
## **Garry Duffy**

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4786832/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs. Biomaterials, 2010, 31, 9232-9243.                                                                                             | 11.4 | 204       |
| 2  | Innovative Collagen Nanoâ€Hydroxyapatite Scaffolds Offer a Highly Efficient Nonâ€Viral Gene Delivery<br>Platform for Stem Cellâ€Mediated Bone Formation. Advanced Materials, 2012, 24, 749-754.                                                             | 21.0 | 182       |
| 3  | Drug and cell delivery for cardiac regeneration. Advanced Drug Delivery Reviews, 2015, 84, 85-106.                                                                                                                                                          | 13.7 | 170       |
| 4  | Combinatorial Gene Therapy Accelerates Bone Regeneration: Nonâ€Viral Dual Delivery of VEGF and BMP2<br>in a Collagenâ€Nanohydroxyapatite Scaffold. Advanced Healthcare Materials, 2015, 4, 223-227.                                                         | 7.6  | 151       |
| 5  | Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials, 2014, 35, 6850-6858.                                                                                                          | 11.4 | 140       |
| 6  | Bone Marrow–Derived Mesenchymal Stem Cells Promote Angiogenic Processes in a Time- and<br>Dose-Dependent Manner <i>In Vitro</i> . Tissue Engineering - Part A, 2009, 15, 2459-2470.                                                                         | 3.1  | 127       |
| 7  | The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks<br>results in functional vascularization of a collagen–glycosaminoglycan scaffold in vivo. Acta<br>Biomaterialia, 2013, 9, 9303-9316.                          | 8.3  | 111       |
| 8  | Supramolecular Hydrogels with Reverse Thermal Gelation Properties from (Oligo)tyrosine<br>Containing Block Copolymers. Biomacromolecules, 2013, 14, 200-206.                                                                                                | 5.4  | 103       |
| 9  | Delivering Nucleicâ€Acid Based Nanomedicines on Biomaterial Scaffolds for Orthopedic Tissue Repair:<br>Challenges, Progress and Future Perspectives. Advanced Materials, 2016, 28, 5447-5469.                                                               | 21.0 | 95        |
| 10 | The development of non-viral gene-activated matrices for bone regeneration using polyethyleneimine<br>(PEI) and collagen-based scaffolds. Journal of Controlled Release, 2012, 158, 304-311.                                                                | 9.9  | 93        |
| 11 | Mechanical characterization of a customized decellularized scaffold for vascular tissue engineering.<br>Journal of the Mechanical Behavior of Biomedical Materials, 2012, 8, 58-70.                                                                         | 3.1  | 85        |
| 12 | A novel collagen-nanohydroxyapatite microRNA-activated scaffold for tissue engineering applications<br>capable of efficient delivery of both miR-mimics and antagomiRs to human mesenchymal stem cells.<br>Journal of Controlled Release, 2015, 200, 42-51. | 9.9  | 85        |
| 13 | Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems.<br>International Journal of Pharmaceutics, 2016, 515, 132-164.                                                                                                      | 5.2  | 83        |
| 14 | Non-invasive marker-independent high content analysis of a microphysiological human<br>pancreas-on-a-chip model. Matrix Biology, 2020, 85-86, 205-220.                                                                                                      | 3.6  | 72        |
| 15 | Sustained release of targeted cardiac therapy with a replenishable implanted epicardial reservoir.<br>Nature Biomedical Engineering, 2018, 2, 416-428.                                                                                                      | 22.5 | 70        |
| 16 | Towards in vitro vascularisation of collagen-GAG scaffolds. , 2011, 21, 15-30.                                                                                                                                                                              |      | 70        |
| 17 | Effect of collagenâ€glycosaminoglycan scaffold pore size on matrix mineralization and cellular<br>behavior in different cell types. Journal of Biomedical Materials Research - Part A, 2016, 104, 291-304.                                                  | 4.0  | 68        |
| 18 | Next generation bone tissue engineering: non-viral miR-133a inhibition using<br>collagen-nanohydroxyapatite scaffolds rapidly enhances osteogenesis. Scientific Reports, 2016, 6,<br>27941.                                                                 | 3.3  | 68        |

| #  | Article                                                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | RANKL and OPG activity is regulated by injury size in networks of osteocyte-like cells. Bone, 2011, 48, 182-188.                                                                                                                                                                                   | 2.9  | 66        |
| 20 | Development of a thermoresponsive chitosan gel combined with human mesenchymal stem cells and<br>desferrioxamine as a multimodal pro-angiogenic therapeutic for the treatment of critical limb<br>ischaemia. Journal of Controlled Release, 2012, 161, 73-80.                                      | 9.9  | 64        |
| 21 | Hyperthermiaâ€Induced Drug Delivery from Thermosensitive Liposomes Encapsulated in an Injectable<br>Hydrogel for Local Chemotherapy. Advanced Healthcare Materials, 2014, 3, 854-859.                                                                                                              | 7.6  | 64        |
| 22 | Biomaterialâ€Enhanced Cell and Drug Delivery: Lessons Learned in the Cardiac Field and Future<br>Perspectives. Advanced Materials, 2016, 28, 5648-5661.                                                                                                                                            | 21.0 | 63        |
| 23 | A stimuli responsive liposome loaded hydrogel provides flexible on-demand release of therapeutic agents. Acta Biomaterialia, 2017, 48, 110-119.                                                                                                                                                    | 8.3  | 57        |
| 24 | High levels of ephrinB2 over-expression increases the osteogenic differentiation of human<br>mesenchymal stem cells and promotes enhanced cell mediated mineralisation in a<br>polyethyleneimine-ephrinB2 gene-activated matrix. Journal of Controlled Release, 2013, 165, 173-182.                | 9.9  | 52        |
| 25 | Temporal and Spatial Changes in Cartilage-Matrix-Specific Gene Expression in Mesenchymal Stem Cells<br>in Response to Dynamic Compression. Tissue Engineering - Part A, 2011, 17, 3085-3093.                                                                                                       | 3.1  | 51        |
| 26 | An actuatable soft reservoir modulates host foreign body response. Science Robotics, 2019, 4, .                                                                                                                                                                                                    | 17.6 | 49        |
| 27 | Gene-Eluting Stents: Comparison of Adenoviral and Adeno- Associated Viral Gene Delivery to the<br>Blood Vessel Wall In Vivo. Human Gene Therapy, 2006, 17, 741-750.                                                                                                                                | 2.7  | 48        |
| 28 | An injectable alginate/extra cellular matrix (ECM) hydrogel towards acellular treatment of heart<br>failure. Drug Delivery and Translational Research, 2019, 9, 1-13.                                                                                                                              | 5.8  | 47        |
| 29 | Orchestrating osteogenic differentiation of mesenchymal stem cells—identification of placental<br>growth factor as a mechanosensitive gene with a pro-osteogenic role. Stem Cells, 2013, 31, 2420-2431.                                                                                            | 3.2  | 43        |
| 30 | A collagen cardiac patch incorporating alginate microparticles permits the controlled release of hepatocyte growth factor and insulin-like growth factor-1 to enhance cardiac stem cell migration and proliferation. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e384-e394. | 2.7  | 42        |
| 31 | Non-viral gene-activated matrices. Organogenesis, 2013, 9, 22-28.                                                                                                                                                                                                                                  | 1.2  | 40        |
| 32 | Controlled Heterotypic Pseudo-Islet Assembly of Human β-Cells and Human Umbilical Vein Endothelial<br>Cells Using Magnetic Levitation. Tissue Engineering - Part A, 2020, 26, 387-399.                                                                                                             | 3.1  | 39        |
| 33 | Harnessing an Inhibitory Role of miR-16 in Osteogenesis by Human Mesenchymal Stem Cells for<br>Advanced Scaffold-Based Bone Tissue Engineering. Tissue Engineering - Part A, 2019, 25, 24-33.                                                                                                      | 3.1  | 37        |
| 34 | Mesenchymal Stem Cells Overexpressing Ephrin-B2 Rapidly Adopt an Early Endothelial Phenotype with<br>Simultaneous Reduction of Osteogenic Potential. Tissue Engineering - Part A, 2010, 16, 2755-2768.                                                                                             | 3.1  | 36        |
| 35 | Optimum Parameters for Freeze-Drying Decellularized Arterial Scaffolds. Tissue Engineering - Part C:<br>Methods, 2013, 19, 981-990.                                                                                                                                                                | 2.1  | 35        |
| 36 | Medical devices, smart drug delivery, wearables and technology for the treatment of Diabetes<br>Mellitus. Advanced Drug Delivery Reviews, 2022, 185, 114280.                                                                                                                                       | 13.7 | 32        |

| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Towards Alternative Approaches for Coupling of a Soft Robotic Sleeve to the Heart. Annals of<br>Biomedical Engineering, 2018, 46, 1534-1547.                                                                                                        | 2.5  | 31        |
| 38 | Rapid bone repair with the recruitment of CD206+M2-like macrophages using non-viral scaffold-mediated miR-133a inhibition of host cells. Acta Biomaterialia, 2020, 109, 267-279.                                                                    | 8.3  | 30        |
| 39 | Advances in polymeric islet cell encapsulation technologies to limit the foreign body response and provide immunoisolation. Current Opinion in Pharmacology, 2017, 36, 66-71.                                                                       | 3.5  | 27        |
| 40 | Hydrogels in adipose tissue engineering—Potential application in postâ€mastectomy breast regeneration.<br>Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 2234-2247.                                                             | 2.7  | 27        |
| 41 | The pre-vascularisation of a collagen-chondroitin sulphate scaffold using human amniotic<br>fluid-derived stem cells to enhance and stabilise endothelial cell-mediated vessel formation. Acta<br>Biomaterialia, 2015, 26, 263-273.                 | 8.3  | 26        |
| 42 | A bioresorbable biomaterial carrier and passive stabilization device to improve heart function post-myocardial infarction. Materials Science and Engineering C, 2019, 103, 109751.                                                                  | 7.3  | 24        |
| 43 | Design Considerations for Macroencapsulation Devices for Stem Cell Derived Islets for the Treatment of Type 1 Diabetes. Advanced Science, 2021, 8, e2100820.                                                                                        | 11.2 | 24        |
| 44 | Device-Based Solutions to Improve Cardiac Physiology and Hemodynamics in HeartÂFailure With<br>Preserved EjectionÂFraction. JACC Basic To Translational Science, 2021, 6, 772-795.                                                                  | 4.1  | 24        |
| 45 | Enhanced delivery of microRNA mimics to cardiomyocytes using ultrasound responsive microbubbles reverses hypertrophy in an in-vitro model. Technology and Health Care, 2014, 22, 37-51.                                                             | 1.2  | 23        |
| 46 | Resveratrol significantly improves cell survival in comparison to dexrazoxane and carvedilol in a<br>h9c2 model of doxorubicin induced cardiotoxicity. Biomedicine and Pharmacotherapy, 2021, 140, 111702.                                          | 5.6  | 23        |
| 47 | Pre-culture of mesenchymal stem cells within RGD-modified hyaluronic acid hydrogel improves their resilience to ischaemic conditions. Acta Biomaterialia, 2020, 107, 78-90.                                                                         | 8.3  | 22        |
| 48 | Olfactory Derived Stem Cells Delivered in a Biphasic Conduit Promote Peripheral Nerve Repair In Vivo.<br>Stem Cells Translational Medicine, 2017, 6, 1894-1904.                                                                                     | 3.3  | 21        |
| 49 | Direct UV-Triggered Thiol–ene Cross-Linking of Electrospun Polyester Fibers from Unsaturated<br>Poly(macrolactone)s and Their Drug Loading by Solvent Swelling. Biomacromolecules, 2017, 18,<br>4292-4298.                                          | 5.4  | 21        |
| 50 | Sustained Release of Vascular Endothelial Growth Factor from<br>Poly(ε-caprolactone-PEG-ε-caprolactone)- <i>b</i> -Poly( <scp> </scp> -lactide) Multiblock Copolymer<br>Microspheres. ACS Omega, 2019, 4, 11481-11492.                              | 3.5  | 21        |
| 51 | Development of a nanomedicine-loaded hydrogel for sustained delivery of an angiogenic growth factor to the ischaemic myocardium. Drug Delivery and Translational Research, 2020, 10, 440-454.                                                       | 5.8  | 21        |
| 52 | The application of a thermoresponsive chitosan/βâ€GP gel to enhance cell repopulation of decellularized vascular scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1700-1710.                           | 3.4  | 20        |
| 53 | Fabrication of biodegradable textile scaffold based on hydrophobized hyaluronic acid. International<br>Journal of Biological Macromolecules, 2017, 95, 903-909.                                                                                     | 7.5  | 19        |
| 54 | <u>A</u> dvanced <u>M</u> aterial <u>Cath</u> eter (AMCath), a minimally invasive endocardial catheter for the delivery of fast-gelling covalently cross-linked hyaluronic acid hydrogels. Journal of Biomaterials Applications, 2018, 33, 681-692. | 2.4  | 19        |

| #  | Article                                                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Hydrogels: 3D Drug Delivery Systems for Nanoparticles and Extracellular Vesicles. Biomedicines, 2021,<br>9, 1694.                                                                                                                                                                                                      | 3.2  | 19        |
| 56 | Encapsulation of cardiac stem cells in superoxide dismutase-loaded alginate prevents<br>doxorubicin-mediated toxicity. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 302-311.                                                                                                                      | 2.7  | 18        |
| 57 | Vascular Endothelial Growth Factor–Releasing Microspheres Based on<br>Poly(ε-Caprolactone-PEC-ε-Caprolactone)-b-Poly(L-Lactide) Multiblock Copolymers Incorporated in a<br>Three-Dimensional Printed Poly(Dimethylsiloxane) Cell Macroencapsulation Device. Journal of<br>Pharmaceutical Sciences. 2020, 109, 863-870. | 3.3  | 15        |
| 58 | Collagen and Endothelial Cell Coculture Improves β-Cell Functionality and Rescues Pancreatic<br>Extracellular Matrix. Tissue Engineering - Part A, 2021, 27, 977-991.                                                                                                                                                  | 3.1  | 15        |
| 59 | Nidogenâ€1 Mitigates Ischemia and Promotes Tissue Survival and Regeneration. Advanced Science, 2021, 8, 2002500.                                                                                                                                                                                                       | 11.2 | 15        |
| 60 | Additive Manufacturing of Multiâ€6cale Porous Soft Tissue Implants That Encourage Vascularization and Tissue Ingrowth. Advanced Healthcare Materials, 2021, 10, e2100229.                                                                                                                                              | 7.6  | 14        |
| 61 | Implantable Therapeutic Reservoir Systems for Diverse Clinical Applications in Large Animal Models.<br>Advanced Healthcare Materials, 2020, 9, e2000305.                                                                                                                                                               | 7.6  | 13        |
| 62 | An Experimental Investigation of the Effect of Mechanical and Biochemical Stimuli on Cell Migration<br>Within a Decellularized Vascular Construct. Annals of Biomedical Engineering, 2014, 42, 2029-2038.                                                                                                              | 2.5  | 12        |
| 63 | Insulin-like growth factor-1 (IGF-1) poly (lactic-co-glycolic acid) (PLGA) microparticles – development, characterisation, and <i>in vitro</i> assessment of bioactivity for cardiac applications. Journal of Microencapsulation, 2019, 36, 267-277.                                                                   | 2.8  | 10        |
| 64 | An <i>in vitro</i> investigation to assess procedure parameters for injecting therapeutic hydrogels<br>into the myocardium. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105,<br>2618-2629.                                                                                           | 3.4  | 9         |
| 65 | Optimization of cell growth on palmitoylâ€hyaluronan knitted scaffolds developed for tissue<br>engineering applications. Journal of Biomedical Materials Research - Part A, 2018, 106, 1488-1499.                                                                                                                      | 4.0  | 9         |
| 66 | Development of a Sustained Release Nano-In-Gel Delivery System for the Chemotactic and Angiogenic<br>Growth Factor Stromal-Derived Factor 1α. Pharmaceutics, 2020, 12, 513.                                                                                                                                            | 4.5  | 9         |
| 67 | Translational Studies on the Potential of a VEGF Nanoparticle-Loaded Hyaluronic Acid Hydrogel.<br>Pharmaceutics, 2021, 13, 779.                                                                                                                                                                                        | 4.5  | 9         |
| 68 | Fluorescence lifetime metabolic mapping of hypoxiaâ€induced damage in pancreatic pseudoâ€islets. Journal<br>of Biophotonics, 2020, 13, e202000375.                                                                                                                                                                     | 2.3  | 8         |
| 69 | RGD-decorated cholesterol stabilized polyplexes for targeted siRNA delivery to glioblastoma cells.<br>Drug Delivery and Translational Research, 2019, 9, 679-693.                                                                                                                                                      | 5.8  | 7         |
| 70 | The Foreign Body Response to an Implantable Therapeutic Reservoir in a Diabetic Rodent Model. Tissue<br>Engineering - Part C: Methods, 2021, 27, 515-528.                                                                                                                                                              | 2.1  | 7         |
| 71 | Towards the use of localised delivery strategies to counteract cancer therapy–induced cardiotoxicities. Drug Delivery and Translational Research, 2021, 11, 1924-1942.                                                                                                                                                 | 5.8  | 7         |
| 72 | Assessing the Effects of VEGF Releasing Microspheres on the Angiogenic and Foreign Body Response to a 3D Printed Silicone-Based Macroencapsulation Device. Pharmaceutics, 2021, 13, 2077.                                                                                                                              | 4.5  | 7         |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Investigating the effect of hypoxic culture on the endothelial differentiation of human amniotic fluidâ€derived stem cells. Journal of Anatomy, 2015, 227, 767-780.                                                             | 1.5 | 6         |
| 74 | Mesenchymal stem cells to augment therapeutic angiogenesis in hind-limb ischemia models: how important is their source?. Stem Cell Research and Therapy, 2013, 4, 131.                                                          | 5.5 | 5         |
| 75 | The Scissors Model of Microcrack Detection in Bone: Work in Progress. Materials Research Society<br>Symposia Proceedings, 2010, 1274, 1.                                                                                        | 0.1 | 3         |
| 76 | Injection techniques for bulk cell seeding decellularised vascular scaffolds. International Journal of<br>Nano and Biomaterials, 2012, 4, 96.                                                                                   | 0.1 | 3         |
| 77 | Enhancing medial layer recellularization of tissue-engineered blood vessels using radial microchannels. Regenerative Medicine, 2019, 14, 1013-1028.                                                                             | 1.7 | 3         |
| 78 | A versatile technique for high-resolution three-dimensional imaging of human arterial segmentsÂusing<br>microcomputed tomography. JVS Vascular Science, 2021, 2, 13-19.                                                         | 1.1 | 3         |
| 79 | Developing a morphomics framework to optimize implant site-specific design parameters for islet macroencapsulation devices. Journal of the Royal Society Interface, 2021, 18, 20210673.                                         | 3.4 | 3         |
| 80 | Therapeutic Resevoirs: Implantable Therapeutic Reservoir Systems for Diverse Clinical Applications in<br>Large Animal Models (Adv. Healthcare Mater. 11/2020). Advanced Healthcare Materials, 2020, 9, 2070035.                 | 7.6 | 2         |
| 81 | Cardiac responses to biomaterials. , 2020, , 573-599.                                                                                                                                                                           |     | 2         |
| 82 | A Thermoresponsive Chitosan/β-Glycerophosphate Hydrogel for Minimally Invasive Treatment of<br>Critical Limb Ischaemia. Polymers, 2021, 13, 3568.                                                                               | 4.5 | 2         |
| 83 | Spatiotemporal delivery of small molecule therapeutics using a thermosensitive liposome loaded hydrogel. Journal of Controlled Release, 2015, 213, e28-e29.                                                                     | 9.9 | 1         |
| 84 | Enhancing Delivery of Smallâ€Molecule―and Cellâ€Based Therapies for Ovarian Cancer Using Advanced<br>Delivery Strategies. Advanced Therapeutics, 2020, 3, 2000144.                                                              | 3.2 | 1         |
| 85 | P.123: Establishing the Controlled Delivery of VEGF Using a Hydrogel Loaded Soft Robotic Drug<br>Delivery System With the Aim to Prevascularise Implant Site for Islet Transplantation.<br>Transplantation, 2021, 105, S47-S48. | 1.0 | 1         |
| 86 | A method of characterising the complex anatomy of vascular occlusions and <scp>3D</scp> printing biomimetic analogues. Journal of Anatomy, 2022, , .                                                                            | 1.5 | 1         |
| 87 | Towards a Clinically Applicable Tissue Engineered Vascular Graft. , 2013, , .                                                                                                                                                   |     | 0         |
| 88 | ANGI-08. TARGETING THE RhoGEF BETA-PIX TO ENHANCE THE ACTIVITY OF BEVACIZUMAB IN GLIOBLASTOMA:<br>A NANOPARTICLE MEDIATED GENE SILENCING APPROACH. Neuro-Oncology, 2018, 20, vi29-vi30.                                         | 1.2 | 0         |
| 89 | In Vitro Vascularization: Tissue Engineering Constructs. , 0, , 4043-4062.                                                                                                                                                      |     | Ο         |
|    |                                                                                                                                                                                                                                 |     |           |

90 In vitroVascularization: Tissue Engineering Constructs. , 2017, , 723-742.

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | P.122: Development of an Oxygen Durability Model to Overcome Hypoxia in Encapsulated Islets Within a Functionalized Oxygenated Biomaterial. Transplantation, 2021, 105, S46-S47. | 1.0 | Ο         |
| 92 | P.120: Additive Manufactured Macroencapsulation Devices for Islet Cell Replacement Therapy.<br>Transplantation, 2021, 105, S45-S45.                                              | 1.0 | 0         |