Jeffrey T Wigle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4782475/publications.pdf

Version: 2024-02-01

279798 243625 4,214 54 23 44 citations g-index h-index papers 55 55 55 4712 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes. Frontiers in Neuroscience, 2022, 16, 843794.	2.8	14
2	Comparative and Combinatorial Effects of Resveratrol and Sacubitril/Valsartan alongside Valsartan on Cardiac Remodeling and Dysfunction in MI-Induced Rats. Molecules, 2021, 26, 5006.	3.8	11
3	A Comprehensive Analysis of the Efficacy of Resveratrol in Atherosclerotic Cardiovascular Disease, Myocardial Infarction and Heart Failure. Molecules, 2021, 26, 6600.	3.8	22
4	Obesity and Cardiovascular Disease: Impact of Resveratrol as a Therapeutic., 2020,, 283-305.		0
5	Resveratrol prevents palmitic-acid-induced cardiomyocyte contractile impairment. Canadian Journal of Physiology and Pharmacology, 2019, 97, 1132-1140.	1.4	7
6	Divergent Effects of Resveratrol on Rat Cardiac Fibroblasts and Cardiomyocytes. Molecules, 2019, 24, 2604.	3.8	5
7	Are the cardioprotective effects of the phytoestrogen resveratrol sex-dependent?. Canadian Journal of Physiology and Pharmacology, 2019, 97, 503-514.	1.4	14
8	Myocardial Cell Signaling During the Transition to Heart Failure. , 2018, 9, 75-125.		12
9	The Functional Role of Zinc Finger E Box-Binding Homeobox 2 (Zeb2) in Promoting Cardiac Fibroblast Activation. International Journal of Molecular Sciences, 2018, 19, 3207.	4.1	10
10	Regulation of cardiac fibroblast MMP2 gene expression by scleraxis. Journal of Molecular and Cellular Cardiology, 2018, 120, 64-73.	1.9	18
11	Cyanidin 3- <i>O</i> -glucoside prevents the development of maladaptive cardiac hypertrophy and diastolic heart dysfunction in 20-week-old spontaneously hypertensive rats. Food and Function, 2018, 9, 3466-3480.	4.6	20
12	Regulation of <i>Brn</i> 3b by <i>Dlx</i> 1 and <i>Dlx</i> 2 is required for retinal ganglion cell differentiation in the vertebrate retina. Development (Cambridge), 2017, 144, 1698-1711.	2.5	24
13	Effects of cyanidin 3-0-glucoside on cardiac structure and function in an animal model of myocardial infarction. Food and Function, 2017, 8, 4089-4099.	4.6	15
14	Vascular senescence and ageing: a role for the MEOX proteins in promoting endothelial dysfunction. Canadian Journal of Physiology and Pharmacology, 2017, 95, 1067-1077.	1.4	21
15	Inhibition of autophagy inhibits the conversion of cardiac fibroblasts to cardiac myofibroblasts. Oncotarget, 2016, 7, 78516-78531.	1.8	52
16	Role of scleraxis in mechanical stretch-mediated regulation of cardiac myofibroblast phenotype. American Journal of Physiology - Cell Physiology, 2016, 311, C297-C307.	4.6	27
17	TGFÎ 2 ₁ regulates Scleraxis expression in primary cardiac myofibroblasts by a Smad-independent mechanism. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H239-H249.	3.2	40
18	Regulation of scleraxis transcriptional activity by serine phosphorylation. Journal of Molecular and Cellular Cardiology, 2016, 92, 140-148.	1.9	15

#	Article	IF	CITATIONS
19	Characterization of the inhibitory effect of an extract of Prunella vulgaris on Ebola virus glycoprotein (GP)-mediated virus entry and infection. Antiviral Research, 2016, 127, 20-31.	4.1	41
20	Cardiac Fibrosis and Heart Failureâ€"Cause or Effect?. , 2015, , 1-4.		0
21	Diverse Cellular Origins of Cardiac Fibroblasts. , 2015, , 125-145.		0
22	The Ski/Zeb2/Meox2 pathway provides a novel mechanism for regulation of the cardiac myofibroblast phenotype. Journal of Cell Science, 2014, 127, 40-9.	2.0	41
23	The role of homeobox genes in retinal development and disease. Developmental Biology, 2014, 393, 195-208.	2.0	55
24	High Molecular Weight Fibroblast Growth Factor-2 in the Human Heart Is a Potential Target for Prevention of Cardiac Remodeling. PLoS ONE, 2014, 9, e97281.	2.5	54
25	The Ski-Zeb2-Meox2 pathway provides a novel mechanism for regulation of the cardiac myofibroblast phenotype. Development (Cambridge), 2014, 141, e307-e307.	2.5	0
26	Common Signaling Pathways Used During Development. , 2013, , 503-515.		1
27	Adipokines and the cardiovascular system: mechanisms mediating health and disease. Canadian Journal of Physiology and Pharmacology, 2012, 90, 1029-1059.	1.4	61
28	Preface to: Scientific Basis for Heart Health and Care (Winnipeg Heart International Conference). Canadian Journal of Physiology and Pharmacology, 2012, 90, v-v.	1.4	0
29	Conjugated linoleic acid improves blood pressure by increasing adiponectin and endothelial nitric oxide synthase activity. Journal of Nutritional Biochemistry, 2012, 23, 487-493.	4.2	25
30	Control of the Mesenchymal-Derived Cell Phenotype by Ski and Meox2: A Putative Mechanism for Postdevelopmental Phenoconversion., 2011,, 29-42.		0
31	Mechanisms of MEOX1 and MEOX2 Regulation of the Cyclin Dependent Kinase Inhibitors p21CIP1/WAF1 and p16INK4a in Vascular Endothelial Cells. PLoS ONE, 2011, 6, e29099.	2.5	49
32	Resveratrol prevents norepinephrine induced hypertrophy in adult rat cardiomyocytes, by activating NO-AMPK pathway. European Journal of Pharmacology, 2011, 668, 217-224.	3.5	52
33	Regulation of the lymphatic endothelial cell cycle by the PROX1 homeodomain protein. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 201-212.	4.1	13
34	câ€Ski upregulation of Meox2 diminishes cardiac myofibroblast phenotype. FASEB Journal, 2011, 25, 1032.1.	0.5	0
35	Defects in ryanodine receptor function are associated with systolic dysfunction in rats subjected to volume overload. Experimental Physiology, 2010, 95, 869-879.	2.0	9
36	Extracellular K+ concentration controls cell surface density of IKr in rabbit hearts and of the HERG channel in human cell lines. Journal of Clinical Investigation, 2009, 119, 2745-2757.	8.2	132

#	Article	IF	CITATIONS
37	PROX1 regulation of endothelial cell cycle progression. FASEB Journal, 2009, 23, 660.5.	0.5	О
38	Homeobox genes in vertebrate forebrain development and disease. Clinical Genetics, 2008, 73, 212-226.	2.0	38
39	Dlx2 homeobox gene transcriptional regulation of Trkb neurotrophin receptor expression during mouse retinal development. Nucleic Acids Research, 2008, 36, 872-884.	14.5	20
40	Dlx Homeobox Genes Promote Cortical Interneuron Migration from the Basal Forebrain by Direct Repression of the Semaphorin Receptor Neuropilin-2. Journal of Biological Chemistry, 2007, 282, 19071-19081.	3.4	66
41	A comparison of adenovirally delivered molecular methods to inhibit Na+/Ca2+ exchange. Journal of Molecular and Cellular Cardiology, 2007, 43, 49-53.	1.9	8
42	Regulation and function of homeodomain proteins in the embryonic and adult vascular systemsThis paper is one of a selection of papers published in this Special Issue, entitled Young Investigators' Forum Canadian Journal of Physiology and Pharmacology, 2007, 85, 55-65.	1.4	19
43	Effects of dietary flaxseed on vascular contractile function and atherosclerosis during prolonged hypercholesterolemia in rabbits. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2987-H2996.	3.2	88
44	Characterization of Mesenchyme Homeobox 2 (MEOX2) transcription factor binding to RING finger protein 10. Molecular and Cellular Biochemistry, 2005, 275, 75-84.	3.1	22
45	Intracellular K+ Is Required for the Inactivation-Induced High-Affinity Binding of Cisapride to HERG Channels. Molecular Pharmacology, 2005, 68, 855-865.	2.3	18
46	Regulated expression and temporal induction of the tail-anchored sarcolemmal-membrane-associated protein is critical for myoblast fusion. Biochemical Journal, 2004, 381, 599-608.	3.7	24
47	An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO Journal, 2002, 21, 1505-1513.	7.8	783
48	Alternative Splicing in Intracellular Loop Connecting Domains II and III of the $\hat{l}\pm 1$ Subunit of Cav1.2 Ca2+ Channels Predicts Two-domain Polypeptides with Unique C-terminal Tails. Journal of Biological Chemistry, 2001, 276, 1398-1406.	3.4	31
49	Hepatocyte migration during liver development requires Prox1. Nature Genetics, 2000, 25, 254-255.	21.4	352
50	Alternative Splicing, Expression, and Genomic Structure of the 3′ Region of the Gene Encoding the Sarcolemmal-associated Proteins (SLAPs) Defines a Novel Class of Coiled-coil Tail-anchored Membrane Proteins. Journal of Biological Chemistry, 2000, 275, 38474-38481.	3.4	27
51	Prox1 function is crucial for mouse lens-fibre elongation. Nature Genetics, 1999, 21, 318-322.	21.4	393
52	Prox1 Function Is Required for the Development of the Murine Lymphatic System. Cell, 1999, 98, 769-778.	28.9	1,401
53	Molecular Cloning, Expression, and Chromosomal Assignment of Sarcolemmal-associated Proteins. Journal of Biological Chemistry, 1997, 272, 32384-32392.	3.4	26
54	Regulation of Dihydropyridine and Ryanodine Receptor Gene Expression in Skeletal Muscle. Journal of Biological Chemistry, 1995, 270, 25837-25844.	3.4	38