
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4791777/publications.pdf Version: 2024-02-01

SHENCMIN SANC

#	Article	IF	CITATIONS
1	The chemistry and biotransformation of tea constituents. Pharmacological Research, 2011, 64, 87-99.	7.1	366
2	Modulation of arachidonic acid metabolism by curcumin and related Â-diketone derivatives: effects on cytosolic phospholipase A2, cyclooxygenases and 5-lipoxygenase. Carcinogenesis, 2004, 25, 1671-1679.	2.8	362
3	Hepatotoxicity of high oral dose (â^')-epigallocatechin-3-gallate in mice. Food and Chemical Toxicology, 2010, 48, 409-416.	3.6	337
4	Stability of Tea Polyphenol (â^')-Epigallocatechin-3-gallate and Formation of Dimers and Epimers under Common Experimental Conditions. Journal of Agricultural and Food Chemistry, 2005, 53, 9478-9484.	5.2	306
5	Mechanism of Action of (â^')-Epigallocatechin-3-Gallate: Auto-oxidation–Dependent Inactivation of Epidermal Growth Factor Receptor and Direct Effects on Growth Inhibition in Human Esophageal Cancer KYSE 150 Cells. Cancer Research, 2005, 65, 8049-8056.	0.9	262
6	Antioxidative and anti-carcinogenic activities of tea polyphenols. Archives of Toxicology, 2009, 83, 11-21.	4.2	258
7	Antioxidative Phenolic Compounds Isolated from Almond Skins (<i>Prunus amygdalus</i> Batsch). Journal of Agricultural and Food Chemistry, 2002, 50, 2459-2463.	5.2	247
8	Tea and cancer prevention: Molecular mechanisms and human relevance. Toxicology and Applied Pharmacology, 2007, 224, 265-273.	2.8	239
9	Identification and Characterization of Methylated and Ring-Fission Metabolites of Tea Catechins Formed in Humans, Mice, and Rats. Chemical Research in Toxicology, 2002, 15, 1042-1050.	3.3	234
10	Bioactive phytochemicals in barley. Journal of Food and Drug Analysis, 2017, 25, 148-161.	1.9	224
11	Glucuronides of Tea Catechins: Enzymology of Biosynthesis and Biological Activities. Drug Metabolism and Disposition, 2003, 31, 452-461.	3.3	220
12	Possible Controversy over Dietary Polyphenols:  Benefits vs Risks. Chemical Research in Toxicology, 2007, 20, 583-585.	3.3	218
13	Biotransformation of Green Tea Polyphenols and the Biological Activities of Those Metabolites. Molecular Pharmaceutics, 2007, 4, 819-825.	4.6	217
14	Quercetin Inhibits Advanced Glycation End Product Formation by Trapping Methylglyoxal and Glyoxal. Journal of Agricultural and Food Chemistry, 2014, 62, 12152-12158.	5.2	211
15	Metabolism and pharmacokinetics of resveratrol and pterostilbene. BioFactors, 2018, 44, 16-25.	5.4	190
16	Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions. Molecular Nutrition and Food Research, 2006, 50, 1118-1128.	3.3	184
17	Tea Polyphenol (â^')-Epigallocatechin-3-Gallate: A New Trapping Agent of Reactive Dicarbonyl Species. Chemical Research in Toxicology, 2007, 20, 1862-1870.	3.3	177
18	6‣hogaol suppressed lipopolysaccharideâ€induced upâ€expression of iNOS and COXâ€2 in murine macrophages. Molecular Nutrition and Food Research, 2008, 52, 1467-1477.	3.3	172

#	Article	IF	CITATIONS
19	Apple Polyphenols, Phloretin and Phloridzin: New Trapping Agents of Reactive Dicarbonyl Species. Chemical Research in Toxicology, 2008, 21, 2042-2050.	3.3	156
20	Increased Growth Inhibitory Effects on Human Cancer Cells and Anti-inflammatory Potency of Shogaols from Zingiber officinale Relative to Gingerols. Journal of Agricultural and Food Chemistry, 2009, 57, 10645-10650.	5.2	152
21	Peracetylation as a Means of Enhancing in Vitro Bioactivity and Bioavailability of Epigallocatechin-3-Gallate. Drug Metabolism and Disposition, 2006, 34, 2111-2116.	3.3	147
22	Analysis of Theaflavins and Thearubigins from Black Tea Extract by MALDI-TOF Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2004, 52, 2455-2461.	5.2	145
23	Genistein Inhibits Advanced Glycation End Product Formation by Trapping Methylglyoxal. Chemical Research in Toxicology, 2011, 24, 579-586.	3.3	135
24	Autoxidative quinone formation in vitro and metabolite formation in vivo from tea polyphenol (-)-epigallocatechin-3-gallate: Studied by real-time mass spectrometry combined with tandem mass ion mapping. Free Radical Biology and Medicine, 2007, 43, 362-371.	2.9	132
25	Anti-inflammatory property of the urinary metabolites of nobiletin in mouse. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5177-5181.	2.2	130
26	Enzymatic synthesis of tea theaflavin derivatives and their anti-inflammatory and cytotoxic activities. Bioorganic and Medicinal Chemistry, 2004, 12, 459-467.	3.0	125
27	Essential Structural Requirements and Additive Effects for Flavonoids to Scavenge Methylglyoxal. Journal of Agricultural and Food Chemistry, 2014, 62, 3202-3210.	5.2	122
28	New Prenylated Benzoic Acid and Other Constituents from Almond Hulls (Prunus amygdalusBatsch). Journal of Agricultural and Food Chemistry, 2002, 50, 607-609.	5.2	106
29	Garcinol modulates tyrosine phosphorylation of FAK and subsequently induces apoptosis through down-regulation of Src, ERK, and Akt survival signaling in human colon cancer cells. Journal of Cellular Biochemistry, 2005, 96, 155-169.	2.6	102
30	Redox Properties of Tea Polyphenols and Related Biological Activities. Antioxidants and Redox Signaling, 2005, 7, 1704-1714.	5.4	102
31	Stilbene Glucoside from Polygonum multiflorum Thunb.: A Novel Natural Inhibitor of Advanced Glycation End Product Formation by Trapping of Methylglyoxal. Journal of Agricultural and Food Chemistry, 2010, 58, 2239-2245.	5.2	96
32	Biotransformation of tea polyphenols by gut microbiota. Journal of Functional Foods, 2014, 7, 26-42.	3.4	96
33	Whole grain oats, more than just a fiber: Role of unique phytochemicals. Molecular Nutrition and Food Research, 2017, 61, 1600715.	3.3	96
34	Green tea epigallocatechin 3-gallate alleviates hyperglycemia and reduces advanced glycation end products via nrf2 pathway in mice with high fat diet-induced obesity. Biomedicine and Pharmacotherapy, 2017, 87, 73-81.	5.6	95
35	Synthesis and Structure Identification of Thiol Conjugates of (â^)-Epigallocatechin Gallate and Their Urinary Levels in Mice. Chemical Research in Toxicology, 2005, 18, 1762-1769.	3.3	94
36	Human urinary metabolite profile of tea polyphenols analyzed by liquid chromatography/electrospray ionization tandem mass spectrometry with dataâ€dependent acquisition. Rapid Communications in Mass Spectrometry, 2008, 22, 1567-1578.	1.5	94

#	Article	IF	CITATIONS
37	Phytochemicals in whole grain wheat and their healthâ€promoting effects. Molecular Nutrition and Food Research, 2017, 61, 1600852.	3.3	94
38	Identification of nobiletin metabolites in mouse urine. Molecular Nutrition and Food Research, 2006, 50, 291-299.	3.3	91
39	Modulation of arachidonic acid metabolism and nitric oxide synthesis by garcinol and its derivatives. Carcinogenesis, 2006, 27, 278-286.	2.8	90
40	Peracetylated (â^')-Epigallocatechin-3-gallate (AcEGCG) Potently Suppresses Dextran Sulfate Sodium-Induced Colitis and Colon Tumorigenesis in Mice. Journal of Agricultural and Food Chemistry, 2012, 60, 3441-3451.	5.2	86
41	Carnosic Acid as a Major Bioactive Component in Rosemary Extract Ameliorates High-Fat-Diet-Induced Obesity and Metabolic Syndrome in Mice. Journal of Agricultural and Food Chemistry, 2015, 63, 4843-4852.	5.2	86
42	6â€Shogaol is more effective than 6â€gingerol and curcumin in inhibiting 12â€ <i>O</i> â€ŧetradecanoylphorbol 13â€acetateâ€induced tumor promotion in mice. Molecular Nutrition and Food Research, 2010, 54, 1296-1306.	3.3	83
43	Chemical studies on antioxidant mechanism of tea catechins: analysis of radical reaction products of catechin and epicatechin with 2,2-Diphenyl-1-picrylhydrazyl. Bioorganic and Medicinal Chemistry, 2002, 10, 2233-2237.	3.0	79
44	Perspective: Dietary Biomarkers of Intake and Exposure—Exploration with Omics Approaches. Advances in Nutrition, 2020, 11, 200-215.	6.4	79
45	Effects of garcinol and its derivatives on intestinal cell growth: Inhibitory effects and autoxidation-dependent growth-stimulatory effects. Free Radical Biology and Medicine, 2007, 42, 1211-1221.	2.9	76
46	Effects of processing on the nutraceutical profile of quinoa. Food Chemistry, 2007, 100, 1209-1216.	8.2	73
47	Reactive dicarbonyl compounds and 5-(hydroxymethyl)-2-furfural in carbonated beverages containing high fructose corn syrup. Food Chemistry, 2008, 107, 1099-1105.	8.2	73
48	Metabolism of Dietary Polyphenols and Possible Interactions with Drugs. Current Drug Metabolism, 2007, 8, 499-507.	1.2	72
49	Metabolism of [6]-Shogaol in Mice and in Cancer Cells. Drug Metabolism and Disposition, 2012, 40, 742-753.	3.3	69
50	Flavonol Glycosides and Novel Iridoid Glycoside from the Leaves ofMorinda citrifolia. Journal of Agricultural and Food Chemistry, 2001, 49, 4478-4481.	5.2	68
51	Chemical studies of the antioxidant mechanism of tea catechins: radical reaction products of epicatechin with peroxyl radicals. Bioorganic and Medicinal Chemistry, 2003, 11, 3371-3378.	3.0	67
52	5-Alk(en)ylresorcinols as the major active components in wheat bran inhibit human colon cancer cell growth. Bioorganic and Medicinal Chemistry, 2011, 19, 3973-3982.	3.0	66
53	Theadibenzotropolone , a new type pigment from enzymatic oxidation of (â^')-epicatechin and (â^')-epigallocatechin gallate and characterized from black tea using LC/MS/MS. Tetrahedron Letters, 2002, 43, 7129-7133.	1.4	65
54	Chemical studies on antioxidant mechanism of garcinol: analysis of radical reaction products of garcinol and their antitumor activities. Tetrahedron, 2001, 57, 9931-9938.	1.9	62

#	Article	IF	CITATIONS
55	The Microbiota Is Essential for the Generation of Black Tea Theaflavins-Derived Metabolites. PLoS ONE, 2012, 7, e51001.	2.5	62
56	Microbiota facilitates the formation of the aminated metabolite of green tea polyphenol (-)-epigallocatechin-3-gallate which trap deleterious reactive endogenous metabolites. Free Radical Biology and Medicine, 2019, 131, 332-344.	2.9	62
57	Chemical studies on antioxidant mechanism of garcinol: analysis of radical reaction products of garcinol with peroxyl radicals and their antitumor activities. Tetrahedron, 2002, 58, 10095-10102.	1.9	61
58	Oat Avenanthramide-C (2c) Is Biotransformed by Mice and the Human Microbiota into Bioactive Metabolites. Journal of Nutrition, 2015, 145, 239-245.	2.9	61
59	Specific bioactive compounds in ginger and apple alleviate hyperglycemia in mice with high fat diet-induced obesity via Nrf2 mediated pathway. Food Chemistry, 2017, 226, 79-88.	8.2	61
60	Anticancer and Anti-inflammatory Effects of Cysteine Metabolites of the Green Tea Polyphenol, (â^')-Epigallocatechin-3-gallate. Journal of Agricultural and Food Chemistry, 2010, 58, 10016-10019.	5.2	60
61	Ginger Compound [6]-Shogaol and Its Cysteine-Conjugated Metabolite (M2) Activate Nrf2 in Colon Epithelial Cells <i>in Vitro</i> and <i>in Vivo</i> . Chemical Research in Toxicology, 2014, 27, 1575-1585.	3.3	60
62	lsolation and identification of cytotoxic compounds from Bay leaf (Laurus nobilis). Food Chemistry, 2005, 93, 497-501.	8.2	58
63	<i>Methylglyoxal: Its Presence in Beverages and Potential Scavengers</i> . Annals of the New York Academy of Sciences, 2008, 1126, 72-75.	3.8	57
64	Quantitative Analysis of Ginger Components in Commercial Products Using Liquid Chromatography with Electrochemical Array Detection. Journal of Agricultural and Food Chemistry, 2010, 58, 12608-12614.	5.2	57
65	Furanosesquiterpenoids ofCommiphoramyrrha. Journal of Natural Products, 2001, 64, 1460-1462.	3.0	56
66	Sphingolipid and Other Constituents from Almond Nuts (Prunus amygdalusBatsch). Journal of Agricultural and Food Chemistry, 2002, 50, 4709-4712.	5.2	56
67	Novel acetylated flavonoid glycosides from the leaves of Allium ursinum. Food Chemistry, 2009, 115, 592-595.	8.2	56
68	Stability of Black Tea Polyphenol, Theaflavin, and Identification of Theanaphthoquinone as Its Major Radical Reaction Product. Journal of Agricultural and Food Chemistry, 2005, 53, 6146-6150.	5.2	52
69	Peracetylated (â^')-epigallocatechin-3-gallate (AcEGCG) potently prevents skin carcinogenesis by suppressing the PKD1-dependent signaling pathway in CD34 + skin stem cells and skin tumors. Carcinogenesis, 2013, 34, 1315-1322.	2.8	52
70	Importance of the Nucleophilic Property of Tea Polyphenols. Journal of Agricultural and Food Chemistry, 2019, 67, 5379-5383.	5.2	52
71	Steroidal Saponins in Oat Bran. Journal of Agricultural and Food Chemistry, 2016, 64, 1549-1556.	5.2	51
72	Triterpene Saponins from Debittered Quinoa (Chenopodium quinoa) Seeds. Journal of Agricultural and Food Chemistry, 2002, 50, 865-867.	5.2	49

5

#	Article	IF	CITATIONS
73	New dibenzotropolone derivatives characterized from black tea using LC/MS/MS. Bioorganic and Medicinal Chemistry, 2004, 12, 3009-3017.	3.0	49
74	lsolation and characterization of several aromatic sesquiterpenes fromCommiphora myrrha. Flavour and Fragrance Journal, 2003, 18, 282-285.	2.6	48
75	Furostanol saponins from Allium tuberosum. Phytochemistry, 1999, 52, 1611-1615.	2.9	47
76	Avenanthramide Aglycones and Glucosides in Oat Bran: Chemical Profile, Levels in Commercial Oat Products, and Cytotoxicity to Human Colon Cancer Cells. Journal of Agricultural and Food Chemistry, 2018, 66, 8005-8014.	5.2	47
77	Cysteine-Conjugated Metabolites of Ginger Components, Shogaols, Induce Apoptosis through Oxidative Stress-Mediated p53 Pathway in Human Colon Cancer Cells. Journal of Agricultural and Food Chemistry, 2014, 62, 4632-4642.	5.2	46
78	Structural identification of mouse urinary metabolites of pterostilbene using liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 1770-1778.	1.5	45
79	6-Gingerdiols as the Major Metabolites of 6-Gingerol in Cancer Cells and in Mice and Their Cytotoxic Effects on Human Cancer Cells. Journal of Agricultural and Food Chemistry, 2012, 60, 11372-11377.	5.2	45
80	Novel Resveratrol-Based Aspirin Prodrugs: Synthesis, Metabolism, and Anticancer Activity. Journal of Medicinal Chemistry, 2015, 58, 6494-6506.	6.4	45
81	Mechanism of the Superoxide Scavenging Activity of Neoandrographolide â^' A Natural Product fromAndrographis paniculataNees. Journal of Agricultural and Food Chemistry, 2002, 50, 4662-4665.	5.2	44
82	Plasma Cholesterol-Lowering Activity of Gingerol- and Shogaol-Enriched Extract Is Mediated by Increasing Sterol Excretion. Journal of Agricultural and Food Chemistry, 2014, 62, 10515-10521.	5.2	44
83	Characterization of the Triterpene Saponins of the Roots and Rhizomes of Blue Cohosh (Caulophyllum Thalictroides). Journal of Agricultural and Food Chemistry, 2001, 49, 5969-5974.	5.2	43
84	Anti-inflammatory effect of Momordica grosvenori Swingle extract through suppressed LPS-induced upregulation of iNOS and COX-2 in murine macrophages. Journal of Functional Foods, 2009, 1, 145-152.	3.4	42
85	Metabolites of Ginger Component [6]-Shogaol Remain Bioactive in Cancer Cells and Have Low Toxicity in Normal Cells: Chemical Synthesis and Biological Evaluation. PLoS ONE, 2013, 8, e54677.	2.5	42
86	Wheat Bran Oil and Its Fractions Inhibit Human Colon Cancer Cell Growth and Intestinal Tumorigenesis inApcmin/+Mice. Journal of Agricultural and Food Chemistry, 2006, 54, 9792-9797.	5.2	41
87	Bioavailability and stability issues in understanding the cancer preventive effects of tea polyphenols. Journal of the Science of Food and Agriculture, 2006, 86, 2256-2265.	3.5	41
88	Trapping Methylglyoxal by Genistein and Its Metabolites in Mice. Chemical Research in Toxicology, 2016, 29, 406-414.	3.3	41
89	Chemoprevention of 7,12-dimethylbenz[<i>a</i>]anthracene (DMBA)-induced Hamster Cheek Pouch Carcinogenesis by a 5-Lipoxygenase Inhibitor, Garcinol. Nutrition and Cancer, 2012, 64, 1211-1218.	2.0	40
90	Identification and Pharmacokinetics of Novel Alkylresorcinol Metabolites in Human Urine, New Candidate Biomarkers for Whole-Grain Wheat and Rye Intake. Journal of Nutrition, 2014, 144, 114-122.	2.9	40

#	Article	IF	CITATIONS
91	Preventive and protective properties of rosemary (Rosmarinus officinalis L.) in obesity and diabetes mellitus of metabolic disorders: a brief review. Current Opinion in Food Science, 2015, 2, 58-70.	8.0	40
92	Influence of Quercetin and Its Methylglyoxal Adducts on the Formation of α-Dicarbonyl Compounds in a Lysine/Clucose Model System. Journal of Agricultural and Food Chemistry, 2017, 65, 2233-2239.	5.2	40
93	Induction of Lung Cancer Cell Apoptosis through a p53 Pathway by [6]-Shogaol and Its Cysteine-Conjugated Metabolite M2. Journal of Agricultural and Food Chemistry, 2014, 62, 1352-1362.	5.2	39
94	Bioactive Ginger Constituents Alleviate Protein Glycation by Trapping Methylglyoxal. Chemical Research in Toxicology, 2015, 28, 1842-1849.	3.3	39
95	The Chemistry and Health Benefits of Dietary Phenolamides. Journal of Agricultural and Food Chemistry, 2020, 68, 6248-6267.	5.2	39
96	Two New Spirostanol Saponins fromAlliumtuberosum. Journal of Natural Products, 1999, 62, 1028-1029.	3.0	38
97	Iridoid Glycosides from the Leaves of Morinda citrifolia. Journal of Natural Products, 2001, 64, 799-800.	3.0	37
98	Peroxidase-mediated oxidation of catechins. Phytochemistry Reviews, 2004, 3, 229-241.	6.5	37
99	Bioactive compounds isolated from apple, tea, and ginger protect against dicarbonyl induced stress in cultured human retinal epithelial cells. Phytomedicine, 2016, 23, 200-213.	5.3	37
100	New type sesquiterpene lactone from almond hulls (Prunus amygdalus Batsch). Tetrahedron Letters, 2002, 43, 2547-2549.	1.4	36
101	Green Tea Polyphenols: Antioxidative and Prooxidative Effects. Journal of Nutrition, 2004, 134, 3181S.	2.9	35
102	Complexity of Advanced Glycation End Products in Foods: Where Are We Now?. Journal of Agricultural and Food Chemistry, 2018, 66, 1325-1329.	5.2	35
103	Urinary Biomarkers of Whole Grain Wheat Intake Identified by Non-targeted and Targeted Metabolomics Approaches. Scientific Reports, 2016, 6, 36278.	3.3	34
104	Induction of Apoptosis by [8]-Shogaol via Reactive Oxygen Species Generation, Glutathione Depletion, and Caspase Activation in Human Leukemia Cells. Journal of Agricultural and Food Chemistry, 2010, 58, 3847-3854.	5.2	33
105	Chemical components of the roots of Noni (Morinda citrifolia) and their cytotoxic effects. F¬toterap¬A¢, 2011, 82, 704-708.	2.2	33
106	Synthesis and Inhibitory Activities against Colon Cancer Cell Growth and Proteasome of Alkylresorcinols. Journal of Agricultural and Food Chemistry, 2012, 60, 8624-8631.	5.2	33
107	In vitro and in vivo inhibition of aldose reductase and advanced glycation end products by phloretin, epigallocatechin 3-gallate and [6]-gingerol. Biomedicine and Pharmacotherapy, 2016, 84, 502-513.	5.6	33
108	Metabolism of dictamnine in liver microsomes from mouse, rat, dog, monkey, and human. Journal of Pharmaceutical and Biomedical Analysis, 2016, 119, 166-174.	2.8	32

#	Article	IF	CITATIONS
109	Antifungal Constituents from the Seeds ofAllium fistulosumL Journal of Agricultural and Food Chemistry, 2002, 50, 6318-6321.	5.2	31
110	N-Acetylcysteine enhances the lung cancer inhibitory effect of epigallocatechin-3-gallate and forms a new adduct. Free Radical Biology and Medicine, 2008, 44, 1069-1074.	2.9	31
111	Structural Identification of Theaflavin Trigallate and Tetragallate from Black Tea Using Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2012, 60, 10850-10857.	5.2	31
112	Oat avenanthramides induce heme oxygenase-1 expression via Nrf2-mediated signaling in HK-2 cells. Molecular Nutrition and Food Research, 2015, 59, 2471-2479.	3.3	31
113	Ginger Stimulates Hematopoiesis via Bmp Pathway in Zebrafish. PLoS ONE, 2012, 7, e39327.	2.5	31
114	DETERMINATION OF SPHINGOLIPIDS IN NUTS AND SEEDS BY A SINGLE QUADRUPOLE LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY METHOD. Journal of Food Lipids, 2005, 12, 327-343.	1.0	30
115	Cytotoxic lignans from Larrea tridentata. Phytochemistry, 2005, 66, 811-815.	2.9	30
116	Novel Theaflavin-Type Chlorogenic Acid Derivatives Identified in Black Tea. Journal of Agricultural and Food Chemistry, 2018, 66, 3402-3407.	5.2	30
117	Dietary Cenistein Inhibits Methylglyoxal-Induced Advanced Clycation End Product Formation in Mice Fed a High-Fat Diet. Journal of Nutrition, 2019, 149, 776-787.	2.9	30
118	Four New Steroidal Saponins from the Seeds ofAllium tuberosum. Journal of Agricultural and Food Chemistry, 2001, 49, 1475-1478.	5.2	29
119	Chemical Components in Noni Fruits and Leaves (<i>Morinda citrifolia</i> L.). ACS Symposium Series, 2001, , 134-150.	0.5	29
120	New unusual iridoids from the leaves of noni (Morinda citrifolia L.) show inhibitory effect on ultraviolet B-induced transcriptional activator protein-1 (AP-1) activity. Bioorganic and Medicinal Chemistry, 2003, 11, 2499-2502.	3.0	29
121	A New Unusual Iridoid with Inhibition of Activator Protein-1 (AP-1) from the Leaves of Morinda citrifolia L Organic Letters, 2001, 3, 1307-1309.	4.6	28
122	Fraxinus excelsior seed extract FraxiPureâ,,¢ limits weight gains and hyperglycemia in high-fat diet-induced obese mice. Phytomedicine, 2011, 18, 479-485.	5.3	28
123	Structure Elucidation and Chemical Profile of Sphingolipids in Wheat Bran and Their Cytotoxic Effects against Human Colon Cancer Cells. Journal of Agricultural and Food Chemistry, 2013, 61, 866-874.	5.2	28
124	New Spirostanol Saponins from Chinese Chives (Allium tuberosum). Journal of Agricultural and Food Chemistry, 2001, 49, 4780-4783.	5.2	27
125	Citrifolinin , a new unusual iridoid with inhibition of Activator Protein-1 (AP-1) from the leaves of noni (Morinda citrifolia L.). Tetrahedron Letters, 2001, 42, 1823-1825.	1.4	27
126	Quantification of ascorbyl adducts of epigallocatechin gallate and gallocatechin gallate in bottled tea beverages. Food Chemistry, 2018, 261, 246-252.	8.2	27

#	Article	IF	CITATIONS
127	Translating In Vitro Acroleinâ€Trapping Capacities of Tea Polyphenol and Soy Genistein to In Vivo Situation is Mediated by the Bioavailability and Biotransformation of Individual Polyphenols. Molecular Nutrition and Food Research, 2020, 64, 1900274.	3.3	26
128	Precision Research on Ginger: The Type of Ginger Matters. Journal of Agricultural and Food Chemistry, 2020, 68, 8517-8523.	5.2	26
129	Mechanistic studies of inhibition on acrolein by myricetin. Food Chemistry, 2020, 323, 126788.	8.2	26
130	Structural identification of mouse fecal metabolites of theaflavin 3,3′-digallate using liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 2011, 1218, 7297-7306.	3.7	25
131	Trapping Methylglyoxal by Myricetin and Its Metabolites in Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 9408-9414.	5.2	25
132	ANTIOXIDANT CHEMISTRY OF GREEN TEA CATECHINS: OXIDATION PRODUCTS OF (â€)â€EPIGALLOCATECHIN GALLATE AND (â€)â€EPIGALLOCATECHIN WITH PEROXIDASE. Journal of Food Lipids, 2000, 7, 275-282.	1.0	24
133	Oxyphytosterols as Active Ingredients in Wheat Bran Suppress Human Colon Cancer Cell Growth: Identification, Chemical Synthesis, and Biological Evaluation. Journal of Agricultural and Food Chemistry, 2015, 63, 2264-2276.	5.2	24
134	Synthesis, evaluation, and metabolism of novel [6]-shogaol derivatives as potent Nrf2 activators. Free Radical Biology and Medicine, 2016, 95, 243-254.	2.9	24
135	A phenylpropanoid glycoside from Vaccaria segetalis. Phytochemistry, 1998, 48, 569-571.	2.9	23
136	Metabolism of ginger component [6]-shogaol in liver microsomes from mouse, rat, dog, monkey, and human. Molecular Nutrition and Food Research, 2013, 57, 865-876.	3.3	23
137	[10]-Gingerdiols as the Major Metabolites of [10]-Gingerol in Zebrafish Embryos and in Humans and Their Hematopoietic Effects in Zebrafish Embryos. Journal of Agricultural and Food Chemistry, 2013, 61, 5353-5360.	5.2	23
138	Characterization of thiolâ€conjugated metabolites of ginger components shogaols in mouse and human urine and modulation of the glutathione levels in cancer cells by [6]â€shogaol. Molecular Nutrition and Food Research, 2013, 57, 447-458.	3.3	22
139	Induction of Apoptosis and Cell-Cycle Arrest in Human Colon-Cancer Cells by Whole-Grain Alkylresorcinols via Activation of the p53 Pathway. Journal of Agricultural and Food Chemistry, 2018, 66, 11935-11942.	5.2	21
140	Scavenging of Acrolein by Food-Grade Antioxidant Propyl Gallate in a Model Reaction System and Cakes. Journal of Agricultural and Food Chemistry, 2019, 67, 8520-8526.	5.2	21
141	Tea Flavanols Block Advanced Glycation of Lens Crystallins Induced by Dehydroascorbic Acid. Chemical Research in Toxicology, 2015, 28, 135-143.	3.3	20
142	Emerging science on whole grain intake and inflammation. Nutrition Reviews, 2020, 78, 21-28.	5.8	20
143	Studies on the Constituents of the Seeds of Vaccaria segetalis. Heterocycles, 2003, 59, 811.	0.7	20
144	A new method to prepare and redefine black tea thearubigins. Journal of Chromatography A, 2018, 1563, 82-88.	3.7	19

#	Article	IF	CITATIONS
145	Dual effects of propyl gallate and its methylglyoxal adduct on carbonyl stress and oxidative stress. Food Chemistry, 2018, 265, 227-232.	8.2	19
146	Quantitative Analysis and Anti-inflammatory Activity Evaluation of the A-Type Avenanthramides in Commercial Sprouted Oat Products. Journal of Agricultural and Food Chemistry, 2020, 68, 13068-13075.	5.2	19
147	Triterpenoid Saponins from <i>Vaccaria segetalis</i> . Journal of Asian Natural Products Research, 1999, 1, 199-205.	1.4	18
148	Levels and formation of α-dicarbonyl compounds in beverages and the preventive effects of flavonoids. Journal of Food Science and Technology, 2017, 54, 2030-2040.	2.8	18
149	Cysteine-Conjugated Metabolite of Ginger Component [6]-Shogaol Serves as a Carrier of [6]-Shogaol in Cancer Cells and in Mice. Chemical Research in Toxicology, 2013, 26, 976-985.	3.3	17
150	Biotransformation of Myricetin: A Novel Metabolic Pathway to Produce Aminated Products in Mice. Molecular Nutrition and Food Research, 2019, 63, e1900203.	3.3	17
151	Structural identification of novel glucoside and glucuronide metabolites of (â^')â€epigallocatechinâ€3â€gallate in mouse urine using liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22, 3693-3699.	1.5	16
152	Interindividual Variability in Metabolism of [6]-Shogaol by Gut Microbiota. Journal of Agricultural and Food Chemistry, 2017, 65, 9618-9625.	5.2	16
153	Additive Capacity of [6]-Shogaol and Epicatechin To Trap Methylglyoxal. Journal of Agricultural and Food Chemistry, 2017, 65, 8356-8362.	5.2	16
154	Trapping of glyoxal by propyl, octyl and dodecyl gallates and their mono-glyoxal adducts. Food Chemistry, 2018, 269, 396-403.	8.2	16
155	Biomarkers of Whole Grain Intake. Journal of Agricultural and Food Chemistry, 2018, 66, 10347-10352.	5.2	15
156	Wheat Bran for Colon Cancer Prevention: The Synergy between Phytochemical Alkylresorcinol C21 and Intestinal Microbial Metabolite Butyrate. Journal of Agricultural and Food Chemistry, 2019, 67, 12761-12769.	5.2	15
157	Dietary Genistein Reduces Methylglyoxal and Advanced Glycation End Product Accumulation in Obese Mice Treated with High-Fat Diet. Journal of Agricultural and Food Chemistry, 2020, 68, 7416-7424.	5.2	15
158	Identification of phase II metabolites of thiol-conjugated [6]-shogaol in mouse urine using high-performance liquid chromatography tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 907, 126-139.	2.3	14
159	An unusual diterpene glycoside from the nuts of almond (Prunus amygdalus Batsch). Tetrahedron Letters, 2003, 44, 1199-1202.	1.4	13
160	Triterpenoid Saponins in Oat Bran and Their Levels in Commercial Oat Products. Journal of Agricultural and Food Chemistry, 2020, 68, 6381-6389.	5.2	13
161	Chemical studies of the antioxidant mechanism of theaflavins: radical reaction products of theaflavin 3,3′-digallate with hydrogen peroxide. Tetrahedron Letters, 2003, 44, 5583-5587.	1.4	12
162	Garcinol from <i>Garcinia indica</i> : Chemistry and Health Beneficial Effects. ACS Symposium Series, 2013, , 133-145.	0.5	11

#	Article	IF	CITATIONS
163	Avenacosides: Metabolism, and potential use as exposure biomarkers of oat intake. Molecular Nutrition and Food Research, 2017, 61, 1700196.	3.3	11
164	Avenanthramide Metabotype from Whole-Grain Oat Intake is Influenced by Faecalibacterium prausnitzii in Healthy Adults. Journal of Nutrition, 2021, 151, 1426-1435.	2.9	11
165	Benzotropolone inhibitors of estradiol methylation: kinetics and in silico modeling studies. Bioorganic and Medicinal Chemistry, 2005, 13, 2501-2507.	3.0	10
166	Rescue of hematopoietic stem/progenitor cells formation in plcg1 zebrafish mutant. Scientific Reports, 2019, 9, 244.	3.3	10
167	A Novel LCâ€MS Based Targeted Metabolomic Approach to Study the Biomarkers of Food Intake. Molecular Nutrition and Food Research, 2020, 64, e2000615.	3.3	10
168	Black Tea Theaflavin Detoxifies Metabolic Toxins inÂtheÂIntestinal Tract of Mice. Molecular Nutrition and Food Research, 2021, 65, 2000887.	3.3	10
169	Simultaneous Determination of Multiple Reactive Carbonyl Species in High Fat Diet-Induced Metabolic Disordered Mice and the Inhibitory Effects of Rosemary on Carbonyl Stress. Journal of Agricultural and Food Chemistry, 2021, 69, 1123-1131.	5.2	10
170	Novel Steroidal Saponins in Oat Identified by Molecular Networking Analysis and Their Levels in Commercial Oat Products. Journal of Agricultural and Food Chemistry, 2021, 69, 7084-7092.	5.2	9
171	Characterization of 2-Methyl-4-amino-5-(2-methyl-3-furylthiomethyl)pyrimidine from Thermal Degradation of Thiamin. Journal of Agricultural and Food Chemistry, 2002, 50, 4055-4058.	5.2	8
172	Schisandra chinensis: Chemistry and Analysis. ACS Symposium Series, 2003, , 234-246.	0.5	8
173	Glucuronidation and its impact on the bioactivity of [6]-shogaol. Molecular Nutrition and Food Research, 2017, 61, 1700023.	3.3	8
174	Characterization of Reaction Products and Mechanisms between Serotonin and Methylglyoxal in Model Reactions and Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 2437-2444.	5.2	8
175	Dietary Quercetin Reduces Plasma and Tissue Methylglyoxal and Advanced Glycation End Products in Healthy Mice Treated with Methylglyoxal. Journal of Nutrition, 2021, 151, 2601-2609.	2.9	8
176	Three New Sesquiterpene Lactones from Inula britannica. ACS Symposium Series, 2003, , 271-278.	0.5	6
177	ENZYMATIC SYNTHESIS OF THEAFLAVINS AND EPITHEAFLAVIC ACID FROM TEA CATECHINS AND THEIR ANTIOXIDANT ACTIVITY. Journal of Food Lipids, 2004, 11, 89-103.	1.0	6
178	Chemical Components of Noni (<i>Morinda citrifolia</i> L.) Root. ACS Symposium Series, 2006, , 185-194.	0.5	5
179	Metabolic Investigation on the Interaction Mechanism between Dietary Dihydrochalcone Intake and Lipid Peroxidation Product Acrolein Reduction. Molecular Nutrition and Food Research, 2022, , 2101107.	3.3	5
180	Gut Microbiota as a Novel Tool to Dissect the Complex Structures of Black Tea Polymers. Journal of Agricultural and Food Chemistry, 2022, 70, 5005-5014.	5.2	5

#	Article	IF	CITATIONS
181	Biotransformation and Bioavailability of Tea Polyphenols: Implications for Cancer Prevention Research. ACS Symposium Series, 2005, , 212-224.	0.5	4
182	Methylglyoxal-Induced Retinal Angiogenesis in Zebrafish Embryo: A Potential Animal Model of Neovascular Retinopathy. Journal of Ophthalmology, 2019, 2019, 1-8.	1.3	4
183	Ginger metabolites and metabolite-inspired synthetic products modulate intracellular calcium and relax airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L912-L924.	2.9	4
184	Health benefits of barley for diabetes. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 12, .	2.4	4
185	Degradation of black tea theaflavin through C-ring cleavage by gut microbiota. Food Science and Human Wellness, 2022, 11, 598-605.	4.9	4
186	Separation and Bioactivity of Diarylheptanoids from Lesser Galangal (Alpinia officinarum). ACS Symposium Series, 2003, , 369-380.	0.5	3
187	Effect of Black Tea Theaflavins and Related Benzotropolone Derivatives on 12-O-Tetradecanoylphorbol-13-acetate-Induced Mouse Ear Inflammation and Inflammatory Mediators. ACS Symposium Series, 2005, , 242-253.	0.5	2
188	Metabolic Interaction between Ammonia and Baicalein. Chemical Research in Toxicology, 2020, 33, 2181-2188.	3.3	2
189	Biotransformation of Barley Phenolamide by Mice and the Human Gut Microbiota and Quantitative Analysis of the Major Metabolites in Mice. Molecular Nutrition and Food Research, 2022, , 2200134.	3.3	2
190	Antioxidant Activity of Flavanols and Flavonoid Glycosides in Oolong Tea. ACS Symposium Series, 2001, , 292-303.	0.5	1
191	Chemistry of Theaflavins: The Astringent Taste Compounds of Black Tea. ACS Symposium Series, 2003, , 125-138.	0.5	1
192	Bioassay-Guided Isolation, Identification, and Quantification of the Estrogen-Like Constituent from PC SPES. ACS Symposium Series, 2006, , 117-125.	0.5	0
193	Effect of Black Tea Theaflavins on 12- <i>O</i> -Tetradecanoylphorbol-13-acetate-Induced Inflammation. ACS Symposium Series, 2006, , 314-325.	0.5	0
194	Induction of Apoptosis by Acetylated Black Tea Polyphenol through Reactive Oxygen Species Production, Cytochrome <i>c</i> Release, and Caspases Activation in Human Leukemia HL-60 Cells. ACS Symposium Series, 2008, , 345-361.	0.5	0
195	å"e°·ç‰©æ'"å¥å ⁻¹ ç,Žç—‡å¼2±å"çš,,æ–°èį›å±•. Nutrition Reviews, 2020, 78, 20-27.	5.8	0
196	Changing the Landscape: An Introduction to the Agricultural and Food Chemistry Technical Program at the 258th American Chemical Society National Meeting in San Diego. Journal of Agricultural and Food Chemistry, 2020, 68, 12769-12772.	5.2	0