
Benoit J Van Den Eynde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4786999/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of chalcogen bioisosteric replacement in a series of heterocyclic inhibitors of tryptophan 2,3-dioxygenase. European Journal of Medicinal Chemistry, 2022, 227, 113892.	5.5	8
2	Functional Differences between Proteasome Subtypes. Cells, 2022, 11, 421.	4.1	22
3	Navigating Critical Challenges Associated with Immunopeptidomics-Based Detection of Proteasomal Spliced Peptide Candidates. Cancer Immunology Research, 2022, 10, 275-284.	3.4	14
4	Targeting an alternate Wilms' tumor antigen 1 peptide bypasses immunoproteasome dependency. Science Translational Medicine, 2022, 14, eabg8070.	12.4	12
5	T Cell–Mediated Targeted Delivery of Anti–PD-L1 Nanobody Overcomes Poor Antibody Penetration and Improves PD-L1 Blocking at the Tumor Site. Cancer Immunology Research, 2022, 10, 713-727.	3.4	4
6	New Insights into the Mechanisms of Proteasome-Mediated Peptide Splicing Learned from Comparing Splicing Efficiency by Different Proteasome Subtypes. Journal of Immunology, 2022, 208, 2817-2828.	0.8	1
7	TGFβ1 neutralization displays therapeutic efficacy through both an immunomodulatory and a non-immune tumor-intrinsic mechanism. , 2021, 9, e001798.		13
8	Tryptophanemia is controlled by a tryptophan-sensing mechanism ubiquitinating tryptophan 2,3-dioxygenase. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	5
9	Arid5a: A Missing Link between EMT and Tumoral Immune Resistance. Cancer Immunology Research, 2021, 9, 854.	3.4	2
10	Rational Design of Original Fused-Cycle Selective Inhibitors of Tryptophan 2,3-Dioxygenase. Journal of Medicinal Chemistry, 2021, 64, 10967-10980.	6.4	9
11	Heterologous prime-boost vaccination targeting MAGE-type antigens promotes tumor T-cell infiltration and improves checkpoint blockade therapy. , 2021, 9, e003218.		10
12	Knock-in of murine Calr del52 induces essential thrombocythemia with slow-rising dominance in mice and reveals key role of Calr exon 9 in cardiac development. Leukemia, 2020, 34, 510-521.	7.2	36
13	Is There a Clinical Future for IDO1 Inhibitors After the Failure of Epacadostat in Melanoma?. Annual Review of Cancer Biology, 2020, 4, 241-256.	4.5	119
14	Efficiency of the four proteasome subtypes to degrade ubiquitinated or oxidized proteins. Scientific Reports, 2020, 10, 15765.	3.3	29
15	Inhibition of Tryptophan-Dioxygenase Activity Increases the Antitumor Efficacy of Immune Checkpoint Inhibitors. Cancer Immunology Research, 2020, 8, 32-45.	3.4	48
16	Tryptophan 2,3-Dioxygenase Expression Identified in Human Hepatocellular Carcinoma Cells and in Intratumoral Pericytes of Most Cancers. Cancer Immunology Research, 2020, 8, 19-31.	3.4	41
17	Tryptophan 2,3-Dioxygenase Expression Identified in Murine Decidual Stromal Cells Is Not Essential for Feto-Maternal Tolerance. Frontiers in Immunology, 2020, 11, 601759.	4.8	5
18	Preclinical murine tumor models: A structural and functional perspective. ELife, 2020, 9, .	6.0	81

#	Article	IF	CITATIONS
19	Identifying Antigens Recognized by Cytolytic T Lymphocytes on Tumors. Methods in Molecular Biology, 2019, 1988, 159-186.	0.9	0
20	Influenza A Virus Infection Induces Viral and Cellular Defective Ribosomal Products Encoded by Alternative Reading Frames. Journal of Immunology, 2019, 202, 3370-3380.	0.8	23
21	Induction of tryptophan 2,3-dioxygenase expression in human monocytic leukemia/lymphoma cell lines THP-1 and U937. International Journal of Tryptophan Research, 2019, 12, 117864691989173.	2.3	7
22	The Vacuolar Pathway of Long Peptide Cross-Presentation Can Be TAP Dependent. Journal of Immunology, 2019, 202, 451-459.	0.8	19
23	Apoptosis of tumor-infiltrating T lymphocytes: a new immune checkpoint mechanism. Cancer Immunology, Immunotherapy, 2019, 68, 835-847.	4.2	94
24	Assessment of TILs, IDO-1, and PD-L1 in resected non-small cell lung cancer: an immunohistochemical study with clinicopathological and prognostic implications. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2019, 474, 159-168.	2.8	27
25	Production of spliced peptides by the proteasome. Molecular Immunology, 2019, 113, 93-102.	2.2	22
26	Characterization of the Selective Indoleamine 2,3-Dioxygenase-1 (IDO1) Catalytic Inhibitor EOS200271/PF-06840003 Supports IDO1 as a Critical Resistance Mechanism to PD-(L)1 Blockade Therapy. Molecular Cancer Therapeutics, 2018, 17, 2530-2542.	4.1	59
27	Loss of IDO1 Expression From Human Pancreatic Î ² -Cells Precedes Their Destruction During the Development of Type 1 Diabetes. Diabetes, 2018, 67, 1858-1866.	0.6	42
28	Cytosolic Processing Governs TAP-Independent Presentation of a Critical Melanoma Antigen. Journal of Immunology, 2018, 201, 1875-1888.	0.8	20
29	Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1in juvenile diabetes. JCI Insight, 2018, 3, .	5.0	51
30	Integrating Next-Generation Dendritic Cell Vaccines into the Current Cancer Immunotherapy Landscape. Trends in Immunology, 2017, 38, 577-593.	6.8	276
31	Microenvironment Tumor Metabolic Interactions Highlighted by qMSI: Application to the Tryptophan-Kynurenine Pathway in Immuno-Oncology. SLAS Discovery, 2017, 22, 1182-1192.	2.7	21
32	Learning from the Proteasome How To Fine-Tune Cancer Immunotherapy. Trends in Cancer, 2017, 3, 726-741.	7.4	23
33	Constitutive IDO1 Expression in Human Tumors Is Driven by Cyclooxygenase-2 and Mediates Intrinsic Immune Resistance. Cancer Immunology Research, 2017, 5, 695-709.	3.4	136
34	Peptide splicing by the proteasome. Journal of Biological Chemistry, 2017, 292, 21170-21179.	3.4	50
35	Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes. Nature Communications, 2017, 8, 1404.	12.8	177
36	The Human Vaccines Project: A roadmap for cancer vaccine development. Science Translational Medicine, 2016, 8, 334ps9.	12.4	162

BENOIT J VAN DEN EYNDE

#	Article	IF	CITATIONS
37	Long-Peptide Cross-Presentation by Human Dendritic Cells Occurs in Vacuoles by Peptide Exchange on Nascent MHC Class I Molecules. Journal of Immunology, 2016, 196, 1711-1720.	0.8	40
38	Fully automated radiosynthesis of N1-[18F]fluoroethyl-tryptophan and study of its biological activity as a new potential substrate for indoleamine 2,3-dioxygenase PET imaging. Nuclear Medicine and Biology, 2016, 43, 379-389.	0.6	28
39	Cytokines in systemic juvenile idiopathic arthritis and haemophagocytic lymphohistiocytosis: tipping the balance between interleukin-18 and interferon-γ. Rheumatology, 2015, 54, 1507-1517.	1.9	125
40	Deciphering preferential interactions within supramolecular protein complexes: the proteasome case. Molecular Systems Biology, 2015, 11, 771.	7.2	75
41	Tryptophan-Degrading Enzymes in Tumoral Immune Resistance. Frontiers in Immunology, 2015, 6, 34.	4.8	201
42	Extensive Profiling of the Expression of the Indoleamine 2,3-Dioxygenase 1 Protein in Normal and Tumoral Human Tissues. Cancer Immunology Research, 2015, 3, 161-172.	3.4	292
43	The capture proteasome assay: A method to measure proteasome activity in vitro. Analytical Biochemistry, 2015, 482, 7-15.	2.4	8
44	The capture proteasome assay (CAPA) to evaluate subtype-specific proteasome inhibitors. Data in Brief, 2015, 4, 146-151.	1.0	8
45	Expression profile of the human IDO1 protein, a cancer drug target involved in tumoral immune resistance. Oncolmmunology, 2015, 4, e1003012.	4.6	21
46	Tumoral Immune Resistance Mediated by Enzymes That Degrade Tryptophan. Cancer Immunology Research, 2015, 3, 978-985.	3.4	87
47	Proteasome Subtypes and Regulators in the Processing of Antigenic Peptides Presented by Class I Molecules of the Major Histocompatibility Complex. Biomolecules, 2014, 4, 994-1025.	4.0	69
48	A Spliced Antigenic Peptide Comprising a Single Spliced Amino Acid Is Produced in the Proteasome by Reverse Splicing of a Longer Peptide Fragment followed by Trimming. Journal of Immunology, 2014, 192, 1962-1971.	0.8	72
49	Endosomal compartment: Also a dock for MHC class I peptide loading. European Journal of Immunology, 2014, 44, 650-653.	2.9	4
50	Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nature Reviews Cancer, 2014, 14, 135-146.	28.4	925
51	Detailed analysis and follow-up studies of a high-throughput screening for indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. European Journal of Medicinal Chemistry, 2014, 84, 284-301.	5.5	63
52	Indoleamine 2,3-dioxygenase inhibitory activity of derivatives of marine alkaloid tsitsikammamine A. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 47-54.	2.2	26
53	Identifying Source Proteins for MHC Class I-Presented Peptides. Methods in Molecular Biology, 2013, 960, 187-207.	0.9	1
54	Database of T cell-defined human tumor antigens: the 2013 update. Cancer Immunity, 2013, 13, 15.	3.2	107

BENOIT J VAN DEN EYNDE

#	Article	IF	CITATIONS
55	Analysis of the Processing of Seven Human Tumor Antigens by Intermediate Proteasomes. Journal of Immunology, 2012, 189, 3538-3547.	0.8	67
56	Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2497-2502.	7.1	498
57	Minimal Tolerance to a Tumor Antigen Encoded by a Cancer-Germline Gene. Journal of Immunology, 2012, 188, 111-121.	0.8	25
58	Rational Design of 4-Aryl-1,2,3-Triazoles for Indoleamine 2,3-Dioxygenase 1 Inhibition. Journal of Medicinal Chemistry, 2012, 55, 5270-5290.	6.4	153
59	Proteasome subtypes and the processing of tumor antigens: increasing antigenic diversity. Current Opinion in Immunology, 2012, 24, 84-91.	5.5	59
60	Tryptophan Catabolism in Cancer: Beyond IDO and Tryptophan Depletion. Cancer Research, 2012, 72, 5435-5440.	0.9	591
61	Epithelial-Mesenchymal-Transition-Like and TGFÎ ² Pathways Associated with Autochthonous Inflammatory Melanoma Development in Mice. PLoS ONE, 2012, 7, e49419.	2.5	34
62	Inefficient exogenous loading of a tapasinâ€dependent peptide onto <scp>HLA</scp> â€ <scp>B</scp> *44:02 can be improved by acid treatment or fixation of target cells. European Journal of Immunology, 2012, 42, 1417-1428.	2.9	7
63	Tryptophan 2,3-Dioxygenase (TDO) Inhibitors. 3-(2-(Pyridyl)ethenyl)indoles as Potential Anticancer Immunomodulators. Journal of Medicinal Chemistry, 2011, 54, 5320-5334.	6.4	151
64	Insights into the processing of MHC class I ligands gained from the study of human tumor epitopes. Cellular and Molecular Life Sciences, 2011, 68, 1503-1520.	5.4	37
65	Differences in the production of spliced antigenic peptides by the standard proteasome and the immunoproteasome. European Journal of Immunology, 2011, 41, 39-46.	2.9	70
66	A MAGEâ€C2 antigenic peptide processed by the immunoproteasome is recognized by cytolytic T cells isolated from a melanoma patient after successful immunotherapy. International Journal of Cancer, 2011, 129, 2427-2434.	5.1	49
67	Discovery and preliminary SARs of keto-indoles as novel indoleamine 2,3-dioxygenase (IDO) inhibitors. European Journal of Medicinal Chemistry, 2011, 46, 3058-3065.	5.5	57
68	An antigenic peptide produced by reverse splicing and double asparagine deamidation. Proceedings of the United States of America, 2011, 108, E323-31.	7.1	123
69	Antigen Spreading Contributes to MAGE Vaccination-Induced Regression of Melanoma Metastases. Cancer Research, 2011, 71, 1253-1262.	0.9	176
70	Production of an antigenic peptide by insulin-degrading enzyme. Nature Immunology, 2010, 11, 449-454.	14.5	67
71	Tumor-Initiated Inflammation Overrides Protective Adaptive Immunity in an Induced Melanoma Model in Mice. Cancer Research, 2010, 70, 3515-3525.	0.9	54
72	Two abundant proteasome subtypes that uniquely process some antigens presented by HLA class I molecules. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18599-18604.	7.1	192

BENOIT J VAN DEN EYNDE

#	Article	IF	CITATIONS
73	Splicing of Distant Peptide Fragments Occurs in the Proteasome by Transpeptidation and Produces the Spliced Antigenic Peptide Derived from Fibroblast Growth Factor-5. Journal of Immunology, 2010, 184, 3016-3024.	0.8	84
74	Endoplasmic Reticulum Export, Subcellular Distribution, and Fibril Formation by Pmel17 Require an Intact N-terminal Domain Junction. Journal of Biological Chemistry, 2010, 285, 16166-16183.	3.4	25
75	Rational Design of Indoleamine 2,3-Dioxygenase Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 1172-1189.	6.4	146
76	The Cytoplasmic Peptidase DPP9 Is Rate-limiting for Degradation of Proline-containing Peptides. Journal of Biological Chemistry, 2009, 284, 27211-27219.	3.4	95
77	<i>C19orf48</i> Encodes a Minor Histocompatibility Antigen Recognized by CD8+ Cytotoxic T Cells from Renal Cell Carcinoma Patients. Clinical Cancer Research, 2008, 14, 5260-5269.	7.0	59
78	Comparative Prime-Boost Vaccinations Using Semliki Forest Virus, Adenovirus, and ALVAC Vectors Demonstrate Differences in the Generation of a Protective Central Memory CTL Response against the P815 Tumor. Journal of Immunology, 2007, 178, 6761-6769.	0.8	56
79	Tumoral immune resistance based on tryptophan degradation by indoleamine 2,3-dioxygenase. International Congress Series, 2007, 1304, 274-277.	0.2	3
80	HUMAN T CELL RESPONSES AGAINST MELANOMA. Annual Review of Immunology, 2006, 24, 175-208.	21.8	596
81	An Inducible Mouse Model of Melanoma Expressing a Defined Tumor Antigen. Cancer Research, 2006, 66, 3278-3286.	0.9	47
82	Processing of Tumor-Associated Antigen by the Proteasomes of Dendritic Cells Controls In vivo T-Cell Responses. Cancer Research, 2006, 66, 5461-5468.	0.9	60
83	Processing and presentation of tumor antigens and vaccination strategies. Current Opinion in Immunology, 2006, 18, 98-104.	5.5	76
84	An Antigen Produced by Splicing of Noncontiguous Peptides in the Reverse Order. Science, 2006, 313, 1444-1447.	12.6	187
85	Destructive Cleavage of Antigenic Peptides Either by the Immunoproteasome or by the Standard Proteasome Results in Differential Antigen Presentation. Journal of Immunology, 2006, 176, 1053-1061.	0.8	141
86	A peptide derived from melanocytic protein gp100 and presented by HLA-B35 is recognized by autologous cytolytic T lymphocytes on melanoma cells. Tissue Antigens, 2005, 65, 156-162.	1.0	20
87	Conformational Restraints and Flexibility of 14-Meric Peptides in Complex with HLA-B*3501. Journal of Immunology, 2004, 173, 5610-5616.	0.8	74
88	Thymocyte-Intrinsic Genetic Factors Influence CD8 T Cell Lineage Commitment and Affect Selection of a Tumor-Reactive TCR. Journal of Immunology, 2004, 172, 5069-5077.	0.8	19
89	An Antigenic Peptide Produced by Peptide Splicing in the Proteasome. Science, 2004, 304, 587-590.	12.6	297
90	Two new tumor-specific antigenic peptides encoded by geneMAGE-C2 and presented to cytolytic T lymphocytes by HLA-A2. International Journal of Cancer, 2004, 109, 698-702.	5.1	57

#	Article	IF	CITATIONS
91	Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nature Medicine, 2003, 9, 1269-1274.	30.7	2,035
92	The Final N-Terminal Trimming of a Subaminoterminal Proline-Containing HLA Class I-Restricted Antigenic Peptide in the Cytosol Is Mediated by Two Peptidases. Journal of Immunology, 2002, 169, 4161-4171.	0.8	83
93	The Production of a New MAGE-3 Peptide Presented to Cytolytic T Lymphocytes by HLA-B40 Requires the Immunoproteasome. Journal of Experimental Medicine, 2002, 195, 391-399.	8.5	107
94	TNF-Mediated Toxicity After Massive Induction of Specific CD8+ T Cells Following Immunization of Mice with a Tumor-Specific Peptide. Journal of Immunology, 2002, 169, 3053-3060.	0.8	15
95	Tumorâ€specific shared antigenic peptides recognized by human T cells. Immunological Reviews, 2002, 188, 51-64.	6.0	356
96	Identification of a new peptide recognized by autologous cytolytic T lymphocytes on a human melanoma. Cancer Immunity, 2002, 2, 9.	3.2	14
97	Differential processing of class-I-restricted epitopes by the standard proteasome and the immunoproteasome. Current Opinion in Immunology, 2001, 13, 147-153.	5.5	188
98	An Alternative Open Reading Frame of the Human Macrophage Colony-Stimulating Factor Gene Is Independently Translated and Codes for an Antigenic Peptide of 14 Amino Acids Recognized by Tumor-Infiltrating Cd8 T Lymphocytes. Journal of Experimental Medicine, 2001, 193, 1189-1198.	8.5	98
99	Processing of Some Antigens by the Standard Proteasome but Not by the Immunoproteasome Results in Poor Presentation by Dendritic Cells. Immunity, 2000, 12, 107-117.	14.3	374
100	A New Antigen Recognized by Cytolytic T Lymphocytes on a Human Kidney Tumor Results from Reverse Strand Transcription. Journal of Experimental Medicine, 1999, 190, 1793-1800.	8.5	121
101	A tyrosinase peptide presented by HLA-B35 is recognized on a human melanoma by autologous cytotoxic T lymphocytes. , 1999, 83, 755-759.		24
102	The shared tumor-specific antigen encoded by mouse geneP1A is a target not only for cytolytic T lymphocytes but also for tumor rejection. European Journal of Immunology, 1998, 28, 4010-4019.	2.9	62
103	The shared tumor-specific antigen encoded by mouse gene P1A is a target not only for cytolytic T lymphocytes but also for tumor rejection. , 1998, 28, 4010.		1
104	The expression of mouse geneP1A in testis does not prevent safe induction of cytolytic T cells against a P1A-encoded tumor antigen. , 1997, 70, 349-356.		64
105	A new gene coding for an antigen recognized by autologous cytolytic T lymphocytes on a human renal carcinoma. Immunogenetics, 1996, 44, 323-330.	2.4	158
106	Mouse tumor rejection antigens P815A and P815B : Two epitopes carried by a single peptide. European Journal of Immunology, 1992, 22, 2283-2288.	2.9	94