
Hagai B. Perets

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4791226/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Realization of Quantum Walks with Negligible Decoherence in Waveguide Lattices. Physical Review Letters, 2008, 100, 170506.	7.8	423
2	SECULAR EVOLUTION OF COMPACT BINARIES NEAR MASSIVE BLACK HOLES: GRAVITATIONAL WAVE SOURCES AND OTHER EXOTICA. Astrophysical Journal, 2012, 757, 27.	4.5	365
3	AN EXTREMELY TOP-HEAVY INITIAL MASS FUNCTION IN THE GALACTIC CENTER STELLAR DISKS. Astrophysical Journal, 2010, 708, 834-840.	4.5	275
4	A faint type of supernova from a white dwarf with a helium-rich companion. Nature, 2010, 465, 322-325.	27.8	273
5	Intermediate mass black holes in AGN discs - I. Production and growth. Monthly Notices of the Royal Astronomical Society, 2012, 425, 460-469.	4.4	234
6	EVIDENCE FOR WARPED DISKS OF YOUNG STARS IN THE GALACTIC CENTER. Astrophysical Journal, 2009, 697, 1741-1763.	4.5	215
7	Massive Perturber–driven Interactions between Stars and a Massive Black Hole. Astrophysical Journal, 2007, 656, 709-720.	4.5	209
8	ON THE TRIPLE ORIGIN OF BLUE STRAGGLERS. Astrophysical Journal, 2009, 697, 1048-1056.	4.5	198
9	CALCIUM-RICH GAP TRANSIENTS IN THE REMOTE OUTSKIRTS OF GALAXIES. Astrophysical Journal, 2012, 755, 161.	4.5	174
10	FAILED-DETONATION SUPERNOVAE: SUBLUMINOUS LOW-VELOCITY Ia SUPERNOVAE AND THEIR KICKED REMNANT WHITE DWARFS WITH IRON-RICH CORES. Astrophysical Journal Letters, 2012, 761, L23.	8.3	139
11	PHOTOMETRIC AMPLITUDE DISTRIBUTION OF STELLAR ROTATION OF KOIsâ€"INDICATION FOR SPIN-ORBIT ALIGNMENT OF COOL STARS AND HIGH OBLIQUITY FOR HOT STARS. Astrophysical Journal, 2015, 801, 3.	4.5	136
12	Black hole and neutron star mergers in galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2019, 488, 47-63.	4.4	130
13	A multiple-impact origin for the Moon. Nature Geoscience, 2017, 10, 89-94.	12.9	118
14	THE PROPERTIES OF DYNAMICALLY EJECTED RUNAWAY AND HYPER-RUNAWAY STARS. Astrophysical Journal, 2012, 751, 133.	4.5	111
15	THE TRIPLE EVOLUTION DYNAMICAL INSTABILITY: STELLAR COLLISIONS IN THE FIELD AND THE FORMATION OF EXOTIC BINARIES. Astrophysical Journal, 2012, 760, 99.	4.5	104
16	THE FAST AND FURIOUS DECAY OF THE PECULIAR TYPE Ic SUPERNOVA 2005ek. Astrophysical Journal, 2013, 774, 58.	4.5	104
17	ON THE ORIGIN OF PLANETS AT VERY WIDE ORBITS FROM THE RECAPTURE OF FREE FLOATING PLANETS. Astrophysical Journal, 2012, 750, 83.	4.5	98
18	HELIUM SHELL DETONATIONS ON LOW-MASS WHITE DWARFS AS A POSSIBLE EXPLANATION FOR SN 2005E. Astrophysical Journal, 2011, 738, 21.	4.5	97

#	Article	IF	CITATIONS
19	Molecular Hydrogen Formation on Ice Under Interstellar Conditions. Astrophysical Journal, 2005, 627, 850-860.	4.5	90
20	DYNAMICAL EVOLUTION OF THE YOUNG STARS IN THE GALACTIC CENTER: <i>N</i> BODY SIMULATIONS OF THE S-STARS. Astrophysical Journal, 2009, 702, 884-889.	4.5	85
21	A primordial origin for the compositional similarity between the Earth and the Moon. Nature, 2015, 520, 212-215.	27.8	83
22	KOZAI CYCLES, TIDAL FRICTION, AND THE DYNAMICAL EVOLUTION OF BINARY MINOR PLANETS. Astrophysical Journal, 2009, 699, L17-L21.	4.5	82
23	Milky Way potentials in cold dark matter and MOdified Newtonian Dynamics. Is the Large Magellanic Cloud on a bound orbit?. Monthly Notices of the Royal Astronomical Society, 2008, 386, 2199-2208.	4.4	78
24	A triple origin for the lack of tight coplanar circumbinary planets around short-period binaries. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3180-3200.	4.4	74
25	RUNAWAY AND HYPERVELOCITY STARS IN THE GALACTIC HALO: BINARY REJUVENATION AND TRIPLE DISRUPTION. Astrophysical Journal, 2009, 698, 1330-1340.	4.5	72
26	STAR HOPPERS: PLANET INSTABILITY AND CAPTURE IN EVOLVING BINARY SYSTEMS. Astrophysical Journal, 2012, 753, 91.	4.5	69
27	SECULAR EVOLUTION OF BINARIES NEAR MASSIVE BLACK HOLES: FORMATION OF COMPACT BINARIES, MERGER/COLLISION PRODUCTS AND G2-LIKE OBJECTS. Astrophysical Journal, 2015, 799, 118.	4.5	68
28	WIND-SHEARING IN GASEOUS PROTOPLANETARY DISKS AND THE EVOLUTION OF BINARY PLANETESIMALS. Astrophysical Journal, 2011, 733, 56.	4.5	66
29	Environment-derived constraints on the progenitors of low-luminosity Type I supernovaea ~ Monthly Notices of the Royal Astronomical Society, 2013, 434, 527-541.	4.4	66
30	MICRO-TIDAL DISRUPTION EVENTS BY STELLAR COMPACT OBJECTS AND THE PRODUCTION OF ULTRA-LONG GRBs. Astrophysical Journal, 2016, 823, 113.	4.5	66
31	Generalized Hill-stability criteria for hierarchical three-body systems at arbitrary inclinations. Monthly Notices of the Royal Astronomical Society, 2017, 466, 276-285.	4.4	66
32	Secular dynamics of multiplanet systems: implications for the formation of hot and warm Jupiters via high-eccentricity migration. Monthly Notices of the Royal Astronomical Society, 2017, 464, 688-701.	4.4	66
33	Quasi-secular evolution of mildly hierarchical triple systems: analytics and applications for GW sources and hot Jupiters. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4907-4923.	4.4	66
34	Secular dynamics of hierarchical quadruple systems: the case of a triple system orbited by a fourth body. Monthly Notices of the Royal Astronomical Society, 2015, 449, 4221-4245.	4.4	62
35	SECULAR DYNAMICS IN HIERARCHICAL THREE-BODY SYSTEMS WITH MASS LOSS AND MASS TRANSFER. Astrophysical Journal, 2014, 794, 122.	4.5	60
36	Rate of WD-WD head-on collisions in isolated triples is too low to explain standard type Ia supernovae. Astronomy and Astrophysics, 2018, 610, A22.	5.1	60

#	Article	IF	CITATIONS
37	Rates of Stellar Tidal Disruption. Space Science Reviews, 2020, 216, 1.	8.1	60
38	Efficient common-envelope ejection through dust-driven winds. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 478, L12-L17.	3.3	59
39	DYNAMICAL AND EVOLUTIONARY CONSTRAINTS ON THE NATURE AND ORIGIN OF HYPERVELOCITY STARS. Astrophysical Journal, 2009, 690, 795-801.	4.5	58
40	Molecular Hydrogen Formation on Amorphous Silicates under Interstellar Conditions. Astrophysical Journal, 2007, 661, L163-L166.	4.5	57
41	The origins of blue stragglers and binarity in globular clusters. Monthly Notices of the Royal Astronomical Society, 2013, 428, 897-905.	4.4	55
42	AGE AND MASS SEGREGATION OF MULTIPLE STELLAR POPULATIONS IN GALACTIC NUCLEI AND THEIR OBSERVATIONAL SIGNATURES. Astrophysical Journal Letters, 2014, 784, L44.	8.3	54
43	Formation and evolution of hybrid He–CO white dwarfs and their properties. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1135-1142.	4.4	54
44	Massive Perturbers and the Efficient Merger of Binary Massive Black Holes. Astrophysical Journal, 2008, 677, 146-159.	4.5	51
45	THE OBSERVED ORBITAL PROPERTIES OF BINARY MINOR PLANETS. Astrophysical Journal, 2010, 719, 1775-1783.	4.5	51
46	EVOLUTION OF SECOND-GENERATION STARS IN STELLAR DISKS OF GLOBULAR AND NUCLEAR CLUSTERS: ω CENTAURI AS A TEST CASE. Astrophysical Journal, 2013, 779, 85.	4.5	51
47	Chaotic quadruple secular evolution and the production of misaligned exomoons and Warm Jupiters in stellar multiples. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3547-3556.	4.4	50
48	POST-MAIN SEQUENCE EVOLUTION OF ICY MINOR PLANETS: IMPLICATIONS FOR WATER RETENTION AND WHITE DWARF POLLUTION. Astrophysical Journal, 2016, 832, 160.	4.5	49
49	On the rotation of nuclear star clusters formed by cluster inspirals. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3720-3727.	4.4	49
50	Classical diffusion of a quantum particle in a noisy environment. Physical Review E, 2009, 79, 050105.	2.1	48
51	The demographics of neutron star – white dwarf mergers. Astronomy and Astrophysics, 2018, 619, A53.	5.1	48
52	SN 2019ehk: A Double-peaked Ca-rich Transient with Luminous X-Ray Emission and Shock-ionized Spectral Features. Astrophysical Journal, 2020, 898, 166.	4.5	48
53	DYNAMICAL CONSTRAINTS ON THE ORIGIN OF THE YOUNG B-STARS IN THE GALACTIC CENTER. Astrophysical Journal, 2010, 719, 220-228.	4.5	45
54	EFFECTS OF INTERMEDIATE MASS BLACK HOLES ON NUCLEAR STAR CLUSTERS. Astrophysical Journal, 2014, 796, 40.	4.5	45

#	Article	IF	CITATIONS
55	Tidal disruption of planetary bodies by white dwarfs I: a hybrid sph-analytical approach. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5561-5581.	4.4	45
56	Gas depletion in primordial globular clusters due to accretion on to stellar-mass black holes. Monthly Notices of the Royal Astronomical Society, 2013, 429, 2997-3006.	4.4	44
57	STABILITY OF SATELLITES IN CLOSELY PACKED PLANETARY SYSTEMS. Astrophysical Journal Letters, 2013, 775, L44.	8.3	44
58	Post-main-sequence Evolution of Icy Minor Planets. II. Water Retention and White Dwarf Pollution around Massive Progenitor Stars. Astrophysical Journal, 2017, 842, 67.	4.5	42
59	FORMATION AND EVOLUTION OF NUCLEAR STAR CLUSTERS WITH IN SITU STAR FORMATION: NUCLEAR CORES AND AGE SEGREGATION. Astrophysical Journal, 2015, 799, 185.	4.5	39
60	THE IMPACT OF MASS SEGREGATION AND STAR FORMATION ON THE RATES OF GRAVITATIONAL-WAVE SOURCES FROM EXTREME MASS RATIO INSPIRALS. Astrophysical Journal Letters, 2016, 830, L1.	8.3	39
61	Tidal disruption of planetary bodies by white dwarfs – II. Debris disc structure and ejected interstellar asteroids. Monthly Notices of the Royal Astronomical Society, 2020, 493, 698-712.	4.4	39
62	Simulations of common envelope evolution in triple systems: circumstellar case. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1921-1932.	4.4	39
63	AN EMERGING CLASS OF BRIGHT, FAST-EVOLVING SUPERNOVAE WITH LOW-MASS EJECTA. Astrophysical Journal, 2011, 730, 89.	4.5	38
64	Post-main-sequence Evolution of Icy Minor Planets. III. Water Retention in Dwarf Planets and Exomoons and Implications for White Dwarf Pollution. Astrophysical Journal, 2017, 849, 8.	4.5	38
65	The composition of Solar system asteroids and Earth/Mars moons, and the Earth–Moon composition similarity. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3597-3609.	4.4	38
66	Neutron star–white dwarf mergers: early evolution, physical properties, and outcomes. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1805-1813.	4.4	36
67	THE OLD ENVIRONMENT OF THE FAINT CALCIUM-RICH SUPERNOVA SN 2005cz. Astrophysical Journal Letters, 2011, 728, L36.	8.3	35
68	APPLICATION OF GAS DYNAMICAL FRICTION FOR PLANETESIMALS. II. EVOLUTION OF BINARY PLANETESIMALS. Astrophysical Journal, 2016, 820, 106.	4.5	35
69	APPLICATION OF GAS DYNAMICAL FRICTION FOR PLANETESIMALS. I. EVOLUTION OF SINGLE PLANETESIMALS. Astrophysical Journal, 2015, 811, 54.	4.5	34
70	Analysis of Molecular Hydrogen Formation on Low-Temperature Surfaces in Temperature Programmed Desorption Experiments. Journal of Physical Chemistry A, 2007, 111, 12611-12619.	2.5	33
71	On the Existence of Regular and Irregular Outer Moons Orbiting the Pluto–Charon System. Astrophysical Journal, 2017, 836, 27.	4.5	33
72	Thermonuclear explosion of a massive hybrid HeCO white dwarf triggered by a He detonation on a companion. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4734-4747.	4.4	33

#	Article	IF	CITATIONS
73	Formation of molecular hydrogen on analogues of interstellar dust grains: experiments and modelling. Journal of Physics: Conference Series, 2005, 6, 36-58.	0.4	32
74	BINARY PLANETESIMALS AND THEIR ROLE IN PLANET FORMATION. Astrophysical Journal Letters, 2011, 727, L3.	8.3	32
75	SECOND-GENERATION STELLAR DISKS IN DENSE STAR CLUSTERS AND CLUSTER ELLIPTICITIES. Astrophysical Journal, 2016, 823, 61.	4.5	31
76	Gravitational-wave Sources from Mergers of Binary Black Holes Catalyzed by Flyby Interactions in the Field. Astrophysical Journal Letters, 2019, 887, L36.	8.3	31
77	On rapid migration and accretion within discs around supermassive black holes. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 417, L103-L107.	3.3	30
78	ON THE ORIGIN OF THE B-STARS IN THE GALACTIC CENTER. Astrophysical Journal, 2014, 784, 23.	4.5	30
79	Tidal capture formation of low-mass X-ray binaries from wide binaries in the field. Monthly Notices of the Royal Astronomical Society, 2016, 458, 4188-4197.	4.4	30
80	High rate of gravitational waves mergers from flyby perturbations of wide black hole triples in the field. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4924-4935.	4.4	28
81	SUPERNOVAE FROM DIRECT COLLISIONS OF WHITE DWARFS AND THE ROLE OF HELIUM SHELL IGNITION. Astrophysical Journal, 2016, 822, 19.	4.5	27
82	Stellar dynamics in gas: the role of gas damping. Monthly Notices of the Royal Astronomical Society, 2014, 441, 919-932.	4.4	26
83	Common envelope evolution of eccentric binaries. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2659-2670.	4.4	26
84	WIND-ACCRETION DISKS IN WIDE BINARIES, SECOND-GENERATION PROTOPLANETARY DISKS, AND ACCRETION ONTO WHITE DWARFS. Astrophysical Journal, 2013, 764, 169.	4.5	25
85	Constraints on the common-envelope evolution process from wide triple systems. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4711-4717.	4.4	25
86	Distinguishing Tidal Disruption Events from Impostors. Space Science Reviews, 2021, 217, 1.	8.1	25
87	Supernova explosions in active galactic nuclear discs. Monthly Notices of the Royal Astronomical Society, 2021, 507, 156-174.	4.4	24
88	Transients from ONe white dwarf – neutron star/black hole mergers. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3758-3777.	4.4	24
89	THE GALACTIC POTENTIAL AND THE ASYMMETRIC DISTRIBUTION OF HYPERVELOCITY STARS. Astrophysical Journal, 2009, 697, 2096-2101.	4.5	23
90	Faint rapid red transients from neutron star–CO white dwarf mergers. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3956-3965.	4.4	22

#	Article	IF	CITATIONS
91	Molecular hydrogen formation on porous dust grains. Monthly Notices of the Royal Astronomical Society, 2006, 365, 801-806.	4.4	21
92	Wide binary companions to massive stars and their use in constraining natal kicks. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4098-4113.	4.4	21
93	Nuclear burning in collapsar accretion discs. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4097-4113.	4.4	21
94	Inferred time-scales for common envelope ejection using wide astrometric companions. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1448-1462.	4.4	20
95	Chaotic dynamics of wide triples induced by galactic tides: a novel channel for producing compact binaries, mergers, and collisions. Monthly Notices of the Royal Astronomical Society, 2022, 512, 4993-5009.	4.4	20
96	Statistical Trends in the Obliquity Distribution of Exoplanet Systems. Astronomical Journal, 2018, 156, 253.	4.7	19
97	Planet seeding through gas-assisted capture of interstellar objects. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3324-3332.	4.4	19
98	Gravitational waves from in-spirals of compact objects in binary common-envelope evolution. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4861-4867.	4.4	19
99	Observational Evidence Linking Interstellar UV Absorption to PAH Molecules. Astrophysical Journal, 2017, 836, 173.	4.5	18
100	The wide-binary origin of (2014) MU69-like Kuiper belt contact binaries. Nature, 2020, 580, 463-466.	27.8	18
101	Return of the TEDI: Revisiting the Triple Evolution Dynamical Instability Channel in Triple Stars. Astrophysical Journal, 2022, 925, 178.	4.5	18
102	Star formation at the Galactic Centre: coevolution of multiple young stellar discs. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5820-5831.	4.4	16
103	No velocity-kicks are required to explain large-distance offsets of Ca-rich supernovae and short-GRBs. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5997-6004.	4.4	16
104	Analytical, Statistical Approximate Solution of Dissipative and Nondissipative Binary-Single Stellar Encounters. Physical Review X, 2021, 11, .	8.9	16
105	Eccentric disc instability in stellar discs formed from inspiralling gas clouds in the Galactic Centre. Monthly Notices of the Royal Astronomical Society, 2012, 427, 1793-1799.	4.4	15
106	Spectral features of tidal disruption candidates and alternative origins for such transient flares. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3307-3323.	4.4	15
107	The Circumstellar Environments of Double-peaked, Calcium-strong Transients 2021gno and 2021inl. Astrophysical Journal, 2022, 932, 58.	4.5	15
108	Planets in Evolved Binary Systems. AIP Conference Proceedings, 2011, , .	0.4	14

#	Article	IF	CITATIONS
109	The contraction/expansion history of Charon with implications for its planetary-scale tectonic belt. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1056-1069.	4.4	14
110	The Role of Multiple Giant Impacts in the Formation of the Earth–Moon System. Astrophysical Journal, 2018, 862, 5.	4.5	14
111	The aeolian-erosion barrier for the growth of metre-size objects in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4827-4835.	4.4	14
112	Late-time Observations of Calcium-rich Transient SN 2019ehk Reveal a Pure Radioactive Decay Power Source. Astrophysical Journal Letters, 2021, 908, L32.	8.3	14
113	THE HISTORY OF TIDAL DISRUPTION EVENTS IN GALACTIC NUCLEI. Astrophysical Journal, 2016, 823, 137.	4.5	12
114	Relaxation near Supermassive Black Holes Driven by Nuclear Spiral Arms: Anisotropic Hypervelocity Stars, S-stars, and Tidal Disruption Events. Astrophysical Journal, 2017, 846, 123.	4.5	12
115	Modeling of negative autoregulated genetic networks in single cells. Gene, 2005, 347, 265-271.	2.2	11
116	Gas-assisted Growth of Protoplanets in a Turbulent Medium. Astrophysical Journal, 2018, 861, 74.	4.5	11
117	Binary Evolution, Gravitational-wave Mergers, and Explosive Transients in Multiple-population Gas-enriched Globular Clusters. Astrophysical Journal, 2022, 931, 149.	4.5	11
118	Probability distribution of astrophysical gravitational-wave background fluctuations. Physical Review D, 2020, 102, .	4.7	10
119	The wide-binary origin of the Pluto–Charon system. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5264-5270.	4.4	9
120	Supernova and Prompt Gravitational-wave Precursors to LIGO Gravitational-wave Sources and Short GRBs. Astrophysical Journal Letters, 2018, 855, L12.	8.3	8
121	Are there any pristine comets? Constraints from pebble structure. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3366-3394.	4.4	8
122	The Multiple Origin of Blue Straggler Stars: Theory vs. Observations. Astrophysics and Space Science Library, 2015, , 251-275.	2.7	7
123	Inflated Eccentric Migration of Evolving Gas Giants I – Accelerated Formation and Destruction of Hot and Warm Jupiters. Astrophysical Journal, 2022, 931, 10.	4.5	7
124	The late-time light curves of Type Ia supernovae: confronting models with observations. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3703-3715.	4.4	7
125	Interaction of Atomic and Molecular Hydrogen with Tholin Surfaces at Low Temperatures. Journal of Physical Chemistry A, 2010, 114, 10575-10583.	2.5	6
126	Moonfalls: collisions between the Earth and its past moons. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1711-1721.	4.4	6

#	Article	IF	CITATIONS
127	Collisional formation of massive exomoons of superterrestrial exoplanets. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5089-5101.	4.4	6
128	Rapid destruction of planetary debris around white dwarfs through aeolian erosion. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5176-5184.	4.4	6
129	Constraints on the origins of hypervelocity stars: velocity distribution, mergers, and star formation history. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4257-4266.	4.4	6
130	Massive perturbers in the galactic center. Journal of Physics: Conference Series, 2006, 54, 293-300.	0.4	5
131	Linking globular cluster structural parameters and their evolution: multiple stellar populations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2548-2560.	4.4	5
132	Erosion-driven Size Redistribution of Protoplanetary Disk Solids and the Onset of Streaming Instability and Pebble Accretion. Astrophysical Journal Letters, 2020, 898, L13.	8.3	5
133	3D Hydrodynamical Simulations of Helium-ignited Double-degenerate White Dwarf Mergers. Astrophysical Journal Letters, 2022, 932, L24.	8.3	5
134	Binaries are softer than they seem: effects of an external potential on the scattering dynamics of binaries. Monthly Notices of the Royal Astronomical Society, 2021, 508, 190-194.	4.4	4
135	Extreme mass-ratio gravitational-wave sources: mass segregation and post binary tidal-disruption captures. Monthly Notices of the Royal Astronomical Society, 2021, 501, 5012-5020.	4.4	4
136	Detailed properties of gravitational-wave mergers from flyby perturbations of wide binary black holes in the field. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4246-4258.	4.4	4
137	Short- and long-term evolution of a stellar disc around a massive black hole: the role of the cusp, stellar evolution and binaries. Monthly Notices of the Royal Astronomical Society, 2017, 465, 281-292.	4.4	3
138	Spatially Resolved X-Ray Study of Supernova Remnant G306.3–0.9 with Unusually High Calcium Abundance. Astrophysical Journal, 2022, 924, 119.	4.5	3
139	Inflated Eccentric Migration of Evolving Gas Giants II – Numerical Methodology and Basic Concepts. Astrophysical Journal, 2022, 931, 11.	4.5	3
140	The former companion of hyper-velocity star S5-HVS1. Monthly Notices of the Royal Astronomical Society, 2021, 503, 603-613.	4.4	2
141	Compact-object Formation, Retention, and Growth through Accretion onto Gas-embedded White Dwarfs/Neutron Stars in Gas-enriched Globular Clusters. Astrophysical Journal Letters, 2022, 927, L23.	8.3	2
142	The Formation of H 2 and HD with the Master Equation Approach. Proceedings of the International Astronomical Union, 2005, 1, 345.	0.0	1
143	Getting a Kick out of the Stellar Disk(s) in the Galactic Center. Proceedings of the International Astronomical Union, 2007, 3, 275-276.	0.0	1
144	Wind-shearing in gaseous protoplanetary disks. Proceedings of the International Astronomical Union, 2010, 6, 453-454.	0.0	1

0

#	Article	IF	CITATIONS
145	On the origin of young stars at the Galactic center. Proceedings of the International Astronomical Union, 2013, 9, 238-241.	0.0	1
146	Probing supermassive stars and massive black hole seeds through gravitational wave inspirals. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3944-3949.	4.4	1
147	A measurement of stellar surface gravity hidden in radial velocity differences of comoving stars. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1071-1076.	4.4	1
148	Formation and evolution of nuclear star clusters. Proceedings of the International Astronomical Union, 2014, 10, 122-125.	0.0	0
149	Star-formation in nuclear clusters and the origin of the Galactic center apparent core distribution. Proceedings of the International Astronomical Union, 2014, 10, 282-285.	0.0	0

150 The formation and evolution of nuclear star clusters. , 2017, , .