List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4787970/publications.pdf Version: 2024-02-01

		94433	123424
123	4,602	37	61
papers	citations	h-index	g-index
123	123	123	4392
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Diketopyrrolopyrrole-based conjugated polymers synthesized by direct arylation polycondensation for anisole-processed high mobility organic thin-film transistors. Journal of Materials Chemistry C, 2022, 10, 2616-2622.	5.5	11
2	Delicate crystallinity control enables high-efficiency P3HT organic photovoltaic cells. Journal of Materials Chemistry A, 2022, 10, 3418-3429.	10.3	45
3	A nitroaromatic cathode with an ultrahigh energy density based on six-electron reaction per nitro group for lithium batteries. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	23
4	Unraveling the Molar Mass Dependence of Shearingâ€Induced Aggregation Structure of a Highâ€Mobility Polymer Semiconductor. Advanced Materials, 2022, 34, e2108255.	21.0	43
5	Semiconducting Polymer Nanoparticles with Intramolecular Motionâ€Induced Photothermy for Tumor Phototheranostics and Tooth Root Canal Therapy. Advanced Materials, 2022, 34, e2200179.	21.0	46
6	Fusing Thienoisoindigo to the Conjugated Ribbons with Strong Absorption in the Second Near-Infrared Window. CCS Chemistry, 2022, 4, 3497-3504.	7.8	11
7	A Mixed-Ligand Strategy to Modulate P3HT Regioregularity for High-Efficiency Solar Cells. Macromolecules, 2022, 55, 3078-3086.	4.8	26
8	Morphology manipulation for highly miscible photovoltaic blend of carboxylate-substituted polythiophene:Y6. Dyes and Pigments, 2022, 202, 110269.	3.7	2
9	Simple Polythiophene Solar Cells Approaching 10% Efficiency via Carbon Chain Length Modulation of Poly(3-alkylthiophene). Macromolecules, 2022, 55, 133-145.	4.8	33
10	Unraveling the Correlations between Mechanical Properties, Miscibility, and Film Microstructure in Allâ€Polymer Photovoltaic Cells. Advanced Functional Materials, 2022, 32, .	14.9	47
11	The rise of polythiophene photovoltaics. Joule, 2022, 6, 941-944.	24.0	18
12	n-Type conjugated polymers comprising bithiophene imide and multifluorinated thiophene moieties synthesized by direct arylation polycondensation. Journal of Materials Chemistry C, 2022, 10, 13905-13912.	5.5	3
13	NIR-II-absorbing conjugated polymers based on tetra-fused isoindigo ribbons for photothermal conversion and photoacoustic imaging. Cell Reports Physical Science, 2022, 3, 100957.	5.6	7
14	Polyurethane-Based Stretchable Semiconductor Nanofilms with High Intrinsic Recovery Similar to Conventional Elastomers. ACS Applied Materials & Interfaces, 2022, 14, 33806-33816.	8.0	13
15	n-Type Conjugated Polymers Based on an Indandione-Terminated Quinoidal Building Block. Macromolecules, 2022, 55, 5975-5984.	4.8	14
16	Modulation of Morphological, Mechanical, and Photovoltaic Properties of Ternary Organic Photovoltaic Blends for Optimum Operation. Advanced Energy Materials, 2021, 11, 2003506.	19.5	92
17	High-yield and sustainable synthesis of quinoidal compounds assisted by keto–enol tautomerism. Chemical Science, 2021, 12, 9366-9371.	7.4	10
18	A poorly soluble organic electrode material for high energy density lithium primary batteries based on a multi-electron reduction. Chemical Communications, 2021, 57, 10791-10794.	4.1	13

#	Article	IF	CITATIONS
19	Direct Arylation Polycondensation toward Water/Alcohol-Soluble Conjugated Polymers: Influence of Side Chain Functional Groups. ACS Macro Letters, 2021, 10, 419-425.	4.8	10
20	Low-Band gap Conjugated Polymers with Strong Absorption in the Second Near-Infrared Region Based on Diketopyrrolopyrrole-Containing Quinoidal Units. Macromolecules, 2021, 54, 3498-3506.	4.8	25
21	Fluorination Enables Tunable Molecular Interaction and Photovoltaic Performance in Non-Fullerene Solar Cells Based on Ester-Substituted Polythiophene. Frontiers in Chemistry, 2021, 9, 687996.	3.6	6
22	Implications of Crystallization Temperatures of Organic Small Molecules in Optimizing Nonfullerene Solar Cell Performance. ACS Applied Energy Materials, 2021, 4, 8442-8453.	5.1	7
23	Toward High Mobility Green Solventâ€Processable Conjugated Polymers: A Systematic Study on Chalcogen Effect in Poly(Diketopyrrolopyrroleâ€ <i>alt</i> â€Terchalcogenophene)s. Advanced Functional Materials, 2021, 31, 2104881.	14.9	28
24	Calculation aided miscibility manipulation enables highly efficient polythiophene:nonfullerene photovoltaic cells. Science China Chemistry, 2021, 64, 478-487.	8.2	43
25	Sequential deposition enables high-performance nonfullerene organic solar cells. Materials Chemistry Frontiers, 2021, 5, 4851-4873.	5.9	28
26	Tuning the molar mass of P3HT <i>via</i> direct arylation polycondensation yields optimal interaction and high efficiency in nonfullerene organic solar cells. Journal of Materials Chemistry A, 2021, 9, 19874-19885.	10.3	31
27	Thermoplastic Elastomer Tunes Phase Structure and Promotes Stretchability of Highâ€Efficiency Organic Solar Cells. Advanced Materials, 2021, 33, e2106732.	21.0	101
28	Simultaneous Enhancement of Stretchability, Strength, and Mobility in Ultrahigh-Molecular-Weight Poly(indacenodithiophene- <i>co</i> -benzothiadiazole). Macromolecules, 2021, 54, 9896-9905.	4.8	28
29	P3HT-Based Organic Solar Cells with a Photoresponse to 1000 nm Enabled by Narrow Band Gap Nonfullerene Acceptors with High HOMO Levels. ACS Applied Materials & Interfaces, 2021, 13, 61487-61495.	8.0	16
30	Indandioneâ€Terminated Quinoids: Facile Synthesis by Alkoxideâ€Mediated Rearrangement Reaction and Semiconducting Properties. Angewandte Chemie - International Edition, 2020, 59, 221-225.	13.8	41
31	Difluorobenzoxadiazole-based conjugated polymers for efficient non-fullerene polymer solar cells with low voltage loss. Organic Electronics, 2020, 77, 105541.	2.6	3
32	Indandioneâ€Terminated Quinoids: Facile Synthesis by Alkoxideâ€Mediated Rearrangement Reaction and Semiconducting Properties. Angewandte Chemie, 2020, 132, 227-231.	2.0	7
33	Barâ€Coated Organic Thinâ€Film Transistors with Reliable Electron Mobility Approaching 10 cm ² V ^{â^'1} s ^{â^'1} . Advanced Electronic Materials, 2020, 6, 1901002.	5.1	32
34	Molecular Engineering and Morphology Control of Polythiophene:Nonfullerene Acceptor Blends for Highâ€Performance Solar Cells. Advanced Energy Materials, 2020, 10, 2002572.	19.5	83
35	Direct Arylation Polycondensation of Chlorinated Thiophene Derivatives to High-Mobility Conjugated Polymers. Macromolecules, 2020, 53, 10147-10154.	4.8	27
36	Significance of thermodynamic interaction parameters in guiding the optimization of polymer:nonfullerene solar cells. Chemical Communications, 2020, 56, 12463-12478.	4.1	52

#	Article	IF	CITATIONS
37	Impact of Molecular Weight on the Mechanical and Electrical Properties of a High-Mobility Diketopyrrolopyrrole-Based Conjugated Polymer. Macromolecules, 2020, 53, 4490-4500.	4.8	85
38	Optimization Requirements of Efficient Polythiophene:Nonfullerene Organic Solar Cells. Joule, 2020, 4, 1278-1295.	24.0	133
39	Polymerization-induced photothermy: A non-donor-acceptor approach to highly effective near-infrared photothermal conversion nanoparticles. Biomaterials, 2020, 255, 120179.	11.4	25
40	Electronic properties modulation of tetraoxidothieno[3,2- <i>b</i>]thiophene-based quinoidal compounds by terminal fluorination. Materials Chemistry Frontiers, 2020, 4, 891-898.	5.9	10
41	Design strategies of n-type conjugated polymers for organic thin-film transistors. Materials Chemistry Frontiers, 2019, 3, 1932-1951.	5.9	97
42	Synthesis of an isomerically pure thienoquinoid for unipolar n-type conjugated polymers: effect of backbone curvature on charge transport performance. Journal of Materials Chemistry C, 2019, 7, 10352-10359.	5.5	24
43	Side-chain engineering of wide-bandgap polymers based on benzo[1,2- <i>b</i> :4,5- <i>b</i> â€2]dithiophene and [2,2â€2-bithiophene]-4,4â€2-dicarboxylate for fullerene-free organic solar cells. Journal of Materials Chemistry C, 2019, 7, 9581-9590.	5.5	9
44	A Simple Structure Conjugated Polymer for High Mobility Organic Thin Film Transistors Processed from Nonchlorinated Solvent. Advanced Science, 2019, 6, 1902412.	11.2	43
45	Microscale Organic Transistors: Fully Integrated Microscale Quasiâ€2D Crystalline Molecular Fieldâ€Effect Transistors (Adv. Funct. Mater. 36/2019). Advanced Functional Materials, 2019, 29, 1970250.	14.9	1
46	Fully Integrated Microscale Quasiâ€2D Crystalline Molecular Fieldâ€Effect Transistors. Advanced Functional Materials, 2019, 29, 1903738.	14.9	11
47	Carboxylate-Substituted Polythiophenes for Efficient Fullerene-Free Polymer Solar Cells: The Effect of Chlorination on Their Properties. Macromolecules, 2019, 52, 4464-4474.	4.8	75
48	Low-bandgap non-fullerene acceptors based on selenophene π spacer and alkylated indaceno[1,2-b:5,6-bâ€2]dithiophene for organic solar cells. Organic Electronics, 2019, 69, 200-207.	2.6	10
49	Five-ring-fused asymmetric thienoacenes for high mobility organic thin-film transistors: the influence of the position of the S atom in the terminal thiophene ring. Journal of Materials Chemistry C, 2019, 7, 3656-3664.	5.5	29
50	"Twisted―conjugated molecules as donor materials for efficient all-small-molecule organic solar cells processed with tetrahydrofuran. Journal of Materials Chemistry A, 2019, 7, 23008-23018.	10.3	37
51	Diketopyrrolopyrrole-based small molecules for solution-processed n-channel organic thin film transistors. Journal of Materials Chemistry C, 2019, 7, 13939-13946.	5.5	21
52	Wide bandgap donor-acceptor conjugated polymers with alkylthiophene as side chains for high-performance non-fullerene polymer solar cells. Organic Electronics, 2019, 65, 31-38.	2.6	8
53	Polythiophenes with carboxylate side chains and vinylene linkers in main chain for polymer solar cells. Polymer, 2018, 140, 89-95.	3.8	18
54	Fused Isoindigo Ribbons with Absorption Bands Reaching Nearâ€Infrared. Angewandte Chemie - International Edition, 2018, 57, 10283-10287.	13.8	31

#	Article	IF	CITATIONS
55	nâ€Type Azaacenes Containing Bâ†N Units. Angewandte Chemie - International Edition, 2018, 57, 2000-2004.	13.8	82
56	π-Conjugation expanded isoindigo derivatives and the donor–acceptor conjugated polymers: synthesis and characterization. Chemical Communications, 2018, 54, 782-785.	4.1	19
57	nâ€₹ype Azaacenes Containing Bâ†N Units. Angewandte Chemie, 2018, 130, 2018-2022.	2.0	18
58	Fused Isoindigo Ribbons with Absorption Bands Reaching Nearâ€Infrared. Angewandte Chemie, 2018, 130, 10440-10444.	2.0	10
59	Near-infrared absorbing non-fullerene acceptors with selenophene as π bridges for efficient organic solar cells. Journal of Materials Chemistry A, 2018, 6, 8059-8067.	10.3	92
60	Asymmetric conjugated oligomers based on polycyclic aromatics as high mobility semiconductors: The influence of chalcogens. Organic Electronics, 2018, 57, 359-366.	2.6	6
61	n-Type conjugated polymers based on 3,3′-dicyano-2,2′-bithiophene: synthesis and semiconducting properties. Journal of Materials Chemistry C, 2018, 6, 12896-12903.	5.5	21
62	High Mobility Ambipolar Diketopyrrolopyrrole-Based Conjugated Polymers Synthesized via Direct Arylation Polycondensation: Influence of Thiophene Moieties and Side Chains. Macromolecules, 2018, 51, 8752-8760.	4.8	56
63	Donor–Acceptor Conjugated Polymers Based on Bisisoindigo: Energy Level Modulation toward Unipolar n-Type Semiconductors. Macromolecules, 2018, 51, 8652-8661.	4.8	36
64	Diketopyrrolopyrroleâ€Based Conjugated Polymers Synthesized via Direct Arylation Polycondensation for High Mobility Pure nâ€Channel Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2018, 28, 1801097.	14.9	92
65	Donor–Acceptor Conjugated Polymers Based on Indacenodithiophene Derivative Bridged Diketopyrrolopyrroles: Synthesis and Semiconducting Properties. Macromolecules, 2017, 50, 2344-2353.	4.8	36
66	Multifluorination toward Highâ€Mobility Ambipolar and Unipolar nâ€Type Donor–Acceptor Conjugated Polymers Based on Isoindigo. Advanced Materials, 2017, 29, 1606217.	21.0	172
67	Asymmetric Conjugated Molecules Based on [1]Benzothieno[3,2-‹i>b‹/i>][1]benzothiophene for High-Mobility Organic Thin-Film Transistors: Influence of Alkyl Chain Length. ACS Applied Materials & Interfaces, 2017, 9, 35427-35436.	8.0	65
68	A difluorobenzothiadiazole-based conjugated polymer with alkylthiophene as the side chains for efficient, additive-free and thick-film polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 20473-20481.	10.3	20
69	Donor–acceptor conjugated polymers based on two-dimensional thiophene derivatives for bulk heterojunction solar cells. Polymer Chemistry, 2017, 8, 421-430.	3.9	19
70	Fullereneâ€Free Polymer Solar Cells with Open ircuit Voltage above 1.2 V: Tuning Phase Separation Behavior with Oligomer to Replace Polymer Acceptor. Advanced Functional Materials, 2016, 26, 5922-5929.	14.9	35
71	Donor–Acceptor Conjugated Polymers Based on Dithieno[3,2- <i>b</i> :3′,2′- <i>b</i> ′]naphtho[1,2- <i>b</i> :5,6- <i>b</i> ′]dithiophene: Synthesis and Semiconducting Properties. Macromolecules, 2016, 49, 825-832.	4.8	26
72	Synthesis and Characterization of Isoindigo[7,6- <i>g</i>]isoindigo-Based Donor–Acceptor Conjugated Polymers. Macromolecules, 2016, 49, 2135-2144.	4.8	64

#	Article	IF	CITATIONS
73	Crystallization-dominated and microphase separation/crystallization-coexisted structure of all-conjugated phenylene-thiophene diblock copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1718-1726.	2.1	5
74	High Mobility Ambipolar Diketopyrrolopyrroleâ€Based Conjugated Polymer Synthesized Via Direct Arylation Polycondensation. Advanced Materials, 2015, 27, 6753-6759.	21.0	187
75	Kumada catalyst transfer polycondensation for controlled synthesis of polyfluorenes using 1,3-bis(diarylphosphino)propanes as ligands. Polymer Chemistry, 2015, 6, 4819-4827.	3.9	13
76	lsoindigo-based low bandgap conjugated polymer for o-xylene processed efficient polymer solar cells with thick active layers. Journal of Materials Chemistry A, 2015, 3, 19928-19935.	10.3	19
77	Dithienocarbazole- and benzothiadiazole-based donor-acceptor conjugated polymers for bulk heterojunction polymer solar cells. Science China Chemistry, 2015, 58, 294-300.	8.2	5
78	Donor–acceptor–donor conjugated oligomers based on isoindigo and anthra[1,2-b]thieno[2,3-d]thiophene for organic thin-film transistors: the effect of the alkyl side chain length on semiconducting properties. Journal of Materials Chemistry C, 2015, 3, 7567-7574.	5.5	15
79	Synthesis and characterization of diketopyrrolopyrrole-based conjugated molecules flanked by indenothiophene and benzoindenothiophene derivatives. Journal of Materials Chemistry C, 2015, 3, 11135-11143.	5.5	8
80	Low bandgap conjugated polymers based on mono-fluorinated isoindigo for efficient bulk heterojunction polymer solar cells processed with non-chlorinated solvents. Energy and Environmental Science, 2015, 8, 585-591.	30.8	70
81	Molecular Packing and Orientation Transition of Crystalline Poly(2,5â€dihexyloxyâ€≺i>pâ€phenylene). Macromolecular Chemistry and Physics, 2014, 215, 405-411.	2.2	20
82	Dithienocarbazole and Isoindigo based Amorphous Low Bandgap Conjugated Polymers for Efficient Polymer Solar Cells. Advanced Materials, 2014, 26, 471-476.	21.0	191
83	Benzothienobenzothiophene-Based Conjugated Oligomers as Semiconductors for Stable Organic Thin-Film Transistors. ACS Applied Materials & Interfaces, 2014, 6, 5255-5262.	8.0	17
84	Chain Folding in Poly(3-hexylthiophene) Crystals. Macromolecules, 2014, 47, 3708-3712.	4.8	31
85	Donor–spacer–acceptor monodisperse conjugated co-oligomers for efficient single-molecule photovoltaic cells based on non-fullerene acceptors. Journal of Materials Chemistry A, 2014, 2, 3632.	10.3	40
86	Synthesis and characterization of oligo(2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene)s: effect of the chain length and end-groups on their optical and charge transport properties. Journal of Materials Chemistry C, 2014, 2, 9978-9986.	5.5	7
87	High ON/OFF ratio single crystal transistors based on ultrathin thienoacene microplates. Journal of Materials Chemistry C, 2014, 2, 5382-5388.	5.5	24
88	Synthesis of poly(5,6-difluoro-2,1,3-benzothiadiazole- <i>alt</i> -9,9-dioctyl-fluorene) via direct arylation polycondensation. Journal of Polymer Science Part A, 2014, 52, 2367-2374.	2.3	31
89	Suzuki–Miyaura catalyst-transfer polycondensation with Pd(IPr)(OAc) ₂ as the catalyst for the controlled synthesis of polyfluorenes and polythiophenes. Polymer Chemistry, 2014, 5, 7072-7080.	3.9	50
90	Novel electron-withdrawing ï€-conjugated pyrene-containing poly(phenylquinoxaline)s. Doklady Chemistry, 2014, 456, 65-71.	0.9	8

#	Article	IF	CITATIONS
91	Low-Band-Gap Conjugated Polymers of Dithieno[2,3- <i>b</i> :7,6- <i>b</i>]carbazole and Diketopyrrolopyrrole: Effect of the Alkyl Side Chain on Photovoltaic Properties. ACS Applied Materials & Interfaces, 2013, 5, 5741-5747.	8.0	37
92	Highly efficient tandem white organic light-emitting diodes based upon C60/NaT4 organic heterojunction as charge generation layer. Journal of Materials Chemistry, 2012, 22, 8492.	6.7	29
93	An asymmetric oligomer based on thienoacene for solution processed crystal organic thin-film transistors. Chemical Communications, 2012, 48, 3557.	4.1	44
94	Donor–Acceptor Conjugated Polymers with Dithienocarbazoles as Donor Units: Effect of Structure on Semiconducting Properties. Macromolecules, 2012, 45, 8621-8627.	4.8	87
95	Crystalline Organic Heterostructures Engineering Based on Vanadyl Phthalocyanine and Rodâ€Like Conjugated Organic Semiconductors with Selected Central Groups. Advanced Functional Materials, 2012, 22, 4598-4607.	14.9	23
96	Organic heterojunctions as a charge generation layer in tandem organic light-emitting diodes: the effect of interfacial energy level and charge carrier mobility. Journal of Materials Chemistry, 2011, 21, 15332.	6.7	38
97	Novel liquid crystalline conjugated oligomers based on phenanthrene for organic thin film transistors. Journal of Materials Chemistry, 2011, 21, 14793.	6.7	2
98	Oriented Poly(3-hexylthiophene) Nanofibril with the Ï€â^'Ï€ Stacking Growth Direction by Solvent Directional Evaporation. Langmuir, 2011, 27, 4212-4219.	3.5	78
99	Enhanced Performance for Polymer Solar Cells by Using Surfactantâ€Modified PEDOT:PSS as the Anode Buffer Layer. Macromolecular Chemistry and Physics, 2011, 212, 1846-1851.	2.2	23
100	Kumada chain-growth polycondensation as a universal method for synthesis of well-defined conjugated polymers. Science China Chemistry, 2010, 53, 1620-1633.	8.2	42
101	Alkyl substituted [6,6]-thienyl-C61-butyric acid methyl esters: easily accessible acceptor materials for bulk-heterojunction polymer solar cells. Journal of Materials Chemistry, 2010, 20, 3092.	6.7	26
102	A feasibly synthesized ladder-type conjugated molecule as the novel high mobility n-type organic semiconductor. Journal of Materials Chemistry, 2010, 20, 7998.	6.7	41
103	Crystalline organic superlattice. Applied Physics Letters, 2009, 95, 203106.	3.3	19
104	Enhanced amplified spontaneous emission using layer-by-layer assembled cowpea mosaic virus. Journal of Applied Physics, 2009, 105, 013511.	2.5	3
105	Solvent vaporâ€induced self assembly and its influence on optoelectronic conversion of poly(3â€hexylthiophene): Methanofullerene bulk heterojunction photovoltaic cells. Journal of Applied Polymer Science, 2009, 111, 1799-1804.	2.6	36
106	Novel NIR-absorbing conjugated polymers for efficient polymer solar cells: effect of alkyl chain length on device performance. Journal of Materials Chemistry, 2009, 19, 2199.	6.7	189
107	Novel spiro-fluorenes from tandem radical addition for liquid crystalline monodisperse conjugated oligomers. Journal of Materials Chemistry, 2009, 19, 399-408.	6.7	8
108	Phase Transition Behavior and Molecular Orientation of Oligo(9,9′â€dioctylfluoreneâ€ <i>alt</i> â€bithiophene). Macromolecular Chemistry and Physics, 2008, 209, 1806-1813.	2.2	5

#	Article	IF	CITATIONS
109	White Electroluminescence from a Starâ€ike Polymer with an Orange Emissive Core and Four Blue Emissive Arms. Advanced Materials, 2008, 20, 1357-1362.	21.0	115
110	Highly efficient red electroluminescent polymers with dopant/host system and molecular dispersion feature: polyfluorene as the host and 2,1,3-benzothiadiazole derivatives as the red dopant. Journal of Materials Chemistry, 2008, 18, 319-327.	6.7	33
111	p-p isotype organic heterojunction and ambipolar field-effect transistors. Applied Physics Letters, 2008, 93, 113303.	3.3	22
112	Crystal Packing Motifs of Oligothiophenes End-Capped with N-Containing Aryls. Crystal Growth and Design, 2008, 8, 2352-2358.	3.0	8
113	Blue electroluminescent polymers with dopant–host systems and molecular dispersion features: polyfluorene as the deep blue host and 1,8-naphthalimide derivative units as the light blue dopants. Journal of Materials Chemistry, 2008, 18, 1659.	6.7	33
114	Green light-emitting polyfluorenes with improved color purity incorporated with 4,7-diphenyl-2,1,3-benzothiadiazole moieties. Journal of Materials Chemistry, 2007, 17, 2832.	6.7	48
115	Synthesis and characterization of white-light-emitting polyfluorenes containing orange phosphorescent moieties in the side chain. Journal of Polymer Science Part A, 2007, 45, 1746-1757.	2.3	57
116	Highly efficient green light emitting polyfluorene incorporated with 4-diphenylamino-1,8-naphthalimide as green dopant. Journal of Materials Chemistry, 2006, 16, 1431.	6.7	69
117	Synthesis, Crystal Structure, Spectroscopy and Electroluminescence of Zinc(II) Complexes Containing Bidentate 2-(2-pyridyl)quinoline Derivative Ligands. Transition Metal Chemistry, 2006, 31, 639-644.	1.4	16
118	Novel thiophene-aryl co-oligomers for organic thin film transistors. Journal of Materials Chemistry, 2005, 15, 3026.	6.7	66
119	Morphology and thermal properties of conductive polyaniline/polyamide composite films. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2531-2538.	2.1	13
120	Synthesis and characterization of alternating copolymers containing triphenylamine as hole-transporting units. Journal of Polymer Science Part A, 2001, 39, 3278-3286.	2.3	22
121	Catalytic oxidization polymerization of aniline in an H2O2?Fe2+ system. Journal of Applied Polymer Science, 1999, 72, 1077-1084.	2.6	63
122	Transport property of polyaniline and its molecular weight dependence. Science in China Series B: Chemistry, 1998, 41, 432-435.	0.8	2
123	NMR study of doped poly(2,5-dimethylaniline). Macromolecular Rapid Communications, 1997, 18, 73-81.	3.9	3