
Arnould Savouré

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4790559/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proline metabolism as regulatory hub. Trends in Plant Science, 2022, 27, 39-55.	8.8	109
2	Silicon (Si) Alleviates Iron Deficiency Effects in Sea Barley (Hordeum marinum) by Enhancing Iron Accumulation and Photosystem Activities. Silicon, 2022, 14, 6697-6712.	3.3	9
3	Exogenous Silicon Application Promotes Tolerance of Legumes and Their N2 Fixing Symbiosis to Salt Stress. Silicon, 2022, 14, 6517-6534.	3.3	14
4	Beneficial Effects of Silicon (Si) on Sea Barley (Hordeum marinum Huds.) under Salt Stress. Silicon, 2021, 13, 4501-4517.	3.3	15
5	The proline cycle as an eukaryotic redox valve. Journal of Experimental Botany, 2021, 72, 6856-6866.	4.8	24
6	Silicon improves physiological, biochemical, and morphological adaptations of alfalfa (Medicago) Tj ETQq0 0 0 r	gBT_/Qverl	lock] 0 Tf 50
7	How Does Proline Treatment Promote Salt Stress Tolerance During Crop Plant Development?. Frontiers in Plant Science, 2020, 11, 1127.	3.6	211
8	Appropriate Activity Assays Are Crucial for the Specific Determination of Proline Dehydrogenase and Pyrroline-5-Carboxylate Reductase Activities. Frontiers in Plant Science, 2020, 11, 602939.	3.6	7
9	Proline oxidation fuels mitochondrial respiration during dark-induced leaf senescence in Arabidopsis thaliana. Journal of Experimental Botany, 2019, 70, 6203-6214.	4.8	47
10	Phospholipases Dζ1 and Dζ2 have distinct roles in growth and antioxidant systems in Arabidopsis thaliana responding to salt stress. Planta, 2017, 246, 721-735.	3.2	33
11	Effects of exogenous nitric oxide on growth, proline accumulation and antioxidant capacity in Cakile maritima seedlings subjected to water deficit stress. Functional Plant Biology, 2016, 43, 939.	2.1	21
12	Proteomic and functional analysis of proline dehydrogenase 1 link proline catabolism to mitochondrial electron transport in <i>Arabidopsis thaliana</i> . Biochemical Journal, 2016, 473, 2623-2634.	3.7	47
13	Hydrogen peroxide produced by <scp>NADPH</scp> oxidases increases proline accumulation during salt or mannitol stress in <i><scp>A</scp>rabidopsis thaliana</i> . New Phytologist, 2015, 208, 1138-1148.	7.3	155
14	Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 2015, 115, 433-447.	2.9	703
15	NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana. Journal of Plant Physiology, 2015, 174, 5-15.	3.5	112
16	BASIC AMINO ACID CARRIER 2 gene expression modulates arginine and urea content and stress recovery in Arabidopsis leaves. Frontiers in Plant Science, 2014, 5, 330.	3.6	14
17	Biochemical characterization of proline dehydrogenase in Arabidopsis mitochondria. FEBS Journal, 2014, 281, 2794-2804.	4.7	54
18	How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry, 2014, 80, 278-284.	5.8	462

Arnould Savouré

#	Article	IF	CITATIONS
19	Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana. Frontiers in Plant Science, 2014, 5, 772.	3.6	35
20	Ecophysiological and genomic analysis of salt tolerance of Cakile maritima. Environmental and Experimental Botany, 2013, 92, 64-72.	4.2	25
21	Physiological response of halophytes to multiple stresses. Functional Plant Biology, 2013, 40, 883.	2.1	87
22	Phospholipases C and D Modulate Proline Accumulation in Thellungiella halophila/salsuginea Differently According to the Severity of Salt or Hyperosmotic Stress. Plant and Cell Physiology, 2012, 53, 183-192.	3.1	53
23	Proline dehydrogenase: a key enzyme in controlling cellular homeostasis. Frontiers in Bioscience - Landmark, 2012, 17, 607.	3.0	96
24	Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. Plant Journal, 2010, 64, 215-229.	5.7	174
25	Mutations in the Hyperosmotic Stress-Responsive Mitochondrial <i>BASIC AMINO ACID CARRIER2</i> Enhance Proline Accumulation in Arabidopsis. Plant Physiology, 2010, 152, 1851-1862.	4.8	40
26	Proline: a multifunctional amino acid. Trends in Plant Science, 2010, 15, 89-97.	8.8	3,090
27	A New Method for Accurately Measuring Δ1-Pyrroline-5-Carboxylate Synthetase Activity. Methods in Molecular Biology, 2010, 639, 333-340.	0.9	10
28	Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation. Journal of Plant Physiology, 2008, 165, 588-599.	3.5	134
29	Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum. Comptes Rendus - Biologies, 2008, 331, 442-451.	0.2	117
30	Opposite lipid signaling pathways tightly control proline accumulation in Arabidopsis thaliana and Thellungiella halophila. , 2008, , 317-324.		4
31	Calcium Signaling via Phospholipase C Is Essential for Proline Accumulation upon Ionic But Not Nonionic Hyperosmotic Stresses in Arabidopsis. Plant Physiology, 2007, 144, 503-512.	4.8	141
32	Comparative study of the effects of mannitol and PEG osmotic stress on growth and solute accumulation in Sesuvium portulacastrum. Environmental and Experimental Botany, 2007, 61, 10-17.	4.2	95
33	Geographical diversity and genetic relationships among Cedrus species estimated by AFLP. Tree Genetics and Genomes, 2007, 3, 275-285.	1.6	54
34	Effect of sodium chloride on the response of the halophyte species Sesuvium portulacastrum grown in mannitol-induced water stress. Journal of Plant Research, 2007, 120, 291-299.	2.4	94
35	Effect of nitrogen deficiency, salinity and drought on proline metabolism in Sesuvium portulacastrum. , 2006, , 65-72.		7
36	Effects of water deficit on growth and proline metabolism in Sesuvium portulacastrum. Environmental and Experimental Botany, 2006, 56, 231-238.	4.2	74

#	Article	IF	CITATIONS
37	Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Science, 2005, 169, 746-752.	3.6	228
38	Phospholipase D Is a Negative Regulator of Proline Biosynthesis in Arabidopsis thaliana. Journal of Biological Chemistry, 2004, 279, 14812-14818.	3.4	86
39	Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiologia Plantarum, 2004, 120, 442-450.	5.2	213
40	Isolation, characterization, and chromosomal location of a gene encoding theΔ1-pyrroline-5-carboxylate synthetase inArabidopsis thaliana. FEBS Letters, 1995, 372, 13-19.	2.8	174