Jeffrey M Gimble

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4784847/publications.pdf Version: 2024-02-01

	9775	6128
26,783	73	159
citations	h-index	g-index
243	243	27241
docs citations	times ranked	citing authors
	citations 243	26,78373citationsh-index243243

IFFEDEV M CIMBLE

#	Article	IF	CITATIONS
1	Hybrid adipose graft materials synthesized from chemically modified adipose extracellular matrix. Journal of Biomedical Materials Research - Part A, 2022, 110, 156-163.	2.1	3
2	Adipose-Derived Stromal/Stem Cell Response to Tumors and Wounds: Evaluation of Patient Age. Stem Cells and Development, 2022, 31, 579-592.	1.1	4
3	Discussion: The Importance of Protecting the Structure and Viability of Adipose Tissue for Fat Grafting. Plastic and Reconstructive Surgery, 2022, 149, 1369-1369.	0.7	Ο
4	Developing a clinical grade human adipose decellularized biomaterial. Biomaterials and Biosystems, 2022, 7, 100053.	1.0	0
5	Breast Cancer Reconstruction: Design Criteria for a Humanized Microphysiological System. Tissue Engineering - Part A, 2021, 27, 479-488.	1.6	2
6	Human Adipose-Derived Stromal/Stem Cell Culture and Analysis Methods for Adipose Tissue Modeling In Vitro: A Systematic Review. Cells, 2021, 10, 1378.	1.8	10
7	CD146 expression regulates osteochondrogenic differentiation of human adiposeâ€derived stem cells. Journal of Cellular Physiology, 2021, , .	2.0	3
8	Human adipose-derived stromal/stem cells expressing doublecortin improve cartilage repair in rabbits and monkeys. Npj Regenerative Medicine, 2021, 6, 82.	2.5	1
9	Adenosine triphosphate enhances osteoblast differentiation of rat dental pulp stem cells via the PLC–IP ₃ pathway and intracellular Ca ²⁺ signaling. Journal of Cellular Physiology, 2020, 235, 1723-1732.	2.0	11
10	Clinical Translational Potential in Skin Wound Regeneration for Adipose-Derived, Blood-Derived, and Cellulose Materials: Cells, Exosomes, and Hydrogels. Biomolecules, 2020, 10, 1373.	1.8	26
11	Tissue engineered autologous cartilage-bone grafts for temporomandibular joint regeneration. Science Translational Medicine, 2020, 12, .	5.8	37
12	Non-toxic freezing media to retain the stem cell reserves in adipose tissues. Cryobiology, 2020, 96, 137-144.	0.3	5
13	Proteomic characterization of a trauma-based rat model of heterotopic ossification identifies interactive signaling networks as potential therapeutic targets. Journal of Proteomics, 2020, 226, 103907.	1.2	1
14	Combination of a Gellan Gum-Based Hydrogel With Cell Therapy for the Treatment of Cervical Spinal Cord Injury. Frontiers in Bioengineering and Biotechnology, 2020, 8, 984.	2.0	10
15	Characterization and Proteomic Analysis of Decellularized Adipose Tissue Hydrogels Derived from Lean and Overweight/Obese Human Donors. Advanced Biology, 2020, 4, e2000124.	3.0	14
16	Shining a new light onto adipose stromal/stem cells. Acta Physiologica, 2020, 230, e13536.	1.8	1
17	Human Adipose Derived Cells in Two- and Three-Dimensional Cultures: Functional Validation of an In Vitro Fat Construct. Stem Cells International, 2020, 2020, 1-14.	1.2	17
18	Fat-On-A-Chip Models for Research and Discovery in Obesity and Its Metabolic Comorbidities. Tissue Engineering - Part B: Reviews, 2020, 26, 586-595.	2.5	32

#	Article	IF	CITATIONS
19	Cutaneous wound healing in aged, high fat diet-induced obese female or male C57BL/6 mice. Aging, 2020, 12, 7066-7111.	1.4	18
20	Transcriptomic Profiling of Adipose Derived Stem Cells Undergoing Osteogenesis by RNA-Seq. Scientific Reports, 2019, 9, 11800.	1.6	31
21	Human Platelet Lysate as a Functional Substitute for Fetal Bovine Serum in the Culture of Human Adipose Derived Stromal/Stem Cells. Cells, 2019, 8, 724.	1.8	41
22	Decellularized Adipose Tissue Hydrogel Promotes Bone Regeneration in Critical-Sized Mouse Femoral Defect Model. Frontiers in Bioengineering and Biotechnology, 2019, 7, 211.	2.0	42
23	Decellularized Adipose Tissue: Biochemical Composition, in vivo Analysis and Potential Clinical Applications. Advances in Experimental Medicine and Biology, 2019, 1212, 57-70.	0.8	38
24	Human Adipose-Derived Hydrogel Characterization Based on <i>In Vitro</i> ASC Biocompatibility and Differentiation. Stem Cells International, 2019, 2019, 1-13.	1.2	23
25	Adipose tissue mitochondrial dysfunction in human obesity is linked to a specific DNA methylation signature in adipose-derived stem cells. International Journal of Obesity, 2019, 43, 1256-1268.	1.6	47
26	Isolation of Human Adipose-Derived Stem Cells from Lipoaspirates. Methods in Molecular Biology, 2018, 1773, 155-165.	0.4	44
27	Comparative proteomic analyses of human adipose extracellular matrices decellularized using alternative procedures. Journal of Biomedical Materials Research - Part A, 2018, 106, 2481-2493.	2.1	37
28	Therapeutic Applications for Adipose-Derived Stem Cells in Wound Healing and Tissue Engineering. Current Stem Cell Reports, 2018, 4, 127-137.	0.7	12
29	Bone Marrow Adipocyte Developmental Origin and Biology. Current Osteoporosis Reports, 2018, 16, 312-319.	1.5	27
30	Effect of Cryopreservation on Human Adipose Tissue and Isolated Stromal Vascular Fraction Cells: In Vitro and In Vivo Analyses. Plastic and Reconstructive Surgery, 2018, 141, 232e-243e.	0.7	20
31	Co-Transplantation of Adipose Tissue-Derived Stromal Cells and Olfactory Ensheathing Cells for Spinal Cord Injury Repair. Stem Cells, 2018, 36, 696-708.	1.4	48
32	Sandwiched White Adipose Tissue: A Microphysiological System of Primary Human Adipose Tissue. Tissue Engineering - Part C: Methods, 2018, 24, 135-145.	1.1	25
33	Hybrid Syntheticâ€Biological Hydrogel System for Adipose Tissue Regeneration. Macromolecular Bioscience, 2018, 18, e1800122.	2.1	24
34	Influence of passage number on the impact of the secretome of adipose tissue stem cells on neural survival, neurodifferentiation and axonal growth. Biochimie, 2018, 155, 119-128.	1.3	20
35	Effects of Decade Long Freezing Storage on Adipose Derived Stem Cells Functionality. Scientific Reports, 2018, 8, 8162.	1.6	38
36	Concise Review: Using Fat to Fight Disease: A Systematic Review of Nonhomologous Adipose-Derived Stromal/Stem Cell Therapies. Stem Cells, 2018, 36, 1311-1328.	1.4	115

#	Article	IF	CITATIONS
37	Gender and age-related cell compositional differences in C57BL/6 murine adipose tissue stromal vascular fraction. Adipocyte, 2018, 7, 183-189.	1.3	16
38	Adipose Derived Cells and Tissues for Regenerative Medicine. ACS Biomaterials Science and Engineering, 2017, 3, 1477-1482.	2.6	12
39	Inducing Heat Shock Proteins Enhances the Stemness of Frozen–Thawed Adipose Tissue-Derived Stem Cells. Stem Cells and Development, 2017, 26, 608-616.	1.1	25
40	Characterization of an Acellular Scaffold for a Tissue Engineering Approach to the Nipple-Areolar Complex Reconstruction. Cells Tissues Organs, 2017, 203, 183-193.	1.3	43
41	Foxn1 and Mmpâ€9 expression in intact skin and during excisional wound repair in young, adult, and old C57Bl/6 mice. Wound Repair and Regeneration, 2017, 25, 248-259.	1.5	19
42	Adipose Stromal Vascular Fraction-Mediated Improvements at Late-Stage Disease in a Murine Model of Multiple Sclerosis. Stem Cells, 2017, 35, 532-544.	1.4	42
43	Isolation and Primary Culture of Adult Human Adipose-derived Stromal/Stem Cells. Bio-protocol, 2017, 7, e2161.	0.2	2
44	Serially Transplanted Nonpericytic CD146â^' Adipose Stromal/Stem Cells in Silk Bioscaffolds Regenerate Adipose Tissue In Vivo. Stem Cells, 2016, 34, 1097-1111.	1.4	23
45	The Relative Functionality of Freshly Isolated and Cryopreserved Human Adipose-Derived Stromal/Stem Cells. Cells Tissues Organs, 2016, 201, 436-444.	1.3	13
46	Combination of a peptide-modified gellan gum hydrogel with cell therapy in a lumbar spinal cord injury animal model. Biomaterials, 2016, 105, 38-51.	5.7	68
47	Cryopreserved Adipose Tissue-Derived Stromal/Stem Cells: Potential for Applications in Clinic and Therapy. Advances in Experimental Medicine and Biology, 2016, 951, 137-146.	0.8	16
48	Tissue-engineered autologous grafts for facial bone reconstruction. Science Translational Medicine, 2016, 8, 343ra83.	5.8	187
49	Obesity inhibits the osteogenic differentiation of human adipose-derived stem cells. Journal of Translational Medicine, 2016, 14, 27.	1.8	26
50	Human Adipose Stromal/Stem Cells from Obese Donors Show Reduced Efficacy in Halting Disease Progression in the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis. Stem Cells, 2016, 34, 614-626.	1.4	68
51	Vasopressin-induced Ca2+ signals in human adipose-derived stem cells. Cell Calcium, 2016, 59, 135-139.	1.1	11
52	Mechanisms of metabolism, aging and obesity. Biochimie, 2016, 124, 1-2.	1.3	2
53	Strain differences in the attenuation of bone accrual in a young growing mouse model of insulin resistance. Journal of Bone and Mineral Metabolism, 2016, 34, 380-394.	1.3	17
54	Human Adipose Tissue-Derived Stromal/Stem Cells Promote Migration and Early Metastasis of Head and Neck Cancer Xenografts. Aesthetic Surgery Journal, 2016, 36, 93-104.	0.9	29

#	Article	IF	CITATIONS
55	Platelet-Derived Growth Factor BB Enhances Osteogenesis of Adipose-Derived But Not Bone Marrow-Derived Mesenchymal Stromal/Stem Cells. Stem Cells, 2015, 33, 2773-2784.	1.4	61
56	Analysis of the Pro- and Anti-Inflammatory Cytokines Secreted by Adult Stem Cells during Differentiation. Stem Cells International, 2015, 2015, 1-12.	1.2	21
57	Arginine vasopressin inhibits adipogenesis in human adipose-derived stem cells. Molecular and Cellular Endocrinology, 2015, 406, 1-9.	1.6	13
58	Characterization of a Murine Pressure Ulcer Model to Assess Efficacy of Adipose-derived Stromal Cells. Plastic and Reconstructive Surgery - Global Open, 2015, 3, e334.	0.3	20
59	Adipose Stromal Cells Repair Pressure Ulcers in Both Young and Elderly Mice: Potential Role of Adipogenesis in Skin Repair. Stem Cells Translational Medicine, 2015, 4, 632-642.	1.6	62
60	Stromal cells and stem cells in clinical bone regeneration. Nature Reviews Endocrinology, 2015, 11, 140-150.	4.3	342
61	Modulation of mesenchymal stem cell behavior by nano- and micro-sized \hat{l}^2 -tricalcium phosphate particles in suspension and composite structures. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	7
62	Leptin produced by obese adipose stromal/stem cells enhances proliferation and metastasis of estrogen receptor positive breast cancers. Breast Cancer Research, 2015, 17, 112.	2.2	152
63	Photoactivated miR-148b–nanoparticle conjugates improve closure of critical size mouse calvarial defects. Acta Biomaterialia, 2015, 12, 166-173.	4.1	53
64	Concise Review: The Obesity Cancer Paradigm: Exploration of the Interactions and Crosstalk with Adipose Stem Cells. Stem Cells, 2015, 33, 318-326.	1.4	76
65	Transplantation of Autologous Adipose Stem Cells Lacks Therapeutic Efficacy in the Experimental Autoimmune Encephalomyelitis Model. PLoS ONE, 2014, 9, e85007.	1.1	46
66	Human Adipose Tissue-Derived Stromal/Stem Cells Promote Migration and Early Metastasis of Triple Negative Breast Cancer Xenografts. PLoS ONE, 2014, 9, e89595.	1.1	150
67	Comparison of Stromal/Stem Cells Isolated from Human Omental and Subcutaneous Adipose Depots: Differentiation and Immunophenotypic Characterization. Cells Tissues Organs, 2014, 200, 204-211.	1.3	10
68	Histamine-induced Ca2+ signalling is mediated by TRPM4 channels in human adipose-derived stem cells. Biochemical Journal, 2014, 463, 123-134.	1.7	19
69	Adipose-Derived Stromal Cells Promote Allograft Tolerance Induction. Stem Cells Translational Medicine, 2014, 3, 1444-1450.	1.6	31
70	Novel daidzein analogs enhance osteogenic activity of bone marrow-derived mesenchymal stem cells and adipose-derived stromal/stem cells through estrogen receptor dependent and independent mechanisms. Stem Cell Research and Therapy, 2014, 5, 105.	2.4	38
71	Burned to the Bone. Science Translational Medicine, 2014, 6, 255fs37.	5.8	13
72	<i>InÂvitro</i> human adipose-derived stromal/stem cells osteogenesis in akermanite:poly-É›-caprolactone scaffolds. Journal of Biomaterials Applications, 2014, 28, 998-1007.	1.2	8

#	Article	IF	CITATIONS
73	Antimicrobial biocompatible bioscaffolds for orthopaedic implants. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 386-395.	1.3	26
74	Comparison of infrapatellar and subcutaneous adipose tissue stromal vascular fraction and stromal/stem cells in osteoarthritic subjects. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 757-762.	1.3	33
75	Human adipose-derived cells can serve as a single-cell source for the <i>in vitro</i> cultivation of vascularized bone grafts. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 629-639.	1.3	23
76	Glycemic control is impaired in the evening in prediabetes through multiple diurnal rhythms. Journal of Diabetes and Its Complications, 2014, 28, 836-843.	1.2	42
77	Interleukin 6 Mediates the Therapeutic Effects of Adipose-Derived Stromal/Stem Cells in Lipopolysaccharide-Induced Acute Lung Injury. Stem Cells, 2014, 32, 1616-1628.	1.4	40
78	A xenogeneicâ€free bioreactor system for the clinicalâ€scale expansion of human mesenchymal stem/stromal cells. Biotechnology and Bioengineering, 2014, 111, 1116-1127.	1.7	129
79	Oncostatin M Is Produced in Adipose Tissue and Is Regulated in Conditions of Obesity and Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E217-E225.	1.8	56
80	Undifferentiated human adiposeâ€derived stromal/stem cells loaded onto wetâ€spun starch–polycaprolactone scaffolds enhance bone regeneration: Nude mice calvarial defect <i>in vivo</i> study. Journal of Biomedical Materials Research - Part A, 2014, 102, 3102-3111.	2.1	46
81	Bisphenol A enhances adipogenic differentiation of human adipose stromal/stem cells. Journal of Molecular Endocrinology, 2014, 53, 345-353.	1.1	101
82	Adipocytes and the Regulation of Bone Remodeling: A Balancing Act. Calcified Tissue International, 2014, 94, 78-87.	1.5	54
83	Human Adipose-Derived Stromal/Stem Cell Isolation, Culture, and Osteogenic Differentiation. Methods in Enzymology, 2014, 538, 67-88.	0.4	11
84	Human adipose-derived mesenchymal stromal cell pigment epithelium–derived factor cytotherapy modifies genetic and epigenetic profiles of prostate cancer cells. Cytotherapy, 2014, 16, 346-356.	0.3	15
85	Impact of low oxygen on the secretome of human adipose-derived stromal/stem cell primary cultures. Biochimie, 2013, 95, 2286-2296.	1.3	37
86	Secretome of mesenchymal stem/stromal cells in regenerative medicine. Biochimie, 2013, 95, 2195.	1.3	29
87	Development and Characterization of a <scp>PHB</scp> â€ <scp>HV</scp> â€based 3 <scp>D</scp> Scaffold for a Tissue Engineering and Cellâ€therapy Combinatorial Approach for Spinal Cord Injury Regeneration. Macromolecular Bioscience, 2013, 13, 1576-1592.	2.1	47
88	Methylcellulose Based Thermally Reversible Hydrogel System for Tissue Engineering Applications. Cells, 2013, 2, 460-475.	1.8	69
89	Age of the Donor Reduces the Ability of Human Adipose-Derived Stem Cells to Alleviate Symptoms in the Experimental Autoimmune Encephalomyelitis Mouse Model. Stem Cells Translational Medicine, 2013, 2, 797-807.	1.6	72
90	miR-148b–Nanoparticle conjugates for light mediated osteogenesis ofÂhuman adipose stromal/stem cells. Biomaterials. 2013. 34. 7799-7810.	5.7	80

#	Article	IF	CITATIONS
91	Direct Head-To-Head Comparison of Cationic Liposome-Mediated Gene Delivery to Mesenchymal Stem/Stromal Cells of Different Human Sources: A Comprehensive Study. Human Gene Therapy Methods, 2013, 24, 38-48.	2.1	24
92	Evolution and future prospects of adipose-derived immunomodulatory cell therapeutics. Expert Review of Clinical Immunology, 2013, 9, 175-184.	1.3	41
93	Platelet-Derived Growth Factor and Spatiotemporal Cues Induce Development of Vascularized Bone Tissue by Adipose-Derived Stem Cells. Tissue Engineering - Part A, 2013, 19, 2076-2086.	1.6	52
94	Human mesenchymal stem cells from the umbilical cord matrix: Successful isolation and ex vivo expansion using serumâ€∤xenoâ€free culture media. Biotechnology Journal, 2013, 8, 448-458.	1.8	60
95	Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a jointÂstatement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular TherapyÂ(ISCT). Cvtotherapy, 2013, 15, 641-648.	0.3	1,469
96	A non-enzymatic method for isolating human adipose tissue-derived stromal stem cells. Cytotherapy, 2013, 15, 979-985.	0.3	106
97	Administration of Murine Stromal Vascular Fraction Ameliorates Chronic Experimental Autoimmune Encephalomyelitis. Stem Cells Translational Medicine, 2013, 2, 789-796.	1.6	66
98	Adipose-derived stromal/stem cells. Organogenesis, 2013, 9, 3-10.	0.4	90
99	Discussion. Plastic and Reconstructive Surgery, 2013, 132, 859-860.	0.7	3
100	A novel mouse model of metastatic thyroid carcinoma using human adipose tissue-derived stromal/stem cells. Anticancer Research, 2013, 33, 4213-7.	0.5	8
101	In vitro chondrogenic differentiation of human adipose-derived stem cells with silk scaffolds. Journal of Tissue Engineering, 2012, 3, 204173141246640.	2.3	22
102	The relationship between adipose tissue and bone metabolism. Clinical Biochemistry, 2012, 45, 874-879.	0.8	81
103	Obesityâ€Associated Dysregulation of Calpastatin and MMPâ€15 in Adiposeâ€Derived Stromal Cells Results in their Enhanced Invasion. Stem Cells, 2012, 30, 2774-2783.	1.4	37
104	Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomaterialia, 2012, 8, 2483-2492.	4.1	210
105	Relationship between abdominal fat and bone mineral density in white and African American adults. Bone, 2012, 50, 576-579.	1.4	66
106	Vascular Morphogenesis of Adipose-Derived Stem Cells is Mediated by Heterotypic Cell-Cell Interactions. Tissue Engineering - Part A, 2012, 18, 1729-1740.	1.6	33
107	Stem Cells Bleed into Brown Fat. Cell Metabolism, 2012, 16, 288-289.	7.2	3
108	Impact of hypoxia and long-term cultivation on the genomic stability and mitochondrial performance of ex vivo expanded human stem/stromal cells. Stem Cell Research, 2012, 9, 225-236.	0.3	51

#	Article	IF	CITATIONS
109	Human adipose-derived cells: an update on the transition to clinical translation. Regenerative Medicine, 2012, 7, 225-235.	0.8	147
110	Tools for the identification of bioactives impacting the metabolic syndrome: screening of a botanical extract library using subcutaneous and visceral human adipose-derived stem cell-based assays. Journal of Nutritional Biochemistry, 2012, 23, 519-525.	1.9	6
111	True or false: All genes are rhythmic. Annals of Medicine, 2011, 43, 1-12.	1.5	33
112	Evidence Suggesting that the Cardiomyocyte Circadian Clock Modulates Responsiveness of the Heart to Hypertrophic Stimuli in Mice. Chronobiology International, 2011, 28, 187-203.	0.9	87
113	Proteome of Human Subcutaneous Adipose Tissue Stromal Vascular Fraction Cells versus Mature Adipocytes Based on DIGE. Journal of Proteome Research, 2011, 10, 1519-1527.	1.8	28
114	Prospective influences of circadian clocks in adipose tissue and metabolism. Nature Reviews Endocrinology, 2011, 7, 98-107.	4.3	38
115	Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12295-12300.	3.3	209
116	Use of animal protein-free products for passaging adherent human adipose-derived stromal/stem cells. Cytotherapy, 2011, 13, 594-597.	0.3	31
117	Effect of intrastriatal mesenchymal stromal cell injection on progression of a murine model of Krabbe disease. Behavioural Brain Research, 2011, 225, 415-425.	1.2	15
118	Prospecting for Adipose Progenitor Cell Biomarkers: Biopanning for Gold with InÂVivo Phage Display. Cell Stem Cell, 2011, 9, 1-2.	5.2	6
119	Adipose tissue as a stem cell source for musculoskeletal regeneration. Frontiers in Bioscience - Scholar, 2011, S3, 69-81.	0.8	47
120	Ageâ€related changes in mesenchymal stem cells derived from rhesus macaque bone marrow. Aging Cell, 2011, 10, 66-79.	3.0	142
121	Mesenchymal Stromal Cells: Past, Present, and Future. Veterinary Surgery, 2011, 40, 129-139.	0.5	62
122	Metabolism: What Causes the Gut's Circadian Instincts?. Current Biology, 2011, 21, R624-R626.	1.8	4
123	Small RNA Sequencing and Functional Characterization Reveals MicroRNA-143 Tumor Suppressor Activity in Liposarcoma. Cancer Research, 2011, 71, 5659-5669.	0.4	106
124	Pharmacokinetic pilot study of the antiangiogenic activity of standardized platycodi radix. Advances in Therapy, 2011, 28, 857-865.	1.3	7
125	Mesenchymal Lineage Stem Cells Have Pronounced Anti-Inflammatory Effects in the Twitcher Mouse Model of Krabbe's Disease. Stem Cells, 2011, 29, 67-77.	1.4	64
126	Concise Review: Adipose-Derived Stromal Vascular Fraction Cells and Stem Cells: Let's Not Get Lost in Translation. Stem Cells, 2011, 29, 749-754.	1.4	212

#	Article	IF	CITATIONS
127	Leptin's balancing act between bone and fat. Journal of Bone and Mineral Research, 2011, 26, 1694-1697.	3.1	19
128	Impaired expansion and multipotentiality of adult stromal cells in a rat chronic alcohol abuse model. Alcohol, 2011, 45, 393-402.	0.8	8
129	Lipolytic Function of Adipocyte/Endothelial Cocultures. Tissue Engineering - Part A, 2011, 17, 1437-1444.	1.6	25
130	Circadian rhythms in adipose tissue. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 554-561.	1.3	22
131	The Effect of Storage Time on Adipose-Derived Stem Cell Recovery from Human Lipoaspirates. Cells Tissues Organs, 2011, 194, 494-500.	1.3	48
132	Adipose-Derived Stromal/Stem Cells (ASC) in Regenerative Medicine: Pharmaceutical Applications. Current Pharmaceutical Design, 2011, 17, 332-339.	0.9	47
133	Clinical and preclinical translation of cell-based therapies using adipose tissue-derived cells. Stem Cell Research and Therapy, 2010, 1, 19.	2.4	224
134	Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts <i>in vitro</i> . Journal of Cellular and Molecular Medicine, 2010, 14, 982-991.	1.6	141
135	Differentiated human adiposeâ€derived stem cells exhibit hepatogenic capability in vitro and in vivo. Journal of Cellular Physiology, 2010, 225, 429-436.	2.0	33
136	Cryopreservation of stromal vascular fraction of adipose tissue in a serum-free freezing medium. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 224-232.	1.3	71
137	Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nature Protocols, 2010, 5, 1294-1311.	5.5	383
138	Central nervous system melanocortinâ€3 receptors are required for synchronizing metabolism during entrainment to restricted feeding during the light cycle. FASEB Journal, 2010, 24, 862-872.	0.2	43
139	Bone Grafts Engineered from Human Adipose-Derived Stem Cells in Perfusion Bioreactor Culture. Tissue Engineering - Part A, 2010, 16, 179-189.	1.6	157
140	Adipose Tissue Engineering for Soft Tissue Regeneration. Tissue Engineering - Part B: Reviews, 2010, 16, 413-426.	2.5	212
141	Phases I–III Clinical Trials Using Adult Stem Cells. Stem Cells International, 2010, 2010, 1-2.	1.2	12
142	Adipose Tissue Derived Stem Cells Secretome: Soluble Factors and Their Roles in Regenerative Medicine. Current Stem Cell Research and Therapy, 2010, 5, 103-110.	0.6	497
143	Effects of Hyperinsulinemia on Lipolytic Function of Three-Dimensional Adipocyte/Endothelial Co-Cultures. Tissue Engineering - Part C: Methods, 2010, 16, 1157-1165.	1.1	28
144	Comparative Epigenomic Analysis of Murine and Human Adipogenesis. Cell, 2010, 143, 156-169.	13.5	460

0

#	Article	IF	CITATIONS
145	Yield and characterization of subcutaneous human adipose-derived stem cells by flow cytometric and adipogenic mRNA analyzes. Cytotherapy, 2010, 12, 538-546.	0.3	111
146	Obesity Increases the Production of Proinflammatory Mediators from Adipose Tissue T Cells and Compromises TCR Repertoire Diversity: Implications for Systemic Inflammation and Insulin Resistance. Journal of Immunology, 2010, 185, 1836-1845.	0.4	381
147	<i>In Vitro</i> 3D Model for Human Vascularized Adipose Tissue. Tissue Engineering - Part A, 2009, 15, 2227-2236.	1.6	127
148	Immunogenicity of Allogeneic Adipose-Derived Stem Cells in a Rat Spinal Fusion Model. Tissue Engineering - Part A, 2009, 15, 2677-2686.	1.6	70
149	Fat circadian biology. Journal of Applied Physiology, 2009, 107, 1629-1637.	1.2	42
150	The 4th dimension and adult stem cells: Can timing be everything?. Journal of Cellular Biochemistry, 2009, 107, 569-578.	1.2	28
151	Acceleration of spinal fusion using syngeneic and allogeneic adult adipose derived stem cells in a rat model. Journal of Orthopaedic Research, 2009, 27, 366-373.	1.2	60
152	Comparative chondrogenesis of human cell sources in 3D scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 348-360.	1.3	116
153	Culture effects of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) on cryopreserved human adipose-derived stromal/stem cell proliferation and adipogenesis. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 553-561.	1.3	99
154	Flow cytometric and immunohistochemical detection of in vivo BrdU-labeled cells in mouse fat depots. Biochemical and Biophysical Research Communications, 2009, 378, 539-544.	1.0	26
155	Control of Stem Cell Fate by Physical Interactions with the Extracellular Matrix. Cell Stem Cell, 2009, 5, 17-26.	5.2	1,669
156	Human Proteinpedia enables sharing of human protein data. Nature Biotechnology, 2008, 26, 164-167.	9.4	155
157	Comparison of Chondrogenic Potential in Equine Mesenchymal Stromal Cells Derived from Adipose Tissue and Bone Marrow. Veterinary Surgery, 2008, 37, 713-724.	0.5	175
158	IFATS Collection: Stem Cell Antigen-1-Positive Ear Mesenchymal Stem Cells Display Enhanced Adipogenic Potential. Stem Cells, 2008, 26, 2666-2673.	1.4	16
159	Circadian mechanisms in murine and human bone marrow mesenchymal stem cells following dexamethasone exposure. Bone, 2008, 42, 861-870.	1.4	57
160	In vitro Differentiation Potential of Mesenchymal Stem Cells. Transfusion Medicine and Hemotherapy, 2008, 35, 228-238.	0.7	110
161	The Melanocortin-3 Receptor Is Required for Entrainment to Meal Intake. Journal of Neuroscience, 2008, 28, 12946-12955.	1.7	120

162 Fat Stem Cells. , 2008, , 143-174.

#	Article	IF	CITATIONS
163	Digital Signal Processing Reveals Circadian Baseline Oscillation in Majority of Mammalian Genes. PLoS Computational Biology, 2007, 3, e120.	1.5	45
164	Gene expression profiling reveals a regulatory role for RORα and RORÎ ³ in phase I and phase II metabolism. Physiological Genomics, 2007, 31, 281-294.	1.0	178
165	Food entrainment of circadian gene expression altered in PPARαâ^'/â^ brown fat and heart. Biochemical and Biophysical Research Communications, 2007, 360, 828-833.	1.0	26
166	Secretome of Primary Cultures of Human Adipose-derived Stem Cells. Molecular and Cellular Proteomics, 2007, 6, 18-28.	2.5	189
167	Effects of prolyl hydroxylase inhibitors on adipogenesis and hypoxia inducible factor 1 alpha levels under normoxic conditions. Journal of Cellular Biochemistry, 2007, 101, 1545-1557.	1.2	32
168	Cytokine profile of human adipose-derived stem cells: Expression of angiogenic, hematopoietic, and pro-inflammatory factors. Journal of Cellular Physiology, 2007, 212, 702-709.	2.0	571
169	Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials, 2007, 28, 5280-5290.	5.7	340
170	Cryopreservation characteristics of adipose-derived stem cells: maintenance of differentiation potential and viability. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 322-324.	1.3	103
171	Characterization of Equine Adipose Tissueâ€Derived Stromal Cells: Adipogenic and Osteogenic Capacity and Comparison with Bone Marrowâ€Derived Mesenchymal Stromal Cells. Veterinary Surgery, 2007, 36, 613-622.	O.5	213
172	Circadian Oscillation of Gene Expression in Murine Calvarial Bone. Journal of Bone and Mineral Research, 2007, 22, 357-365.	3.1	91
173	Adipose-Derived Stem Cells for Regenerative Medicine. Circulation Research, 2007, 100, 1249-1260.	2.0	2,054
174	Cell Growth Characteristics and Differentiation Frequency of Adherent Equine Bone Marrow?Derived Mesenchymal Stromal Cells: Adipogenic and Osteogenic Capacity. Veterinary Surgery, 2006, 35, 601-610.	0.5	175
175	Immunophenotype of Human Adipose-Derived Cells: Temporal Changes in Stromal-Associated and Stem Cell-Associated Markers. Stem Cells, 2006, 24, 376-385.	1.4	1,007
176	The Immunogenicity of Human Adipose-Derived Cells: Temporal Changes In Vitro. Stem Cells, 2006, 24, 1246-1253.	1.4	490
177	Playing with bone and fat. Journal of Cellular Biochemistry, 2006, 98, 251-266.	1.2	471
178	Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. Journal of Cellular Physiology, 2006, 206, 229-237.	2.0	434
179	Circadian Clocks Are Resounding in Peripheral Tissues. PLoS Computational Biology, 2006, 2, e16.	1.5	117
180	Characterization of Peripheral Circadian Clocks in Adipose Tissues. Diabetes, 2006, 55, 962-970.	0.3	443

#	Article	IF	CITATIONS
181	Effect of Various Freezing Parameters on the Immediate Post-Thaw Membrane Integrity of Adipose Tissue Derived Adult Stem Cells. Biotechnology Progress, 2005, 21, 1511-1524.	1.3	65
182	Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells. Journal of Cellular Physiology, 2005, 204, 184-191.	2.0	200
183	Transport phenomena during freezing of adipose tissue derived adult stem cells. Biotechnology and Bioengineering, 2005, 92, 372-383.	1.7	45
184	Proteomic Analysis of Primary Cultures of Human Adipose-derived Stem Cells. Molecular and Cellular Proteomics, 2005, 4, 731-740.	2.5	130
185	Structural and Functional Consequences of Mitochondrial Biogenesis in Human Adipocytesin Vitro. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 6650-6656.	1.8	123
186	Human Adipose-Derived Adult Stem Cells Produce Osteoid in Vivo. Tissue Engineering, 2004, 10, 371-380.	4.9	304
187	Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials, 2004, 25, 3211-3222.	5.7	728
188	Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Current Opinion in Pharmacology, 2004, 4, 290-294.	1.7	326
189	Mechanical Signals as Regulators of Stem Cell Fate. Current Topics in Developmental Biology, 2004, 60, 91-126.	1.0	111
190	Adipose-derived adult stem cells for cartilage tissue engineering. Biorheology, 2004, 41, 389-99.	1.2	143
191	Differentiation Potential of Adipose Derived Adult Stem (ADAS) Cells. Current Topics in Developmental Biology, 2003, 58, 137-160.	1.0	234
192	Effects of Transforming Growth Factor \hat{I}^21 and Dexamethasone on the Growth and Chondrogenic Differentiation of Adipose-Derived Stromal Cells. Tissue Engineering, 2003, 9, 1301-1312.	4.9	187
193	Adipose tissue-derived therapeutics. Expert Opinion on Biological Therapy, 2003, 3, 705-713.	1.4	163
194	Chondrogenic Potential of Adipose Tissue-Derived Stromal Cells in Vitro and in Vivo. Biochemical and Biophysical Research Communications, 2002, 290, 763-769.	1.0	626
195	Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochemical and Biophysical Research Communications, 2002, 294, 371-379.	1.0	717
196	Pretreatment with troglitazone decreases lethality during endotoxemia in mice. Journal of Endotoxin Research, 2002, 8, 307-314.	2.5	14
197	Extracellular Matrix Mineralization and Osteoblast Gene Expression by Human Adipose Tissue–Derived Stromal Cells. Tissue Engineering, 2001, 7, 729-741.	4.9	474
198	Differential Expression of Signal Transducers and Activators of Transcription during Human Adipogenesis. Biochemical and Biophysical Research Communications, 2001, 281, 907-912.	1.0	57

#	Article	IF	CITATIONS
199	Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous. Journal of Cellular Biochemistry, 2001, 81, 312-319.	1.2	232
200	Surface protein characterization of human adipose tissue-derived stromal cells. Journal of Cellular Physiology, 2001, 189, 54-63.	2.0	965
201	A Flow Cytometric Protocol for Titering Recombinant Adenoviral Vectors Containing the Green Fluorescent Protein. Molecular Biotechnology, 2000, 14, 197-203.	1.3	24
202	Modulation of the Murine Peroxisome Proliferator-activated Receptor γ2 Promoter Activity by CCAAT/Enhancer-binding Proteins. Journal of Biological Chemistry, 2000, 275, 27815-27822.	1.6	100
203	Effect of Peroxisome Proliferator-Activated Receptor Alpha Activators on Tumor Necrosis Factor Expression in Mice during Endotoxemia. Infection and Immunity, 1999, 67, 3488-3493.	1.0	77
204	The Derivation and Characterization of Stromal Cell Lines from the Bone Marrow of p53â^'/â^' Mice: New Insights into Osteoblast and Adipocyte Differentiation. Journal of Bone and Mineral Research, 1998, 13, 195-204.	3.1	70
205	DNA Bending Is Induced by Binding of the Peroxisome Proliferator-Activated Receptor Î ³ 2 Heterodimer to Its Response Element in the Murine Lipoprotein Lipase Promoter. Biochemical and Biophysical Research Communications, 1998, 244, 671-677.	1.0	26
206	Expression of Peroxisome Proliferator Activated Receptor mRNA in Normal and Tumorigenic Rodent Mammary Glands. Biochemical and Biophysical Research Communications, 1998, 253, 813-817.	1.0	49
207	CAAT/Enhancer Binding Proteins Directly Modulate Transcription from the Peroxisome Proliferator- Activated Receptor γ2 Promoter. Biochemical and Biophysical Research Communications, 1997, 240, 99-103.	1.0	211
208	Analysis of the native murine bone morphogenetic protein serine threonine kinase type I receptor (ALK-3). , 1996, 168, 453-461.		6
209	COOH-terminal Disruption of Lipoprotein Lipase in Mice Is Lethal in Homozygotes, but Heterozygotes Have Elevated Triglycerides and Impaired Enzyme Activity. Journal of Biological Chemistry, 1995, 270, 12518-12525.	1.6	105
210	Regulation of bone marrow stromal cell differentiation by cytokines whose receptors share the gp130 Protein. Journal of Cellular Biochemistry, 1994, 54, 122-133.	1.2	97
211	Osteoblastic gene expression during adipogenesis in hematopoietic supporting murine bone marrow stromal cells. Journal of Cellular Physiology, 1993, 154, 317-328.	2.0	187
212	Cloning and characterization of the promoter of the murine lipoprotein lipase-encoding gene: structural and functional analysis. Gene, 1991, 107, 247-258.	1.0	44
213	Identification and partial purification of a protein binding to the human immunoglobulin kappa enhancerxE2 site. Nucleic Acids Research, 1988, 16, 4967-4988.	6.5	9
214	Comparison of the Ca-Mg ATPase and calcium transport in rat and human erythrocytes: Evidence for an electrogenic mechanism. Cell Calcium, 1981, 2, 525-543.	1.1	6
215	REGULATION OF ERYTHROCYTE ALCIUM TRANSPORT: ROLE OF CALMODULIN AND PHOSPHATE. Annals of the New York Academy of Sciences, 1980, 356, 443-443.	1.8	0
216	The Emerging Use of ASC/Scaffold Composites for the Regeneration of Osteochondral Defects. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	6