
Johannes Kollmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4784655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Competitive trait hierarchies of native communities and invasive propagule pressure consistently predict invasion success during grassland establishment. Biological Invasions, 2022, 24, 107-122.	2.4	9
2	Impacts of roads on bird species richness: A meta-analysis considering road types, habitats and feeding guilds. Science of the Total Environment, 2022, 812, 151478.	8.0	13
3	Disentangling effects of climate and land use on biodiversity and ecosystem services—A multiâ€scale experimental design. Methods in Ecology and Evolution, 2022, 13, 514-527.	5.2	15
4	Spatioâ€ŧemporal patterns in degradation and restoration of gravel bars along Alpine rivers. River Research and Applications, 2022, 38, 738-756.	1.7	4
5	Effects of shading and site conditions on vegetative and generative growth of a native grassland invader. Ecological Engineering, 2022, 178, 106592.	3.6	5
6	The contribution of roadsides to connect grassland habitat patches for butterflies in landscapes of contrasting permeability. Journal of Environmental Management, 2022, 311, 114846.	7.8	6
7	Landscape diversity and local temperature, but not climate, affect arthropod predation among habitat types. PLoS ONE, 2022, 17, e0264881.	2.5	2
8	Interactive effects of climate and land use on pollinator diversity differ among taxa and scales. Science Advances, 2022, 8, eabm9359.	10.3	26
9	Plant richness, land use and temperature differently shape invertebrate leaf-chewing herbivory on plant functional groups. Oecologia, 2022, 199, 407-417.	2.0	3
10	Reintroduction of rare arable plants in extensively managed fields: Effects of crop type, sowing density and soil tillage. Agriculture, Ecosystems and Environment, 2021, 306, 107187.	5.3	9
11	Conservation biology: four decades of problem- and solution-based research. Perspectives in Ecology and Conservation, 2021, 19, 121-130.	1.9	12
12	Suppression of an Invasive Native Plant Species by Designed Grassland Communities. Plants, 2021, 10, 775.	3.5	5
13	The present and future of grassland restoration. Restoration Ecology, 2021, 29, e13378.	2.9	71
14	Competition components along productivity gradients – revisiting a classic dispute in ecology. Oikos, 2021, 130, 1326-1334.	2.7	6
15	Low levels of regional differentiation and little evidence for local adaptation in rare arable plants. Basic and Applied Ecology, 2021, 54, 52-63.	2.7	2
16	Biological Flora of Central Europe: Chondrilla chondrilloides (Ard.) H. Karst. Perspectives in Plant Ecology, Evolution and Systematics, 2021, 54, 125657.	2.7	4
17	Passive restoration of subtropical grasslands leads to incomplete recovery of ant communities in early successional stages. Biological Conservation, 2021, 264, 109387.	4.1	4
18	Positive trends in plant, dragonfly, and butterfly diversity of rewetted montane peatlands. Restoration Ecology, 2020, 28, 796-806.	2.9	12

#	Article	IF	CITATIONS
19	Linking plant traits to multiple soil functions in semi-arid ecosystems. Journal of Arid Environments, 2020, 172, 104040.	2.4	15
20	Functional Diversity and Invasive Species Influence Soil Fertility in Experimental Grasslands. Plants, 2020, 9, 53.	3.5	9
21	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
22	Recruitment filtering by a moss layer disadvantages large-seeded grassland species. Basic and Applied Ecology, 2020, 42, 27-34.	2.7	5
23	Moving Away From Limiting Similarity During Restoration: Timing of Arrival and Native Biomass Are Better Proxies of Invasion Suppression in Grassland Communities. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	26
24	Nucleation increases understory species and functional diversity in early tropical forest restoration. Ecological Engineering, 2020, 158, 106031.	3.6	5
25	The maleness of larger angiosperm flowers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10921-10926.	7.1	22
26	Nature conservation and ecosystem restoration in central Europe—The value of human-shaped ecosystems. Basic and Applied Ecology, 2020, 42, 1-3.	2.7	6
27	Assessing the context and ecological effects of river restoration – A meta-analysis. Ecological Engineering, 2019, 136, 30-37.	3.6	19
28	Are we restoring functional fens? – The outcomes of restoration projects in fens re-analysed with plant functional traits. PLoS ONE, 2019, 14, e0215645.	2.5	13
29	Integrated assessment of ecosystem recovery using a multifunctionality approach. Ecosphere, 2019, 10, e02930.	2.2	7
30	Increasing local biodiversity in urban environments: Community development in semi-natural species-rich forb vegetation. Landscape and Urban Planning, 2019, 184, 23-31.	7.5	6
31	Mix and match: regional admixture provenancing strikes a balance among different seed-sourcing strategies for ecological restoration. Conservation Genetics, 2019, 20, 7-17.	1.5	139
32	Warum Renaturierung?. , 2019, , 3-12.		0
33	Küstendünen. , 2019, , 215-233.		1
34	Monitoring von Renaturierungen. , 2019, , 71-85.		0
35	FlieÄŸgewÄ ¤ ser. , 2019, , 125-149.		1
	~		

#	Article	IF	CITATIONS
37	Neuartige Ökosysteme und invasive Neobiota. , 2019, , 435-447.		1
38	Grundwasser- und Regenwassermoore. , 2019, , 171-192.		0
39	Zukünftige Strategien der Renaturierungsökologie. , 2019, , 461-472.		О
40	Seed density is more effective than multiâ€trait limiting similarity in controlling grassland resistance against plant invasions in mesocosms. Applied Vegetation Science, 2018, 21, 411-418.	1.9	26
41	Selecting plant species and traits for phytometer experiments. The case of peatland restoration. Ecological Indicators, 2018, 88, 263-273.	6.3	11
42	Reintroduction of rare arable plants: seed production, soil seed banks, and dispersal 3 years after sowing. Restoration Ecology, 2018, 26, S170.	2.9	11
43	Towards a population approach for evaluating grassland restoration—a systematic review. Restoration Ecology, 2018, 26, 227-234.	2.9	10
44	Resilience of riparian vegetation after restoration measures on <scp>R</scp> iver <scp>I</scp> nn. River Research and Applications, 2018, 34, 451-460.	1.7	17
45	Genetic differentiation within multiple common grassland plants supports seed transfer zones for ecological restoration. Journal of Applied Ecology, 2017, 54, 116-126.	4.0	95
46	Genetic differentiation and regional adaptation among seed origins used for grassland restoration: lessons from a multispecies transplant experiment. Journal of Applied Ecology, 2017, 54, 127-136.	4.0	97
47	Preventing plant invasions at early stages of revegetation: The role of limiting similarity in seed size and seed density. Ecological Engineering, 2017, 100, 286-290.	3.6	22
48	Phylogeny and the prediction of tree functional diversity across novel continental settings. Global Ecology and Biogeography, 2017, 26, 553-562.	5.8	31
49	Resource availability determines the importance of nicheâ€based versus stochastic community assembly in grasslands. Oikos, 2017, 126, 1134-1141.	2.7	35
50	Fifteen Microsatellite Markers for Herbertia zebrina (Iridaceae): An Endangered Species from South American Grasslands. Applications in Plant Sciences, 2017, 5, 1700035.	2.1	2
51	Limiting similarity and Darwin's naturalization hypothesis: understanding the drivers of biotic resistance against invasive plant species. Oecologia, 2017, 183, 775-784.	2.0	43
52	Suppression of an invasive legume by a native grass — High impact of priority effects. Basic and Applied Ecology, 2017, 22, 20-27.	2.7	15
53	Using population characteristics to evaluate the conservation status of endangered grassland species – The case of Herbertia zebrina in southern Brazil. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 234, 119-125.	1.2	2
54	Historical and recent land use affects ecosystem functions in subtropical grasslands in Brazil. Ecosphere, 2017, 8, e02032.	2.2	22

#	Article	IF	CITATIONS
55	Are local plants the best for ecosystem restoration? It depends on how you analyze the data. Ecology and Evolution, 2017, 7, 10683-10689.	1.9	35
56	Beta diversity of plant species in human-transformed landscapes: Control of community assembly by regional productivity and historical connectivity. Perspectives in Plant Ecology, Evolution and Systematics, 2017, 24, 1-10.	2.7	17
57	Species pools and environmental sorting control different aspects of plant diversity and functional trait composition in recovering grasslands. Journal of Ecology, 2016, 104, 1314-1325.	4.0	30
58	Plants adapted to warmer climate do not outperform regional plants during a natural heat wave. Ecology and Evolution, 2016, 6, 4160-4165.	1.9	16
59	Managing plant species diversity under fluctuating wetland conditions: the case of temporarily flooded depressions. Wetlands Ecology and Management, 2016, 24, 597-608.	1.5	10
60	Management intensity and temporary conversion to other landâ€use types affect plant diversity and species composition of subtropical grasslands in southern Brazil. Applied Vegetation Science, 2016, 19, 589-599.	1.9	39
61	Integrating ecosystem functions into restoration ecology—recent advances and future directions. Restoration Ecology, 2016, 24, 722-730.	2.9	140
62	Positive responses of coastal dune plants to soil conditioning by the invasive Lupinus nootkatensis. Acta Oecologica, 2016, 77, 1-9.	1.1	6
63	Reintroduction of rare arable plants by seed transfer. What are the optimal sowing rates?. Ecology and Evolution, 2016, 6, 5506-5516.	1.9	18
64	Speed restoration of EU ecosystems. Nature, 2016, 535, 231-231.	27.8	15
65	Setting Priorities for Monitoring and Managing Non-native Plants: Toward a Practical Approach. Environmental Management, 2016, 58, 465-475.	2.7	3
66	Effects of farming practice on populations of threatened amphibious plant species in temporarily flooded arable fields: implications for conservation management. Agriculture, Ecosystems and Environment, 2016, 222, 30-37.	5.3	6
67	Seed selection for grassland restoration: competitive effect of a dominant grass is mediated by seed source and nutrient availability. Restoration Ecology, 2015, 23, 261-267.	2.9	5
68	Grassland degradation and restoration: a conceptual framework of stages and thresholds illustrated by southern Brazilian grasslands. Natureza A Conservacao, 2015, 13, 95-104.	2.5	129
69	Impacts of visitor trampling on the taxonomic and functional community structure of calcareous grassland. Applied Vegetation Science, 2015, 18, 359-367.	1.9	14
70	How does the seed fate of Crotalaria podocarpa DC, a highly competitive herbaceous legume in arid rangelands, contribute to its establishment probability?. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 405-411.	2.7	4
71	Bioengineering effectiveness of seed mixtures for road verges: Functional composition as a predictor of grassland diversity and invasion resistance. Ecological Engineering, 2015, 84, 104-112.	3.6	22
72	Grassland restoration by seeding: seed source and growth form matter more than density. Applied Vegetation Science, 2015, 18, 368-378.	1.9	14

#	Article	IF	CITATIONS
73	Growth response to climatic change over 120Âyears for <i><scp>A</scp>lnus viridis</i> and <i><scp>S</scp>alix glauca</i> in <scp>W</scp> est <scp>G</scp> reenland. Journal of Vegetation Science, 2015, 26, 155-165.	2.2	19
74	Ecological literacy and beyond: Problem-based learning for future professionals. Ambio, 2015, 44, 154-162.	5.5	50
75	Does experience with competition matter? Effects of source competitive environment on mean and plastic trait expression in Erodium cicutarium. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 236-246.	2.7	13
76	Intraspecific trait variation and allocation strategies of calcareous grassland species: Results from a restoration experiment. Basic and Applied Ecology, 2014, 15, 590-598.	2.7	13
77	Mixed evidence for the cultivar vigour hypothesis: The case of calcareous grassland forbs in a matrix of Festuca rubra. Ecological Engineering, 2014, 71, 301-307.	3.6	8
78	Reintroduction of a rare arable weed: Competition effects on weed fitness and crop yield. Agriculture, Ecosystems and Environment, 2014, 188, 57-62.	5.3	22
79	Phenotypic correlates of potential range size and range filling in European trees. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 219-227.	2.7	39
80	No evidence for local adaptation in an invasive alien plant: field and greenhouse experiments tracing a colonization sequence. Annals of Botany, 2013, 112, 1921-1930.	2.9	42
81	Species-Driven Phases and Increasing Structure in Early-Successional Plant Communities. American Naturalist, 2013, 181, E17-E27.	2.1	48
82	Conceptual Frameworks and Methods for Advancing Invasion Ecology. Ambio, 2013, 42, 527-540.	5.5	62
83	Limited evidence for allelopathic effects of giant hogweed on germination of native herbs. Seed Science Research, 2013, 23, 157-162.	1.7	14
84	Restoration Ecology in Brazil ÂTime to Step Out of the Forest. Natureza A Conservacao, 2013, 11, 92-95.	2.5	68
85	Shrub Expansion in SW Greenland Under Modest Regional Warming: Disentangling Effects of Human Disturbance and Grazing. Arctic, Antarctic, and Alpine Research, 2013, 45, 515-525.	1.1	16
86	Dispersal limitation at the expanding range margin of an evergreen tree in urban habitats?. Urban Forestry and Urban Greening, 2012, 11, 59-64.	5.3	9
87	Tracing the introduction history of a potentially invasive ornamental shrub: variation in frost hardiness and climate change. Nordic Journal of Botany, 2012, 30, 739-746.	0.5	2
88	Are plant populations in expanding ranges made up of escaped cultivars? The case of Ilex aquifolium in Denmark. Plant Ecology, 2012, 213, 1131-1144.	1.6	7
89	Clonal Re-Introduction of Endangered Plant Species: The Case of German False Tamarisk in Pre-Alpine Rivers. Environmental Management, 2012, 50, 217-225.	2.7	27
90	Effects of host-plant population size and plant sex on a specialist leaf-miner. Acta Oecologica, 2011, 37, 58-64.	1.1	15

#	Article	IF	CITATIONS
91	Uprooting and Burial of Invasive Alien Plants: A New Tool in Coastal Restoration?. Restoration Ecology, 2011, 19, 371-378.	2.9	30
92	No Evidence for Enemy Release During Range Expansion of an Evergreen Tree in Northern Europe. Environmental Entomology, 2011, 40, 1183-1191.	1.4	7
93	Impact assessment revisited: improving the theoretical basis for management of invasive alien species. Biological Invasions, 2010, 12, 2025-2035.	2.4	78
94	Competitive displacement or biotic resistance? Disentangling relationships between community diversity and invasion success of tall herbs and shrubs. Journal of Vegetation Science, 2010, 21, 213-220.	2.2	48
95	Consistent Dendrochronological Response of the Dioecious Salix arctica to Variation in Local Snow Precipitation across Gender and Vegetation Types. Arctic, Antarctic, and Alpine Research, 2010, 42, 471-475.	1.1	48
96	Invasion of coastal dunes by the alien shrub Rosa rugosa is associated with roads, tracks and houses. Flora: Morphology, Distribution, Functional Ecology of Plants, 2009, 204, 289-297.	1.2	47
97	Effects of liana load, tree diameter and distances between conspecifics on seed production in tropical timber trees. Forest Ecology and Management, 2009, 257, 987-993.	3.2	30
98	Establishment and clonal spread of the alien shrub Rosa rugosa in coastal dunes—A method for reconstructing and predicting invasion patterns. Landscape and Urban Planning, 2009, 93, 194-200.	7.5	25
99	Ecological and Socioeconomic Correlates of Plant Invasions in Denmark: The Utility of Environmental Assessment Data. Ambio, 2009, 38, 89-94.	5.5	20
100	Little evidence for negative effects of an invasive alien plant on pollinator services. Biological Invasions, 2008, 10, 1353-1363.	2.4	42
101	Low genetic diversity in small peripheral populations of a rare European tree (Sorbus torminalis) dominated by clonal reproduction. Conservation Genetics, 2008, 9, 1533-1539.	1.5	37
102	Predicting the distribution of the invasive alien <i>Heracleum mantegazzianum</i> at two different spatial scales. Diversity and Distributions, 2008, 14, 307-317.	4.1	40
103	α-Chitinase activity among lactic acid bacteria. Systematic and Applied Microbiology, 2008, 31, 151-156.	2.8	33
104	Factors limiting regeneration of an endangered conifer in the highlands of Guatemala. Journal for Nature Conservation, 2008, 16, 146-156.	1.8	21
105	Provenance variation in germination and seedling growth of Abies guatemalensis Rehder. Forest Ecology and Management, 2008, 255, 1831-1840.	3.2	23
106	Microsatellite markers for the endangered fir <i> Abies guatemalensis</i> (Pinaceae). Molecular Ecology Resources, 2008, 8, 1307-1309.	4.8	10
107	Conservation through utilization: a case study of the Vulnerable Abies guatemalensis in Guatemala. Oryx, 2008, 42, .	1.0	11
108	Spatial variation in seedling emergence and establishment – functional groups among and within habitats?. , 2008, , 274-292.		1

#	Article	IF	CITATIONS
109	Genetic diversity, spatial patterns, and growth of root sprouts in a temperate tree at the northern distribution limit. Ecoscience, 2007, 14, 250-258.	1.4	9
110	Regeneration in Terminalia oblonga (Combretaceae)—A common timber tree from a humid tropical forest (La Chonta, Bolivia). Forest Ecology and Management, 2006, 225, 306-312.	3.2	12
111	A multivariate approach to plant community distribution in the coastal dune zonation of NW Denmark. Phytocoenologia, 2006, 36, 321-342.	0.5	53
112	Limiting factors for seedling emergence and establishment of the invasive non-native Rosa rugosa in a coastal dune system. Biological Invasions, 2006, 9, 31-42.	2.4	39
113	Conservation and Utilisation of Abies guatemalensis Rehder (Pinaceae) – An Endangered Endemic Conifer in Central America. Biodiversity and Conservation, 2006, 15, 3131-3151.	2.6	16
114	Spatial variation of post-dispersal seed removal by rodents in highland microhabitats of Spain and Switzerland. Seed Science Research, 2006, 16, 213-222.	1.7	25
115	Stand structure, species diversity and regeneration of an endemic palm forest on the Seychelles. African Journal of Ecology, 2005, 43, 291-301.	0.9	16
116	Population structure of a fleshy-fruited species at its range edge – the case of Prunus mahaleb L. in northern Switzerland. Botanica Helvetica, 2005, 115, 49-61.	1.1	10
117	Vegetation change: a reunifying concept in plant ecology. Perspectives in Plant Ecology, Evolution and Systematics, 2005, 7, 69-76.	2.7	50
118	Seed predator guilds, spatial variation in post-dispersal seed predation and potential effects on plant demography: a temperate perspective , 2005, , 9-30.		45
119	Latitudinal trends in growth and phenology of the invasive alien plant Impatiens glandulifera (Balsaminaceae). Diversity and Distributions, 2004, 10, 377-385.	4.1	168
120	Poor sexual reproduction on the distribution limit of the rare tree Sorbus torminalis. Acta Oecologica, 2004, 25, 211-218.	1.1	41
121	Allocation, plasticity and allometry. Perspectives in Plant Ecology, Evolution and Systematics, 2004, 6, 205-206.	2.7	7
122	Defining the habitat niche of Sorbus torminalis from phytosociological releves along a latitudinal gradient. Phytocoenologia, 2004, 34, 639-662.	0.5	14
123	Edges effects on seed predation by rodents in deciduous forests of northern Switzerland. Plant Ecology, 2003, 164, 249-261.	1.6	59
124	The Tagliamento River: A model ecosystem of European importance. Aquatic Sciences, 2003, 65, 239-253.	1.5	210
125	Patterns in woody vegetation along the active zone of a near-natural Alpine river. Basic and Applied Ecology, 2003, 4, 157-166.	2.7	94
126	Vegetation as indicator for habitat quality. Basic and Applied Ecology, 2003, 4, 489-491.	2.7	12

8

#	Article	IF	CITATIONS
127	Root anchorage of saplings and cuttings of woody pioneer species in a riparian environment. Functional Ecology, 2003, 17, 170-177.	3.6	92
128	Modelling the distribution of Ilex aquifolium at the north-eastem edge of its geographical range. Nordic Journal of Botany, 2003, 23, 129-142.	0.5	12
129	Editorial ? recent developments in the journal. Perspectives in Plant Ecology, Evolution and Systematics, 2002, 5, 1-2.	2.7	1
130	An evolutionary perspective of biological invasions. Trends in Ecology and Evolution, 2002, 17, 545-546.	8.7	104
131	Life history evolution in Lodoicea maldivica (Arecaceae). Nordic Journal of Botany, 2002, 22, 227-238.	0.5	46
132	Pollen quantity and quality affect fruit abortion in small populations of a rare fleshy-fruited shrub. Basic and Applied Ecology, 2002, 3, 319-327.	2.7	29
133	Pollen vectors and inflorescence morphology in four species of Salix. Plant Systematics and Evolution, 2002, 235, 181-188.	0.9	52
134	Viburnum lantana L. and Viburnum opulus L. (V. lobatum Lam., Opulus vulgaris Borkh.). Journal of Ecology, 2002, 90, 1044-1070.	4.0	44
135	The life history of Salicaceae living in the active zone of floodplains. Freshwater Biology, 2002, 47, 733-748.	2.4	417
136	Riverine landscapes: an introduction. Freshwater Biology, 2002, 47, 497-500.	2.4	49
137	Biological Flora of Central Europe: Cornus sanguinea L Flora: Morphology, Distribution, Functional Ecology of Plants, 2001, 196, 161-179.	1.2	10
138	Riparian vegetation and island formation along the gravel-bed Fiume Tagliamento, Italy. Earth Surface Processes and Landforms, 2001, 26, 31-62.	2.5	381
139	Flower and Fruit Characteristics in Small and Isolated Populations of a Fleshy-Fruited Shrub. Plant Biology, 2001, 3, 62-71.	3.8	13
140	Effects of management on seed predation in wildflower strips in northern Switzerland. Agriculture, Ecosystems and Environment, 2001, 83, 285-296.	5.3	36
141	Large wood retention in river channels: the case of the Fiume Tagliamento, Italy. Earth Surface Processes and Landforms, 2000, 25, 255-275.	2.5	124
142	Longitudinal variations in exposed riverine sediments: a context for the ecology of the Fiume Tagliamento, Italy. Aquatic Conservation: Marine and Freshwater Ecosystems, 2000, 10, 249-266.	2.0	67
143	Genetic introgression from distant provenances reduces fitness in local weed populations. Journal of Applied Ecology, 2000, 37, 647-659.	4.0	189
144	Potential role of island dynamics in river ecosystems. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2000, 27, 2582-2585.	0.1	5

#	Article	IF	CITATIONS
145	Evidence of sexuality in EuropeanRubus(Rosaceae) species based on AFLP and allozyme analysis. American Journal of Botany, 2000, 87, 1592-1598.	1.7	59
146	Reducing predation of conifer seeds by clear-cutting Rubus fruticosus agg. in two montane forest stands. Forest Ecology and Management, 2000, 126, 281-290.	3.2	54
147	Wood storage within the active zone of a large European gravel-bed river. Geomorphology, 2000, 34, 55-72.	2.6	121
148	Dispersal of fleshy-fruited species: a matter of spatial scale?. Perspectives in Plant Ecology, Evolution and Systematics, 2000, 3, 29-51.	2.7	82
149	Recruitment of fleshy-fruited species under different shrub species: Control by under-canopy environment. Ecological Research, 1999, 14, 9-21.	1.5	42
150	A Garden Experiment on Susceptibility to Rabbitâ€Grazing, Sapling Growth Rates, and Age at First Reproduction for Eleven European Woody Species. Plant Biology, 1999, 1, 226-234.	3.8	14
151	Landscape structure and diversity of fleshy-fruited species at forest edges. , 1999, 144, 37-48.		29
152	A conceptual model of vegetation dynamics on gravel bars of a large Alpine river. Wetlands Ecology and Management, 1999, 7, 141-153.	1.5	168
153	Interactions between vegetation development and island formation in the Alpine river Tagliamento. Applied Vegetation Science, 1999, 2, 25-36.	1.9	132
154	Effects of seed provenance on germination of herbs for agricultural compensation sites. Agriculture, Ecosystems and Environment, 1999, 72, 87-99.	5.3	89
155	A reference river system for the Alps: the â€ ⁻ Fiume Tagliamento'. River Research and Applications, 1999, 15, 63-75.	0.8	149
156	Palatability of weeds from different European origins to the slugs Deroceras reticulatum Müller and Arion lusitanicus Mabille. Acta Oecologica, 1999, 20, 109-118.	1.1	42
157	Insect Herbivory on European Tall-Shrub Species: The Need to Distinguish Leaves before and after Unfolding or Unrolling, and the Advantage of Longitudinal Sampling. Oikos, 1999, 87, 561.	2.7	21
158	A Garden Experiment on Susceptibility to Rabbit-Grazing, Sapling Growth Rates, and Age at First Reproduction for Eleven European Woody Species. Plant Biology, 1999, 1, 226-234.	3.8	0
159	Consistencies in post-dispersal seed predation of temperate fleshy-fruited species among seasons, years and sites. Functional Ecology, 1998, 12, 683-690.	3.6	113
160	Notes on seed traps in terrestrial plant communities. Flora: Morphology, Distribution, Functional Ecology of Plants, 1998, 193, 31-40.	1.2	43
161	Schadfraß an Gehölzsamen auf Waldlichtungen und im Wald. European Journal of Forest Research, 1997, 116, 113-123.	0.3	6
162	Population processes at the grassland-scrub interface. Phytocoenologia, 1997, 27, 235-256.	0.5	15

#	Article	IF	CITATIONS
163	Interaction of Irradiance and Soil Nutrient Supply on Growth of Seedlings of Ten European Tall-Shrub Species and Fagus Sylvatica. Journal of Ecology, 1996, 84, 827.	4.0	172
164	Light demands of shrub seedlings and their establishment within scrublands. Flora: Morphology, Distribution, Functional Ecology of Plants, 1996, 191, 191-200.	1.2	30
165	Spatial patterns of dispersal, seed predation and germination during colonization of abandoned grassland by Quercus petraea and Corylus avellana. Plant Ecology, 1996, 125, 193-205.	1.2	143
166	Regeneration window for fleshy-fruited plants during scrub development on abandoned grassland. Ecoscience, 1995, 2, 213-222.	1.4	91
167	Some reflections on current invasion science and perspectives for an exciting future. NeoBiota, 0, 68, 79-100.	1.0	12
168	Impact scores of invasive plants are biased by disregard of environmental co-variation and non-linearity. NeoBiota, 0, 10, 65-79.	1.0	13
169	Mapping and assessing the knowledge base of ecological restoration. Restoration Ecology, 0, , .	2.9	6
170	Using crushed waste bricks for urban greening with contrasting grassland mixtures: no negative effects of brick-augmented substrates varying in soil type, moisture and acid pre-treatment. Urban Ecosystems, 0, , .	2.4	1