ-1 with Apoptosis Signal-regulating Kinase 1. Journal of Biological Chemistry, 2009, 284, 14245-14257.	1.6	130
63	Ubiquitin-like Sequence in ASK1 Plays Critical Roles in the Recognition and Stabilization by USP9X and Oxidative Stress-Induced Cell Death. Molecular Cell, 2009, 36, 805-818.	4.5	128
64	Oxidative Stress-Induced Diseases via the ASK1 Signaling Pathway. International Journal of Cell Biology, 2012, 2012, 1-5.	1.0	127
65	Reaper-mediated inhibition of DIAP1-induced DTRAF1 degradation results in activation of JNK in Drosophila. Nature Cell Biology, 2002, 4, 705-710.	4.6	125
66	Regulation of the severity of neuroinflammation and demyelination by TLRâ€ASK1â€p38 pathway. EMBO Molecular Medicine, 2010, 2, 504-515.	3.3	123
67	ASK1-p38 MAPK-p47phox activation is essential for inflammatory responses during tuberculosis via TLR2-ROS signalling. Cellular Microbiology, 2008, 10, 741-754.	1.1	122
68	Survival and apoptosis signals in ER stress: the role of protein kinases. Journal of Chemical Neuroanatomy, 2004, 28, 93-100.	1.0	121
69	Apoptosis Signal-regulating Kinase 1 (ASK1) Is an Intracellular Inducer of Keratinocyte Differentiation. Journal of Biological Chemistry, 2001, 276, 999-1004.	1.6	119
70	ASK1 and ASK2 differentially regulate the counteracting roles of apoptosis and inflammation in tumorigenesis. EMBO Journal, 2009, 28, 843-853.	3.5	119
71	Oxidation-triggered c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways for apoptosis in human leukaemic cells stimulated by epigallocatechin-3-gallate (EGCG): a distinct pathway from those of chemically induced and receptor-mediated apoptosis. Biochemical Journal, 2002, 368, 705-720.	1.7	118
72	Apoptosis Signal-regulating Kinase (ASK) 2 Functions as a Mitogen-activated Protein Kinase Kinase Kinase in a Heteromeric Complex with ASK1. Journal of Biological Chemistry, 2007, 282, 7522-7531.	1.6	115

#	Article	IF	CITATIONS
73	SOD1 as a Molecular Switch for Initiating the Homeostatic ER Stress Response under Zinc Deficiency. Molecular Cell, 2013, 52, 75-86.	4.5	114
74	SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS. Advances in Biological Regulation, 2016, 60, 95-104.	1.4	112
75	Impact of Mitochondrial Reactive Oxygen Species and Apoptosis Signal-Regulating Kinase 1 on Insulin Signaling. Diabetes, 2006, 55, 1197-1204.	0.3	111
76	HSV Infection Induces Production of ROS, which Potentiate Signaling from Pattern Recognition Receptors: Role for S-glutathionylation of TRAF3 and 6. PLoS Pathogens, 2011, 7, e1002250.	2.1	107
77	Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis. Journal of Clinical Investigation, 2004, 114, 937-943.	3.9	107
78	Role of Apoptosis Signal-Regulating Kinase 1 in Stress-Induced Neural Cell Apoptosis in Vivo. American Journal of Pathology, 2006, 168, 261-269.	1.9	104
79	Cryo-EM structures of the human volume-regulated anion channel LRRC8. Nature Structural and Molecular Biology, 2018, 25, 797-804.	3.6	104
80	Activation mechanisms of ASK1 in response to various stresses and its significance in intracellular signaling. Advances in Biological Regulation, 2013, 53, 135-144.	1.4	103
81	Inhibition of Mammalian Target of Rapamycin Activates Apoptosis Signal-regulating Kinase 1 Signaling by Suppressing Protein Phosphatase 5 Activity. Journal of Biological Chemistry, 2004, 279, 36490-36496.	1.6	102
82	Therapeutic targets in the ASK1-dependent stress signaling pathways. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2012, 88, 434-453.	1.6	102
83	Liver Protection from Apoptosis Requires Both Blockage of Initiator Caspase Activities and Inhibition of ASK1/JNK Pathway via Glutathione S-Transferase Regulation. Journal of Biological Chemistry, 2002, 277, 49220-49229.	1.6	101
84	Induction of Apoptosis Signal Regulating Kinase 1 (ASK1) after Spinal Cord Injury in Rats. Journal of Neuropathology and Experimental Neurology, 1999, 58, 442-450.	0.9	100
85	Identification of Important Regions in the Cytoplasmic Juxtamembrane Domain of Type I Receptor That Separate Signaling Pathways of Transforming Growth Factor-β. Journal of Biological Chemistry, 1996, 271, 2769-2775.	1.6	99
86	Growth/Differentiation Factor-5 Induces Angiogenesisin Vivo. Experimental Cell Research, 1997, 235, 218-226.	1.2	99
87	Cold stressâ€induced ferroptosis involves the <scp>ASK</scp> 1â€p38 pathway. EMBO Reports, 2017, 18, 2067-2078.	2.0	99
88	Apoptosis signal-regulating kinase 1 and cyclin D1 compose a positive feedback loop contributing to tumor growth in gastric cancer. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 780-785.	3.3	96
89	Olmesartan Prevents Cardiovascular Injury and Hepatic Steatosis in Obesity and Diabetes, Accompanied by Apoptosis Signal Regulating Kinase-1 Inhibition. Hypertension, 2008, 52, 573-580.	1.3	94
90	The Cell Cycle-Regulatory CDC25A Phosphatase Inhibits Apoptosis Signal-Regulating Kinase 1. Molecular and Cellular Biology, 2001, 21, 4818-4828.	1.1	93

#	Article	IF	CITATIONS
91	Phosphorylation-dependent Scaffolding Role of JSAP1/JIP3 in the ASK1-JNK Signaling Pathway. Journal of Biological Chemistry, 2002, 277, 40703-40709.	1.6	89
92	Direct Interaction and Reciprocal Regulation between ASK1 and Calcineurin-NFAT Control Cardiomyocyte Death and Growth. Molecular and Cellular Biology, 2006, 26, 3785-3797.	1.1	86
93	Molecular cloning and characterization of the human and porcine transforming growth factor-Î ² type III receptors. Biochemical and Biophysical Research Communications, 1992, 189, 356-362.	1.0	84
94	Apoptosis signal regulating kinase-1 connects reactive oxygen species to p38 MAPK-induced mitochondrial apoptosis in UVB-irradiated human keratinocytes. Free Radical Biology and Medicine, 2006, 41, 1361-1371.	1.3	84
95	The ASK1–MAP kinase pathways in immune and stress responses. Microbes and Infection, 2006, 8, 1098-1107.	1.0	82
96	Cutting Edge: Apoptosis-Regulating Signal Kinase 1 Is Required for Reactive Oxygen Species-Mediated Activation of IFN Regulatory Factor 3 by Lipopolysaccharide. Journal of Immunology, 2006, 176, 5720-5724.	0.4	82
97	Apoptosis signal-regulating kinase 1 as a therapeutic target. Expert Opinion on Therapeutic Targets, 2014, 18, 651-664.	1.5	82
98	Efficient Association of an Amino-terminally Extended Form of Human Latent Transforming Growth Factor-β Binding Protein with the Extracellular Matrix. Journal of Biological Chemistry, 1995, 270, 31294-31297.	1.6	80
99	Type 1 Insulin-like Growth Factor Receptor (IGF-IR) Signaling Inhibits Apoptosis Signal-regulating Kinase 1 (ASK1). Journal of Biological Chemistry, 2003, 278, 13325-13332.	1.6	77
100	ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds. Journal of Cell Biology, 2007, 176, 903-909.	2.3	77
101	Selective Activation of the p38 MAPK Pathway by Synthetic Monophosphoryl Lipid A. Journal of Biological Chemistry, 2009, 284, 31982-31991.	1.6	77
102	Stress-Activated MAP Kinase Cascades in Cellular Senescence. Current Medicinal Chemistry, 2009, 16, 1229-1235.	1.2	77
103	The DEAH-Box RNA Helicase DHX15 Activates NF-κB and MAPK Signaling Downstream of MAVS During Antiviral Responses. Science Signaling, 2014, 7, ra40.	1.6	77
104	Molecular Cloning and Characterization of the Mouse Apoptosis Signal-Regulating Kinase 1. Biochemical and Biophysical Research Communications, 1997, 239, 905-910.	1.0	76
105	Release of RASSF1C from the nucleus by Daxx degradation links DNA damage and SAPK/JNK activation. EMBO Journal, 2006, 25, 3286-3297.	3.5	76
106	Apoptosis signal-regulating kinase 1 inhibits hepatocarcinogenesis by controlling the tumor-suppressing function of stress-activated mitogen-activated protein kinase. Hepatology, 2011, 54, 185-195.	3.6	74
107	Characterization of the Interaction of FKBP12 with the Transforming Growth Factor-Î ² Type I Receptor in Vivo. Journal of Biological Chemistry, 1996, 271, 21687-21690.	1.6	73
108	Serine/threonine kinase receptors. Progress in Growth Factor Research, 1994, 5, 55-72.	1.7	72

#	Article	IF	CITATIONS
109	The Loss of PGAM5 Suppresses the Mitochondrial Degeneration Caused by Inactivation of PINK1 in Drosophila. PLoS Genetics, 2010, 6, e1001229.	1.5	72
110	The Cytoplasmic Domain of Alzheimer's Amyloid-Î ² Protein Precursor Causes Sustained Apoptosis Signal-Regulating Kinase 1/c-Jun NH2-Terminal Kinase-Mediated Neurotoxic Signal via Dimerization. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 889-902.	1.3	70
111	Novel Mechanism and Role of Angiotensin Il–Induced Vascular Endothelial Injury in Hypertensive Diastolic Heart Failure. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2569-2575.	1.1	70
112	The Kelch Repeat Protein KLHDC10 Regulates Oxidative Stress-Induced ASK1 Activation by Suppressing PP5. Molecular Cell, 2012, 48, 692-704.	4.5	70
113	Apoptosis Signal–Regulating Kinase 1 Is a Novel Target Molecule for Cognitive Impairment Induced by Chronic Cerebral Hypoperfusion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 616-625.	1.1	69
114	Different Signals Mediate Transforming Growth Factor-β1-Induced Growth Inhibition and Extracellular Matrix Production in Prostatic Carcinoma Cells. Experimental Cell Research, 1993, 207, 1-7.	1.2	68
115	Regulation of Apoptosis by α-Subunits of G12 and G13 Proteins via Apoptosis Signal-regulating Kinase-1. Journal of Biological Chemistry, 1998, 273, 27816-27823.	1.6	67
116	Critical Role of Apoptosis Signal-Regulating Kinase 1 in Aldosterone/Salt-Induced Cardiac Inflammation and Fibrosis. Hypertension, 2009, 54, 544-551.	1.3	67
117	Mitogen-activated protein kinases as key players in osmotic stress signaling. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2037-2052.	1.1	67
118	New mechanisms of skin innate immunity: ASK1-mediated keratinocyte differentiation regulates the expression of β-defensins, LL37, and TLR2. European Journal of Immunology, 2005, 35, 1886-1895.	1.6	66
119	A TNF- and c-Cbl-dependent FLIPS-degradation pathway and its function in Mycobacterium tuberculosis–induced macrophage apoptosis. Nature Immunology, 2009, 10, 918-926.	7.0	66
120	ASK3 responds to osmotic stress and regulates blood pressure by suppressing WNK1-SPAK/OSR1 signaling in the kidney. Nature Communications, 2012, 3, 1285.	5.8	66
121	A novel monoclonal antibody reveals a conformational alteration shared by amyotrophic lateral sclerosisâ€linked SOD1 mutants. Annals of Neurology, 2012, 72, 739-749.	2.8	65
122	Serine 58 of 14-3-3ζ Is a Molecular Switch Regulating ASK1 and Oxidant Stress-Induced Cell Death. Molecular and Cellular Biology, 2009, 29, 4167-4176.	1.1	64
123	Localization of Transforming Growth Factor-β Type I and Type II Receptors in Mouse Development. Experimental Cell Research, 1995, 219, 339-347.	1.2	62
124	Cells recognize osmotic stress through liquid–liquid phase separation lubricated with poly(ADP-ribose). Nature Communications, 2021, 12, 1353.	5.8	62
125	Regulation of Apoptosis Signal-Regulating Kinase 1 in Redox Signaling. Methods in Enzymology, 2010, 474, 277-288.	0.4	60
126	Pre-emptive Quality Control Protects the ER from Protein Overload via the Proximity of ERAD Components and SRP. Cell Reports, 2015, 13, 944-956.	2.9	60

#	Article	IF	CITATIONS
127	Roquin-2 Promotes Ubiquitin-Mediated Degradation of ASK1 to Regulate Stress Responses. Science Signaling, 2014, 7, ra8.	1.6	59
128	ASK1 signalling regulates brown and beige adipocyte function. Nature Communications, 2016, 7, 11158.	5.8	59
129	Apoptosis signal-regulating kinase 1 is involved not only in apoptosis but also in non-apoptotic cardiomyocyte death. Biochemical and Biophysical Research Communications, 2005, 333, 562-567.	1.0	58
130	Triggering of neuronal cell death by accumulation of activated SEK1 on nuclear polyglutamine aggregations in PML bodies. Genes To Cells, 1999, 4, 743-756.	0.5	57
131	Apoptosis Signal-Regulating Kinase 1 Mediates MPTP Toxicity and Regulates Clial Activation. PLoS ONE, 2012, 7, e29935.	1.1	57
132	A PP6-ASK3 Module Coordinates the Bidirectional Cell Volume Regulation under Osmotic Stress. Cell Reports, 2018, 22, 2809-2817.	2.9	54
133	ASK Family Proteins in Stress Response and Disease. Molecular Biotechnology, 2007, 37, 13-18.	1.3	53
134	Biological effects and binding properties of transforming growth factor-β on human oral squamous cell carcinoma cells. Experimental Cell Research, 1990, 187, 263-269.	1.2	52
135	ASK1 Inhibits Interleukin-1-induced NF-ήB Activity through Disruption of TRAF6-TAK1 Interaction. Journal of Biological Chemistry, 2000, 275, 32747-32752.	1.6	52
136	Apoptosis Signal-Regulating Kinase 1/p38 Signaling Pathway Negatively Regulates Physiological Hypertrophy. Circulation, 2008, 117, 545-552.	1.6	52
137	ASK1 regulates influenza virus infection-induced apoptotic cell death. Biochemical and Biophysical Research Communications, 2003, 307, 870-876.	1.0	51
138	Key Roles of Phe1112and Ser1115in the Pore-Forming IIIS5-S6 Linker of L-Type Ca2+Channel α1CSubunit (CaV1.2) in Binding of Dihydropyridines and Action of Ca2+Channel Agonists. Molecular Pharmacology, 2003, 64, 235-248.	1.0	51
139	Pleiotropic properties of ASK1. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3030-3038.	1.1	51
140	Apoptosis Signal-Regulating Kinase 1 Regulates Colitis and Colitis-Associated Tumorigenesis by the Innate Immune Responses. Gastroenterology, 2010, 138, 1055-1067.e4.	0.6	50
141	Cloning and Characterization of p70S6Kl ² Defines a Novel Family of p70 S6 Kinases. Biochemical and Biophysical Research Communications, 1998, 253, 470-476.	1.0	49
142	Identification of a Novel Bone Morphogenetic Protein-responsive Gene That May Function as a Noncoding RNA. Journal of Biological Chemistry, 1998, 273, 17079-17085.	1.6	49
143	Activation of Apoptosis Signal-Regulating Kinase 1 in Injured Artery and Its Critical Role in Neointimal Hyperplasia. Circulation, 2003, 108, 2812-2818.	1.6	49
144	Apoptosis signal-regulating kinase 1-mediated signaling pathway regulates hydrogen peroxide-induced apoptosis in human pulmonary vascular endothelial cells. Critical Care Medicine, 2003, 31, 2776-2781.	0.4	49

#	Article	IF	CITATIONS
145	Ask1 regulates murine platelet granule secretion, thromboxane A2 generation, and thrombus formation. Blood, 2017, 129, 1197-1209.	0.6	49
146	Interaction of apoptosis signal-regulating kinase 1 with isoforms of 14-3-3 proteins. Experimental Cell Research, 2004, 294, 581-591.	1.2	48
147	Apoptosis signalâ€regulating kinaseâ€1 inhibitor as a potent therapeutic drug for the treatment of gastric cancer. Cancer Science, 2012, 103, 2181-2185.	1.7	47
148	Apoptosis Signaling Kinases: From Stress Response to Health Outcomes. Antioxidants and Redox Signaling, 2011, 15, 719-761.	2.5	46
149	TRIM48 Promotes ASK1 Activation and Cell Death through Ubiquitination-Dependent Degradation of the ASK1-Negative Regulator PRMT1. Cell Reports, 2017, 21, 2447-2457.	2.9	45
150	Important role of apoptosis signal-regulating kinase 1 in ischemic acute kidney injury. Biochemical and Biophysical Research Communications, 2007, 364, 1043-1049.	1.0	44
151	CHIP-dependent termination of MEKK2 regulates temporal ERK activation required for proper hyperosmotic response. EMBO Journal, 2010, 29, 2501-2514.	3.5	44
152	The Phosphorylation-Dependent Regulation of Mitochondrial Proteins in Stress Responses. Journal of Signal Transduction, 2012, 2012, 1-12.	2.0	44
153	Apoptosis Signal-regulating Kinase 1 (ASK1)-p38 Pathway-dependent Cytoplasmic Translocation of the Orphan Nuclear Receptor NR4A2 Is Required for Oxidative Stress-induced Necrosis. Journal of Biological Chemistry, 2015, 290, 10791-10803.	1.6	43
154	Cell volume regulation in cancer cell migration driven by osmotic water flow. Cancer Science, 2019, 110, 2337-2347.	1.7	43
155	Targeting ASK1 in ER stress-related neurodegenerative diseases. Expert Opinion on Therapeutic Targets, 2009, 13, 653-664.	1.5	42
156	Novel mechanism of angiotensin II-induced cardiac injury in hypertensive rats: the critical role of ASK1 and VEGF. Hypertension Research, 2012, 35, 194-200.	1.5	41
157	The mitochondrial Ca ²⁺ uptake regulator, MICU1, is involved in cold stressâ€induced ferroptosis. EMBO Reports, 2021, 22, e51532.	2.0	41
158	Regulation of apoptosis signal-regulating kinase 1 by protein phosphatase 2Cïµ. Biochemical Journal, 2007, 405, 591-596.	1.7	40
159	The ASK1-specific inhibitors K811 and K812 prolong survival in a mouse model of amyotrophic lateral sclerosis. Human Molecular Genetics, 2016, 25, 245-253.	1.4	40
160	Identification of a novel antiapoptotic protein that antagonizes ASK1 and CAD activities. Journal of Cell Biology, 2003, 163, 71-81.	2.3	39
161	USP14 inhibits ER-associated degradation via interaction with IRE1α. Biochemical and Biophysical Research Communications, 2009, 379, 995-1000.	1.0	39
162	Apoptosis Signal–Regulating Kinase 1 Deficiency Accelerates Hyperlipidemia-Induced Atheromatous Plaques via Suppression of Macrophage Apoptosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1555-1564.	1.1	38

#	Article	IF	CITATIONS
163	Apoptosis Signal–Regulating Kinase 1 Deficiency Attenuates Vascular Injury–Induced Neointimal Hyperplasia by Suppressing Apoptosis in Smooth Muscle Cells. American Journal of Pathology, 2013, 182, 597-609.	1.9	37
164	The Expression of Fn14 via Mechanical Stress-activated JNK Contributes to Apoptosis Induction in Osteoblasts. Journal of Biological Chemistry, 2014, 289, 6438-6450.	1.6	37
165	Enhanced TNF-α–induced apoptosis in Fanconi anemia type C–deficient cells is dependent on apoptosis signal-regulating kinase 1. Blood, 2005, 106, 4124-4130.	0.6	36
166	Fra-2 mediates oxygen-sensitive induction of transforming growth factor Î ² in cardiac fibroblasts. Cardiovascular Research, 2010, 87, 647-655.	1.8	35
167	Cryo-EM structure of the volume-regulated anion channel LRRC8D isoform identifies features important for substrate permeation. Communications Biology, 2020, 3, 240.	2.0	35
168	Apoptosis Signal-Regulating Kinase 1–Mediated Signaling Pathway Regulates Nitric Oxide–Induced Activator Protein-1 Activation in Human Bronchial Epithelial Cells. American Journal of Respiratory and Critical Care Medicine, 2003, 167, 856-861.	2.5	34
169	Important Role of Apoptosis Signal-Regulating Kinase 1 in Ischemia-Induced Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1877-1883.	1.1	34
170	Reciprocal Negative Regulation of PDK1 and ASK1 Signaling by Direct Interaction and Phosphorylation. Journal of Biological Chemistry, 2010, 285, 2397-2414.	1.6	34
171	ASK1 facilitates tumor metastasis through phosphorylation of an ADP receptor P2Y12 in platelets. Cell Death and Differentiation, 2017, 24, 2066-2076.	5.0	34
172	p38 MAPKs regulate the expression of genes in the dopamine synthesis pathway through phosphorylation of NR4A nuclear receptors. Journal of Cell Science, 2011, 124, 3006-3016.	1.2	33
173	L-type Ca2+ channels serve as a sensor of the SR Ca2+ for tuning the efficacy of Ca2+-induced Ca2+ release in rat ventricular myocytes. Journal of Physiology, 2003, 552, 415-424.	1.3	33
174	Identification of Op18/stathmin as a potential target of ASK1-p38 MAP kinase cascade. Journal of Cellular Physiology, 2006, 206, 363-370.	2.0	32
175	Depletion of Apoptosis Signal-Regulating Kinase 1 Prevents Bile Duct Ligation–Induced Necroinflammation and Subsequent Peribiliary Fibrosis. American Journal of Pathology, 2014, 184, 644-661.	1.9	32
176	ASK1 restores the antiviral activity of APOBEC3G by disrupting HIV-1 Vif-mediated counteraction. Nature Communications, 2015, 6, 6945.	5.8	32
177	Involvement of Apoptosis Signal-Regulating Kinase-1 on Angiotensin II-Induced Monocyte Chemoattractant Protein-1 Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 270-275.	1.1	31
178	Critical role for apoptosis signal-regulating kinase 1 in the development of inflammatory K/BxN serum-induced arthritis. International Immunopharmacology, 2010, 10, 1170-1176.	1.7	31
179	Apoptosis Signal-Regulating Kinase-1 Is Involved in Vascular Endothelial and Cardiac Remodeling Caused by Nitric Oxide Deficiency. Hypertension, 2007, 50, 519-524.	1.3	30
180	ASK1-Signaling Promotes c-Myc Protein Stability during Apoptosis. Biochemical and Biophysical Research Communications, 2001, 281, 1313-1320.	1.0	29

#	Article	IF	CITATIONS
181	Regulation of Anoxic Death in <i>Caenorhabditis elegans</i> by Mammalian Apoptosis Signal-Regulating Kinase (ASK) Family Proteins. Genetics, 2011, 187, 785-792.	1.2	29
182	<i>In vivo</i> gene manipulation reveals the impact of stressâ€responsive <scp>MAPK</scp> pathways on tumor progression. Cancer Science, 2015, 106, 785-796.	1.7	29
183	The ASK family kinases differentially mediate induction of type I interferon and apoptosis during the antiviral response. Science Signaling, 2015, 8, ra78.	1.6	29
184	ASK family kinases mediate cellular stress and redox signaling to circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3646-3651.	3.3	29
185	Latent transforming growth factor- <i>l²</i> complex in Chinese hamster ovary cells contains the multifunctional cysteine-rich fibroblast growth factor receptor, also termed E-selectin-ligand or MG-160. Biochemical Journal, 1997, 324, 427-434.	1.7	28
186	Role of ADP-ribosylation Factor 6 (ARF6) in Gastric Acid Secretion. Journal of Biological Chemistry, 2003, 278, 36470-36475.	1.6	28
187	ASK1 promotes apoptosis of normal and malignant plasma cells. Blood, 2012, 120, 1039-1047.	0.6	28
188	Integration of Apoptosis Signal-Regulating Kinase 1-Mediated Stress Signaling with the Akt/Protein Kinase B-lκB Kinase Cascade. Molecular and Cellular Biology, 2013, 33, 2252-2259.	1.1	28
189	Identification and characterization of autocrine-motility-factor-like activity in oral squamous-cell-carcinoma cells. International Journal of Cancer, 1994, 59, 783-788.	2.3	27
190	Mitochondrial proteolysis: Its emerging roles in stress responses. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 274-280.	1.1	27
191	Structures of PGAM5 Provide Insight into Active Site Plasticity and Multimeric Assembly. Structure, 2017, 25, 1089-1099.e3.	1.6	27
192	ER-resident sensor PERK is essential for mitochondrial thermogenesis in brown adipose tissue. Life Science Alliance, 2020, 3, e201900576.	1.3	27
193	Stress signaling in cancer. Cancer Science, 2007, 98, 1521-1527.	1.7	26
194	ASK1 is involved in cognitive impairment caused by long-term high-fat diet feeding in mice. Scientific Reports, 2015, 5, 10844.	1.6	24
195	Latent form of transforming growth factor-β1 acts as a potent growth inhibitor on a human erythroleukemia cell line. Biochemical and Biophysical Research Communications, 1990, 167, 27-32.	1.0	23
196	Hyperactivity in novel environment with increased dopamine and impaired novelty preference in apoptosis signal-regulating kinase 1 (ASK1)-deficient mice. Neuroscience Research, 2010, 66, 313-320.	1.0	23
197	Involvement of ASK1–p38 pathway in the pathogenesis of diabetes triggered by pancreatic ß cell exhaustion. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3656-3663.	1.1	23
198	Apoptosis signal-regulating kinase 1 modulates the phenotype of α-synuclein transgenic mice. Neurobiology of Aging, 2015, 36, 519-526.	1.5	23

#	Article	IF	CITATIONS
199	Chk2 kinase is required for methylglyoxalâ€induced G ₂ /M cellâ€ɛycle checkpoint arrest: implication of cellâ€ɛycle checkpoint regulation in diabetic oxidative stress signaling. Genes To Cells, 2007, 12, 919-928.	0.5	22
200	The Ablation of Mitochondrial Protein Phosphatase Pgam5 Confers Resistance Against Metabolic Stress. EBioMedicine, 2016, 5, 82-92.	2.7	22
201	Identification of novel ASK1 inhibitors using virtual screening. Bioorganic and Medicinal Chemistry, 2011, 19, 486-489.	1.4	21
202	Inhibition of Cytohesins Protects against Genetic Models of Motor Neuron Disease. Journal of Neuroscience, 2015, 35, 9088-9105.	1.7	20
203	ASK1 is activated by arsenic trioxide in leukemic cells through accumulation of reactive oxygen species and may play a negative role in induction of apoptosis. Biochemical and Biophysical Research Communications, 2007, 355, 1038-1044.	1.0	19
204	Apoptosis signal-regulating kinase (ASK)-1 mediates apoptosis through activation of JNK1 following engagement of membrane immunoglobulin. Experimental Cell Research, 2009, 315, 3467-3476.	1.2	19
205	A small-molecule inhibitor of SOD1-Derlin-1 interaction ameliorates pathology in an ALS mouse model. Nature Communications, 2018, 9, 2668.	5.8	19
206	Prevention of Apoptosis by Mitochondrial Phosphatase PGAM5 in the Mushroom Body Is Crucial for Heat Shock Resistance in Drosophila melanogaster. PLoS ONE, 2012, 7, e30265.	1.1	19
207	Interaction of ASK1 and the β-amyloid precursor protein in a stress-signaling complex. Neurobiology of Disease, 2007, 28, 65-75.	2.1	18
208	Role of Apoptosis Signal-regulating Kinase 1 (ASK1) as an Activator of the GAPDH-Siah1 Stress-Signaling Cascade. Journal of Biological Chemistry, 2015, 290, 56-64.	1.6	18
209	FGF21 Induced by the ASK1-p38 Pathway Promotes Mechanical Cell Competition by Attracting Cells. Current Biology, 2021, 31, 1048-1057.e5.	1.8	18
210	Apoptosis-Signal Regulating Kinase-1 Is Involved in the Low Potassium-Induced Activation of p38 Mitogen-Activated Protein Kinase and c-Jun in Cultured Cerebellar Granule Neurons. Journal of Biochemistry, 2003, 133, 719-724.	0.9	17
211	Role of ASK1/p38 Cascade in a Mouse Model of Alzheimer's Disease and Brain Aging. Journal of Alzheimer's Disease, 2017, 61, 259-263.	1.2	17
212	Role of c-Jun NH-terminal kinase in G-protein-coupled receptor agonist-induced cardiac plasminogen activator inhibitor-1 expression. Journal of Molecular and Cellular Cardiology, 2005, 38, 583-592.	0.9	16
213	Apoptosis signal-regulating kinase 1 deficiency eliminates cardiovascular injuries induced by high-salt diet. Journal of Hypertension, 2011, 29, 76-84.	0.3	16
214	Deletion of Apoptosis Signal–Regulating Kinase–1 Prevents Ventilator-Induced Lung Injury in Mice. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 461-469.	1.4	16
215	Osmotic stress induces the phosphorylation of WNK4 Ser575 via the p38MAPK-MK pathway. Scientific Reports, 2016, 6, 18710.	1.6	16
216	Induction of a Ribotoxic Stress Response That Stimulates Stress-Activated Protein Kinases by 13-Deoxytedanolide, an Antitumor Marine Macrolide. Bioscience, Biotechnology and Biochemistry, 2006, 70, 161-171.	0.6	14

#	Article	IF	CITATIONS
217	ASK1 promotes the contact hypersensitivity response through IL-17 production. Scientific Reports, 2014, 4, 4714.	1.6	14
218	Decreased Level of Transforming Growth Factor-β in Blood Lymphocytes of Patients with Aplastic Anemia. Growth Factors, 1992, 6, 85-90.	0.5	12
219	Requirement of Apoptosis-Inducing Kinase 1 for the Induction of Bronchial Asthma following Stimulation with Ovalbumin. International Archives of Allergy and Immunology, 2013, 162, 104-114.	0.9	11
220	β-TrCP-dependent degradation of ASK1 suppresses the induction of the apoptotic response by oxidative stress. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2271-2280.	1.1	11
221	The CCR4–NOT deadenylase complex safeguards thymic positive selection by down-regulating aberrant pro-apoptotic gene expression. Nature Communications, 2020, 11, 6169.	5.8	11
222	ERAD components Derlin-1 and Derlin-2 are essential for postnatal brain development and motor function. IScience, 2021, 24, 102758.	1.9	11
223	Elevated placental histone H3K4 methylation via upregulated histone methyltransferases SETD1A and SMYD3 in preeclampsia and its possible involvement in hypoxia-induced pathophysiological process. Placenta, 2021, 115, 60-69.	0.7	10
224	Apoptosis signal-regulating kinase 1 in leukotriene D4-induced activator protein-1 activation in airway smooth muscle cells. European Journal of Pharmacology, 2005, 517, 11-16.	1.7	9
225	The mitochondrial protein PGAM5 suppresses energy consumption in brown adipocytes by repressing expression of uncoupling protein 1. Journal of Biological Chemistry, 2020, 295, 5588-5601.	1.6	9
226	Role of Rho in rabbit parietal cell. Journal of Cellular Physiology, 2003, 197, 409-417.	2.0	7
227	A systematic immunoprecipitation approach reinforces the concept of common conformational alterations in amyotrophic lateral sclerosis-linked SOD1 mutants. Neurobiology of Disease, 2015, 82, 478-486.	2.1	7
228	Apoptosis signal-regulating kinase 1 (ASK1) as a therapeutic target for neurological diseases. Expert Opinion on Therapeutic Targets, 2020, 24, 1061-1064.	1.5	7
229	ASK1 promotes uterine inflammation leading to pathological preterm birth. Scientific Reports, 2020, 10, 1887.	1.6	6
230	KLHDC10 Deficiency Protects Mice against TNFα-Induced Systemic Inflammation. PLoS ONE, 2016, 11, e0163118.	1.1	6
231	ASK1 signaling regulates phase-specific glial interactions during neuroinflammation. Proceedings of the United States of America, 2022, 119, .	3.3	6
232	NAMPT-dependent NAD+ salvage is crucial for the decision between apoptotic and necrotic cell death under oxidative stress. Cell Death Discovery, 2022, 8, 195.	2.0	6
233	Apoptosis signal-regulating kinase 1 in regulated necrosis. Cell Cycle, 2018, 17, 5-6.	1.3	5
234	ASK1 suppresses NK cellâ€mediated intravascular tumor cell clearance in lung metastasis. Cancer Science, 2021, 112, 1633-1643.	1.7	5

218Above lensity for Cell Volume Regulation: Equid Liquid Phase Separation: Cellular Physiology and co232645.1.14219Reademergic receptor signaling evokes the PKA-SK axis in mature brown adipooptes. PLoS ONE, 2020, 15, co232645.1.142107Calcium signaling in cellular Clock Resetting Triggered by Osmotic Stress. Antioxidiants and Redox Signaling, 2022, 37, 631-646.2.53219InfoR-AKT Signaling in Cellular Clock Resetting Triggered by Osmotic Stress. Antioxidiants and Redox Resetting Triggered by Osmotic Stress. Antioxidiants and Redox2.62210Functional cooperation between ASKI and p21 Wall (2) I in the balance of cell-cycle arrest, cell death and regulation, aggregation formation and defect in proteolysis in ALS. AIMS Molecular Science, 2015, 3, 246-268.0.32224Melocalization, aggregation formation and defect in proteolysis in ALS. AIMS Molecular Science, 2015, 3, 246-268.0.31234Melocalization, aggregation formation and defect in proteolysis in ALS. AIMS Molecular Science, 2015, 3, 246-268.0.31234Melocalization, aggregation formation and defect in proteolysis in ALS. AIMS Molecular Science, 2015, 3, 246-268.0.31234Melocalization, aggregation formation and cellocycle, 2018, 17, 139-140.1.41234Signaling concer cells in a tumor microcenvironment. Cell Cycle, 2018, 17, 139-140.1.41234Jaks Jabs.0.200234Jaks Jabs.0.30.20234Jaks Jabs.0.410234Jaks Jabs.0.5 <th>#</th> <th>Article</th> <th>IF</th> <th>CITATIONS</th>	#	Article	IF	CITATIONS
236 e2332645. 1.1 1 237 Calcium signalingvia voltage-dependent L-type Ca2+ channels. Signal Transduction, 2004, 4, 195-205. 0.7 3 238 mTOR-AKT Signaling in Cellular Clock Resetting Triggered by Osmotic Stress. Antioxidants and Redox 2.6 3 239 Involvement of apoptosis signal-regulating binase-1 in house dust mite-induced allergic asthma in mice. 1.4 2 240 Functional cooperation between ASK1 and p21Waf1/Cip1 in the balance of cell-cycle arrest, cell death 2.0 2 241 ASK1. The AFCS-nature Molecule Pages, 0, . 0.2 2 242 Mislocalization, aggregation formation and defect in proteolysis in ALS. AIMS Molecular Science, 0.3 2 243 Molecular Mechanism of Reactive Oxygen Species dependent ASK1 Activation in Innate Immunity. 1.6 1 244 mASKing cancer cells in a tumor microenvironment. Cell Cycle, 2018, 17, 139-140. 1.3 1 245 subophagic degradation of Cu2/Presuperoxide dismutase, Journal of Biological Chemistry, 2020, 295, 31.6 1 246 ASKI-doendent recruitment and activation of macrophages induce hair growth in skin wounds. 1.2 1 247 Physiological roles of stress-activated protein kinases in skin. International Congress Series, 2005, 40, 7-11. </td <td>235</td> <td></td> <td>1.1</td> <td>4</td>	235		1.1	4
238 mTOR-AKT Signaling in Cellular Clock Resetting Triggered by Osmotic Stress. Antioxidants and Redox 2.5 3 239 hvolvement of apoptosis signal-regulating kinase. In house dust mite-induced allergic asthma in mice. 1.4 2 240 Functional cooperation between ASk1 and p21WaF1/Cip1 in the balance of cell-cycle arrest, cell death 2.0 2 240 Functional cooperation between ASk1 and p21WaF1/Cip1 in the balance of cell-cycle arrest, cell death 2.0 2 241 ASk1. The AFCS nature Molecule Pages, 0, 0.2 2 242 Mislocalization, aggregation formation and defect in proteolysis in ALS. AIMS Molecular Science, 0.3 2 243 Molecular Mechanism of Reactive Oxygen Species dependent ASk1 Activation in Innate Immunity. 1.6 1 244 mASking cancer cells in a tumor microenvironment. Cell Cycle, 2018, 17, 139-140. 1.3 1 245 strophysic degradation of Cu,Zn-superoxide dismutase. Journal of Biological Chemistry, 2002, 955, 3148-3158. 1.6 1 246 ASk1-dependent recruitment and activation of macrophages induce hair growth in skin wounds. Jaurnal of Experimental Medicine, 2007, 204, 919. 1.2 1 245 attraction and activation of macrophages induce hair growth in skin wounds. Jaurnal of Experimental Medicine, 2007, 204, 919. 1.2	236		1.1	4
235 Signaling, 2022, 37, 631-646. 2.3 3 239 Involvement of apoptosis signal-regulating kinase-1 in house dust mite-induced allergic asthma in mice. 1.4 2 240 Functional cooperation between ASK1 and p21Waf1/Cip1 in the balance of cell-cycle arrest, cell death and tumorigenesis of stressed keratinocytes. Cell Death Discovery, 2021, 7, 75. 2.0 2 241 ASK1. The AFCS-nature Molecule Pages, 0, 0.2 2 242 Mislocalization, aggregation formation and defect in proteolysis in ALS. AIMS Molecular Science, 2016, 3, 246-268. 0.3 2 243 Molecular Mechanism of Beactive Oxygen Species-dependent ASK1 Activation in Innate Immunity. Informane Network, 2008, 8, 1. 1 244 mASking cancer cells in a tumor microenvironment. Cell Cycle, 2018, 17, 139-140. 1.3 1 245 autophagic degraduiton of Cu2/n-superoxide dismutase. Journal of Biological Chemistry, 2020, 295, 11-6 1 1 246 ASKI dependent recruitment and activation of macrophages induce hair growth in skin wounds. Just 3, 305-309. 0.2 0 247 Physiological roles of stress-activated protein kinases in skin. International Congress Series, 2005, 0.2 0 0 246 ASKI dependent recruitment and activation of macrophages induce hair growth in skin wounds. Just 3, 05-309. 0.2	237	Calcium signalingvia voltage-dependent L-type Ca2+ channels. Signal Transduction, 2004, 4, 195-205.	0.7	3
259 Allergology International, 2017, 66, S50-S52. 14 2 240 Functional cooperation between ASK1 and p21Waf1/Cip1 in the balance of cell-cycle arrest, cell death and tumorigenesis of stressed keratinocytes. Cell Death Discovery, 2021, 7, 75. 0.2 2 241 ASK1. The AFCS-nature Molecule Pages, 0, 0.2 2 242 Mislocalization, aggregation formation and defect in proteolysis in ALS. AIMS Molecular Science, 2016, 3, 246-268. 0.3 2 243 Molecular Mechanism of Reactive Oxygen Species-dependent ASK1 Activation in Innate Immunity. Immune Network, 2008, 8, 1. 1.6 1 244 mASKing cancer cells in a tumor microenvironment. Cell Cycle, 2018, 17, 139-140. 1.3 1 245 Stefadation of Cu2ra-superoxide dismutase. Journal of Biological Chemistry, 2020, 295, 1.6 1 1 246 ASK1 dependent recruitment and activation of macrophages induce hair growth in skin wounds. Journal of Experimental Medicine, 2007, 204, 19-19. 4.2 1 247 Physiological roles of stress-activated protein kinases in skin. International Congress Series, 2005, 0.2 0 0 248 ASK1 Signalosome: a Signaling Complex Essential for Cellular Stress Responses. Journal of Oral Biosciences, 2006, 48, 7-11. 0.8 0 249 Foreword. Advances in Biological Regulation, 2017, 66, 1.<	238		2.5	3
240 and tumorigenesis of stressed keratinocytes. Cell Death Discovery, 2021, 7, 75. 20 2 241 ASK1. The AFCS-nature Molecule Pages, 0, 0.2 2 242 Mislocalization, aggregation formation and defect in proteolysis in ALS. AIMS Molecular Science, 0.3 2 243 Molecular Mechanism of Reactive Oxygen Species-dependent ASK1 Activation in Innate Immunity. 1.6 1 244 mASKing cancer cells in a tumor microenvironment. Cell Cycle, 2018, 17, 139-140. 1.3 1 245 autophagic degradation of Cu,2n-superoxide dismutase. Journal of Biological Chemistry, 2020, 295, 1.6 1 246 ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds. 4.2 1 247 Physiological roles of stress-activated protein kinases in skin. International Congress Series, 2005, 0.2 0 0 248 ASKI Signalosome: a Signaling Complex Essential for Cellular Stress Responses. Journal of Oral Biosciences, 2006, 48, 7-11. 0.8 0 249 Foreword. Advances in Biological Regulation, 2017, 66, 1. 1.4 0 240 ASKI Signalosome: a Signaling Complex Essential for Cellular Stress Responses. Journal of Oral Biosciences, 2006, 48, 7-11. 0.8 0	239		1.4	2
242 Mislocalization, aggregation formation and defect in proteolysis in ALS. AIMS Molecular Science, 2016, 3, 246-268. 0.3 2 243 Molecular Mechanism of Reactive Oxygen Species-dependent ASK1 Activation in Innate Immunity. 1.6 1 244 mASKing cancer cells in a tumor microenvironment. Cell Cycle, 2018, 17, 139-140. 1.3 1 245 Cenome-wide siRNA screening reveals that DCAF4-mediated ubiquitination of optineurin stimulates autophagic degradation of Cu,Zn-superoxide dismutase. Journal of Biological Chemistry, 2020, 295, 1.6 1 246 ASKI-dependent recruitment and activation of macrophages induce hair growth in skin wounds. Journal of Experimental Medicine, 2007, 204, 19-19. 4.2 1 247 Physiological roles of stress-activated protein kinases in skin. International Congress Series, 2005, 0.2 0 0 248 ASKI Signalosome: a Signaling Complex Essential for Cellular Stress Responses. Journal of Oral Biosciences, 2006, 48, 7-11. 0.8 0 249 Foreword. Advances in Biological Regulation, 2017, 66, 1. 1.4 0 250 ASKI Signalosome: a Signaling Complex Essential for Cellular Stress Responses. Journal of Oral Biosciences, 2006, 48, 7-11. 0.8 0	240	Functional cooperation between ASK1 and p21Waf1/Cip1 in the balance of cell-cycle arrest, cell death and tumorigenesis of stressed keratinocytes. Cell Death Discovery, 2021, 7, 75.	2.0	2
242 2016, 3, 246-268. 0.3 2 243 Molecular Mechanism of Reactive Oxygen Species-dependent ASK1 Activation in Innate Immunity. 1.6 1 244 mASKing cancer cells in a tumor microenvironment. Cell Cycle, 2018, 17, 139-140. 1.3 1 244 mASKing cancer cells in a tumor microenvironment. Cell Cycle, 2018, 17, 139-140. 1.3 1 244 mASKIng cancer cells in a tumor microenvironment. Cell Cycle, 2018, 17, 139-140. 1.3 1 245 Genome-wide siRNA screening reveals that DCAF4-mediated ubiquitination of optineurin stimulates autophagic degradation of Cu,Zn-superoxide dismutase. Journal of Biological Chemistry, 2020, 295, 1.6 1 246 ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds. Journal of Experimental Medicine, 2007, 204, 19-9. 0.2 0 247 Physiological roles of stress-activated protein kinases in skin. International Congress Series, 2005, 0.2 0 0 248 ASKI Signalosome: a Signaling Complex Essential for Cellular Stress Responses. Journal of Oral Biosciences, 2006, 48, 7-11. 0.8 0 250 ASK1 Signalosome: a Signaling Complex Essential for Cellular Stress Responses. Journal of Oral Biosciences, 2006, 48, 7-11. 0.8 0	241	ASK1. The AFCS-nature Molecule Pages, 0, , .	0.2	2
243Immune Network, 2008, 8, 1.1.61.61244mASKing cancer cells in a tumor microenvironment. Cell Cycle, 2018, 17, 139-140.1.31245Genome-wide siRNA screening reveals that DCAF4-mediated ubiquitination of optineurin stimulates autophagic degradation of Cu,Zn-superoxide dismutase. Journal of Biological Chemistry, 2020, 295, 3148-3158.1.61246ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds. Journal of Experimental Medicine, 2007, 204, i9-19.4.21247Physiological roles of stress-activated protein kinases in skin. International Congress Series, 2005, Biosciences, 2006, 48, 7-11.0.20248ASKI Signalosome: a Signaling Complex Essential for Cellular Stress Responses. Journal of Oral Biosciences, 2006, 48, 7-11.0.80250ASK1 Signalosome: a Signaling Complex Essential for Cellular Stress Responses. Journal of Oral Biosciences, 2006, 48, 7-11.0.80	242		0.3	2
245Genome-wide siRNA screening reveals that DCAF4-mediated ubiquitination of optineurin stimulates autophagic degradation of Cu,Zn-superoxide dismutase. Journal of Biological Chemistry, 2020, 295, 3148-3158.1.61246ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds. Journal of Experimental Medicine, 2007, 204, 19-19.4.21247Physiological roles of stress-activated protein kinases in skin. International Congress Series, 2005, 1284, 305-309.0.20248ASK1 Signalosome: a Signaling Complex Essential for Cellular Stress Responses. Journal of Oral Biosciences, 2006, 48, 7-11.0249Foreword. Advances in Biological Regulation, 2017, 66, 1.1.40250ASK1 Signalosome: a Signaling Complex Essential for Cellular Stress Responses. Journal of Oral Biosciences, 2006, 48, 7-11.0.80	243	Molecular Mechanism of Reactive Oxygen Species-dependent ASK1 Activation in Innate Immunity. Immune Network, 2008, 8, 1.	1.6	1
245autophagic degradation of Cu,Zn-superoxide dismutase. Journal of Biological Chemistry, 2020, 295, 3148-3158.1.61246ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds. Journal of Experimental Medicine, 2007, 204, i9-i9.4.21247Physiological roles of stress-activated protein kinases in skin. International Congress Series, 2005, 1284, 305-309.0.20248ASKI Signalosome: a Signaling Complex Essential for Cellular Stress Responses. Journal of Oral 	244	mASKing cancer cells in a tumor microenvironment. Cell Cycle, 2018, 17, 139-140.	1.3	1
246Journal of Experimental Medicine, 2007, 204, i9-i9.4.21247Physiological roles of stress-activated protein kinases in skin. International Congress Series, 2005, 1284, 305-309.0.20248ASKI Signalosome: a Signaling Complex Essential for Cellular Stress Responses. Journal of Oral Biosciences, 2006, 48, 7-11.0.80249Foreword. Advances in Biological Regulation, 2017, 66, 1.1.40250ASK1 Signalosome: a Signaling Complex Essential for Cellular Stress Responses. Journal of Oral Biosciences, 2006, 48, 7-11.0.80	245	autophagic degradation of Cu,Zn-superoxide dismutase. Journal of Biological Chemistry, 2020, 295,	1.6	1
2471284, 305-309.0.20248ASKI Signalosome: a Signaling Complex Essential for Cellular Stress Responses. Journal of Oral Biosciences, 2006, 48, 7-11.0.80249Foreword. Advances in Biological Regulation, 2017, 66, 1.1.40250ASK1 Signalosome: a Signaling Complex Essential for Cellular Stress Responses. Journal of Oral Biosciences, 2006, 48, 7-11.0.80	246	ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds. Journal of Experimental Medicine, 2007, 204, i9-i9.	4.2	1
248 Biosciences, 2006, 48, 7-11. 0.8 0 249 Foreword. Advances in Biological Regulation, 2017, 66, 1. 1.4 0 250 ASK1 Signalosome: a Signaling Complex Essential for Cellular Stress Responses. Journal of Oral Biosciences, 2006, 48, 7-11. 0.8 0	247		0.2	0
ASK1 Signalosome: a Signaling Complex Essential for Cellular Stress Responses. Journal of Oral 0.8 0 Biosciences, 2006, 48, 7-11.	248		0.8	0
Biosciences, 2006, 48, 7-11.	249	Foreword. Advances in Biological Regulation, 2017, 66, 1.	1.4	0
251 Mechanical stress modulates bone remodeling signals. , 2010, , 129-132. 0	250	ASK1 Signalosome: a Signaling Complex Essential for Cellular Stress Responses. Journal of Oral Biosciences, 2006, 48, 7-11.	0.8	0
	251	Mechanical stress modulates bone remodeling signals. , 2010, , 129-132.		0

252 å"⁰ä¹³éjžç″ѐfžã₽ã,¹ãf~ãf¬ã,¹å⊷容ãf»ä¼é•"機æ§‹ã•ãã,Œã«èµ·å›ã™ã,‹ç−¾æ,£. Kagaku To Seibutsu, 2010, 480,471-4770

#	Article	IF	CITATIONS
253	Roles for the Stress-Responsive Kinases ASK1 and ASK2 in Tumorigenesis. , 2012, , 145-153.		0
254	Regulation of Cellular Signalling by Thioredoxin. , 2015, , 255-274.		0
255	Molecular functions of ASK family in diseases caused by stress-induced inflammation and apoptosis. Journal of Biochemistry, 2021, 169, 395-407.	0.9	0
256	Map Kinases in Redox Signaling. , 2003, , 223-236.		0
257	ASKA technology-based pull-down method reveals a suppressive effect of ASK1 on the inflammatory NOD-RIPK2 pathway in brown adipocytes. Scientific Reports, 2021, 11, 22009.	1.6	0