Bruno Robert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/478209/publications.pdf

Version: 2024-02-01

46771 34076 9,711 216 52 89 citations h-index g-index papers 225 225 225 6158 all docs docs citations times ranked citing authors

#	Article	lF	CITATIONS
1	Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature, 2007, 450, 575-578.	13.7	808
2	Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature, 2005, 436, 134-137.	13.7	569
3	A photoactive carotenoid protein acting as light intensity sensor. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12075-12080.	3.3	324
4	Biomimetic organization: Octapeptide self-assembly into nanotubes of viral capsid-like dimension. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10258-10262.	3.3	248
5	Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1690-1693.	3.3	237
6	The Disulfide Bonds in Glycoprotein E2 of Hepatitis C Virus Reveal the Tertiary Organization of the Molecule. PLoS Pathogens, 2010, 6, e1000762.	2.1	210
7	Elevated Zeaxanthin Bound to Oligomeric LHCII Enhances the Resistance of Arabidopsis to Photooxidative Stress by a Lipid-protective, Antioxidant Mechanism. Journal of Biological Chemistry, 2007, 282, 22605-22618.	1.6	162
8	Blue shifts in bacteriochlorophyll absorbance correlate with changed hydrogen bonding patterns in light-harvesting 2 mutants of Rhodobacter sphaeroides with alterations at l±-Tyr-44 and l±-Tyr-45. Biochemical Journal, 1994, 299, 695-700.	1.7	152
9	Resonance Raman spectroscopy. Photosynthesis Research, 2009, 101, 147-155.	1.6	144
10	The H-NS dimerization domain defines a new fold contributing to DNA recognition. Nature Structural and Molecular Biology, 2003, 10, 212-218.	3.6	134
11	Laurdan solvatochromism: solvent dielectric relaxation and intramolecular excited-state reaction. Biophysical Journal, 1997, 73, 2221-2234.	0.2	126
12	Modification of a hydrogen bond to a bacteriochlorophyll a molecule in the light-harvesting 1 antenna of Rhodobacter sphaeroides Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 7124-7128.	3.3	116
13	In vitro reconstitution of the activated zeaxanthin state associated with energy dissipation in plants. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16331-16335.	3.3	114
14	Light Harvesting by Carotenoids Incorporated into the B850 Light-Harvesting Complex fromRhodobactersphaeroidesR-26.1:Â Excited-State Relaxation, Ultrafast Triplet Formation, and Energy Transfer to Bacteriochlorophyll. Journal of Physical Chemistry B, 2003, 107, 5642-5649.	1.2	111
15	Primary donor structure and interactions in bacterial reaction centers from near-infrared Fourier transform resonance Raman spectroscopy. Biochemistry, 1991, 30, 4648-4654.	1.2	108
16	Changes in primary donor hydrogen-bonding interactions in mutant reaction centers from Rhodobacter sphaeroides: identification of the vibrational frequencies of all the conjugated carbonyl groups Biochemistry, 1994, 33, 1636-1643.	1.2	108
17	Structures of antenna complexes of several Rhodospirillales from their resonance Raman spectra. Biochimica Et Biophysica Acta - Bioenergetics, 1985, 807, 10-23.	0.5	106
18	Xanthophylls of the major photosynthetic light-harvesting complex of plants: identification, conformation and dynamics. FEBS Letters, 2000, 477, 181-185.	1.3	103

#	Article	IF	CITATIONS
19	Configuration and Dynamics of Xanthophylls in Light-harvesting Antennae of Higher Plants. Journal of Biological Chemistry, 2001, 276, 24862-24870.	1.6	103
20	On the Presence and Role of a Molecule of Chlorophylla in the Cytochromeb6 f Complex. Journal of Biological Chemistry, 1997, 272, 21901-21908.	1.6	102
21	Activation of Zeaxanthin Is an Obligatory Event in the Regulation of Photosynthetic Light Harvesting. Journal of Biological Chemistry, 2002, 277, 7785-7789.	1.6	99
22	Unexpected similarities of the B800-850 light-harvesting complex from Rhodospirillum molischianum to the B870 light-harvesting complexes from other purple photosynthetic bacteria. Biochemistry, 1993, 32, 5615-5621.	1.2	96
23	Functions of Conserved Tryptophan Residues of the Core Light-Harvesting Complex of Rhodobacter sphaeroides. Biochemistry, 1997, 36, 2772-2778.	1.2	94
24	Electronic Absorption and Ground State Structure of Carotenoid Molecules. Journal of Physical Chemistry B, 2013, 117, 11015-11021.	1.2	93
25	Recombinant Lhca2 and Lhca3 Subunits of the Photosystem I Antenna System. Biochemistry, 2003, 42, 4226-4234.	1.2	91
26	Insights into the molecular dynamics of plant light-harvesting proteins in vivo. Trends in Plant Science, 2004, 9, 385-390.	4.3	91
27	The stereoisomerism of bacterial, reaction-center-bound carotenoids revisited: An electronic absorption, resonance Raman and 1H-NMR study. Biochimica Et Biophysica Acta - Bioenergetics, 1987, 894, 423-433.	0.5	90
28	Carotenoid Structures and Environments in Trimeric and Oligomeric Fucoxanthin Chlorophyll a/c ₂ Proteins from Resonance Raman Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 12565-12574.	1.2	89
29	Site-Directed Modification of the Ligands to the Bacteriochlorophylls of the Light-Harvesting LH1 and LH2 Complexes ofRhodobactersphaeroidesâ€. Biochemistry, 1997, 36, 12625-12632.	1.2	87
30	Pigment organization in fucoxanthin chlorophyll a/c2 proteins (FCP) based on resonance Raman spectroscopy and sequence analysis. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1647-1656.	0.5	86
31	AFM Characterization of Tilt and Intrinsic Flexibility of Rhodobacter sphaeroides Light Harvesting Complex 2 (LH2). Journal of Molecular Biology, 2003, 325, 569-580.	2.0	84
32	Thermodynamics of Membrane Polypeptide Oligomerization in Light-harvesting Complexes and Associated Structural Changes. Journal of Molecular Biology, 1994, 238, 445-454.	2.0	82
33	Site-specific mutagenesis of the reaction centre fromRhodobacter sphaeroidesstudied by Fourier transform Raman spectroscopy: mutations at tyrosine M210 do not affect the electronic structure of the primary donor. FEBS Letters, 1994, 339, 18-24.	1.3	81
34	Electronic and vibrational properties of carotenoids: from <i>in vitro</i> to <i>in vivo</i> . Journal of the Royal Society Interface, 2017, 14, 20170504.	1.5	81
35	The Degree of Oligomerization of the H-NS Nucleoid Structuring Protein Is Related to Specific Binding to DNA. Journal of Biological Chemistry, 2002, 277, 41657-41666.	1.6	79
36	Structure and Properties of the Bacteriochlorophyll Binding Site in Peripheral Light-Harvesting Complexes of Purple Bacteria. Biochemistry, 1995, 34, 517-523.	1.2	76

#	Article	IF	CITATIONS
37	Structure, spectroscopic, and redox properties of Rhodobacter sphaeroides reaction centers bearing point mutations near the primary electron donor. Biochemistry, 1993, 32, 12875-12886.	1.2	7 5
38	Influence of the Protein Binding Site on the Absorption Properties of the Monomeric Bacteriochlorophyll in Rhodobacter sphaeroides LH2 Complex. Biochemistry, 1997, 36, 16282-16287.	1.2	72
39	Pigment Binding-Site and Electronic Properties in Light-Harvesting Proteins of Purple Bacteria. Journal of Physical Chemistry B, 1997, 101, 7227-7231.	1.2	69
40	Ultrafast Evolution of the Excited States in the Chlorophyll a/b Complex CP29 from Green Plants Studied by Energy-Selective Pumpâ^Probe Spectroscopy. Biochemistry, 1998, 37, 1143-1149.	1.2	69
41	A resonance Raman characterization of the primary electron acceptor in photosystem II. Biochemistry, 1989, 28, 3641-3645.	1.2	68
42	Resonance Raman Spectroscopy of the Photosystem II Light-Harvesting Complex of Green Plants: A Comparison of Trimeric and Aggregated States. Biochemistry, 1995, 34, 2333-2337.	1.2	67
43	Oxidation of the Two β-Carotene Molecules in the Photosystem II Reaction Centerâ€. Biochemistry, 2003, 42, 1008-1015.	1.2	65
44	Molecular Configuration of Xanthophyll Cycle Carotenoids in Photosystem II Antenna Complexes. Journal of Biological Chemistry, 2002, 277, 42937-42942.	1.6	62
45	Photoprotection in Plants Involves a Change in Lutein 1 Binding Domain in the Major Light-harvesting Complex of Photosystem II. Journal of Biological Chemistry, 2011, 286, 27247-27254.	1.6	62
46	Artificial Photosynthesis for Solar Fuels – an Evolving Research Field within AMPEA, a Joint Programme of the European Energy Research Alliance. Green, 2013, 3, .	0.4	62
47	Self-Association Process of a Peptide in Solution: From \hat{I}^2 -Sheet Filaments to Large Embedded Nanotubes. Biophysical Journal, 2004, 86, 2484-2501.	0.2	60
48	Resonance Raman Spectra and Electronic Transitions in Carotenoids: A Density Functional Theory Study. Journal of Physical Chemistry A, 2014, 118, 1817-1825.	1.1	60
49	Mapping energy transfer channels in fucoxanthin–chlorophyll protein complex. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 241-247.	0.5	59
50	Molecular Adaptation of Photoprotection: Triplet States in Light-Harvesting Proteins. Biophysical Journal, 2011, 101, 934-942.	0.2	58
51	Application of near-IR Fourier transform resonance Raman spectroscopy to the study of photosynthetic proteins. Spectrochimica Acta Part A: Molecular Spectroscopy, 1993, 49, 785-799.	0.1	54
52	Structure of the primary donor of Rhodopseudomonas sphaeroides: difference resonance Raman spectroscopy of reaction centers. Biochemistry, 1986, 25, 2303-2309.	1.2	53
53	Two-dimensional spectroscopy for non-specialists. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 271-285.	0.5	53
54	Selective photochemical reduction of either of the two bacteriopheophytins in reaction centers of Rps. sphaeroides R-26. FEBS Letters, 1985, 183, 326-330.	1.3	52

#	Article	IF	CITATIONS
55	Time-resolved and steady-state spectroscopic analysis of membrane-bound reaction centers from Rhodobacter sphaeroides. Comparisons with detergent-solubilized complexes Biochemistry, 1995, 34, 14712-14721.	1.2	52
56	Spectroscopic characterization of the spinach Lhcb4 protein (CP29), a minor light-harvesting complex of photosystem II. FEBS Journal, 1999, 262, 817-823.	0.2	51
57	Variation in carotenoid–protein interaction in bird feathers produces novel plumage coloration. Journal of the Royal Society Interface, 2012, 9, 3338-3350.	1.5	51
58	Resonance Raman Spectroscopy of a Light-Harvesting Protein from the Brown AlgaLaminaria saccharinaâ€. Biochemistry, 1998, 37, 2450-2457.	1.2	49
59	Design, synthesis and properties of synthetic chlorophyll proteins. FEBS Journal, 2001, 268, 3284-3295.	0.2	48
60	Echinenone vibrational properties: From solvents to the orange carotenoid protein. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1044-1054.	0.5	48
61	Resonance Raman Spectra of Carotenoid Molecules: Influence of Methyl Substitutions. Journal of Physical Chemistry A, 2015, 119, 56-66.	1.1	47
62	Proteic events following charge separation in the bacterial reaction center: resonance Raman spectroscopy. Biochemistry, 1988, 27, 5108-5114.	1.2	46
63	Strong Effects of an Individual Water Molecule on the Rate of Light-driven Charge Separation in the Rhodobacter sphaeroides Reaction Center. Journal of Biological Chemistry, 2005, 280, 27155-27164.	1.6	46
64	The role of chromophore coupling in tuning the spectral properties of peripheral light-harvesting protein of purple bacteria. Photosynthesis Research, 1996, 50, 5-10.	1.6	44
65	Characterization of the Different Peripheral Light-Harvesting Complexes from High- and Low-Light Grown Cells from Rhodopseudomonas palustris. Biochemistry, 1999, 38, 5185-5190.	1.2	44
66	Conformation of Bacteriochlorophyll Molecules in Photosynthetic Proteins from Purple Bacteriaâ€. Biochemistry, 1999, 38, 11115-11121.	1.2	43
67	The 2-Cys Peroxiredoxin Alkyl Hydroperoxide Reductase C Binds Heme and Participates in Its Intracellular Availability in Streptococcus agalactiae. Journal of Biological Chemistry, 2010, 285, 16032-16041.	1.6	43
68	The Light-Harvesting System of Purple Bacteria. Advances in Photosynthesis and Respiration, 2003, , 169-194.	1.0	42
69	Static and Dynamic Protein Impact on Electronic Properties of Light-Harvesting Complex LH2. Journal of Physical Chemistry B, 2008, 112, 15883-15892.	1.2	41
70	Preferential Incorporation of Coloured-carotenoids Occurs in the LH2 Complexes From Non-sulphur Purple Bacteria Under Carotenoid-limiting Conditions. Photosynthesis Research, 2005, 86, 25-35.	1.6	39
71	Mechanisms Underlying Carotenoid Absorption in Oxygenic Photosynthetic Proteins. Journal of Biological Chemistry, 2013, 288, 18758-18765.	1.6	39
72	Resonance Raman characterization of Rhodobacter sphaeroides reaction centers bearing site-directed mutations at tyrosine M210. Biochemistry, 1991, 30, 1715-1722.	1.2	38

#	Article	IF	CITATIONS
73	Resonance Raman spectroscopy of metal-substituted bacteriochlorophylls: characterization of Raman bands sensitive to bacteriochlorin conformation. Journal of Raman Spectroscopy, 1997, 28, 599-604.	1,2	38
74	Structure of the primary electron donor in photosystem I: a resonance Raman study. Biochemistry, 1990, 29, 4740-4746.	1.2	37
75	The peripheral lightâ€harvesting complexes from purple sulfur bacteria have different â€~ring' sizes. FEBS Letters, 2008, 582, 3650-3656.	1.3	37
76	Twisting a \hat{l}^2 -Carotene, an Adaptive Trick from Nature for Dissipating Energy during Photoprotection. Journal of Biological Chemistry, 2017, 292, 1396-1403.	1.6	37
77	Membrane Protein Stability: High Pressure Effects on the Structure and Chromophore-Binding Properties of the Light-Harvesting Complex LH2â€. Biochemistry, 2003, 42, 13019-13026.	1.2	36
78	Effects of vinyl substitutions on resonance Raman spectra of (bacterio)chlorophylls. Journal of Raman Spectroscopy, 1994, 25, 365-370.	1.2	35
79	Tuning of the optical and electrochemical properties of the primary donor bacteriochlorophylls in the reaction centre from Rhodobacter sphaeroides: spectroscopy and structure. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1554, 75-93.	0.5	35
80	Probing the carotenoid content of intact Cyclotella cells by resonance Raman spectroscopy. Photosynthesis Research, 2014, 119, 273-281.	1.6	35
81	Structure and Binding Site of the Primary Electron Acceptor in the Reaction Center of Chlorobium. Biochemistry, 1994, 33, 7594-7599.	1.2	34
82	Influence of Carotenoid Molecules on the Structure of the Bacteriochlorophyll Binding Site in Peripheral Light-Harvesting Proteins fromRhodobacter sphaeroidesâ€,‡. Biochemistry, 2003, 42, 7252-7258.	1.2	34
83	Carotenoid Specificity of Light-harvesting Complex II Binding Sites. Journal of Biological Chemistry, 2004, 279, 5162-5168.	1.6	34
84	Resonance Raman studies of bacterial reaction centers. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1017, 99-111.	0.5	33
85	Conformational flexibility and polymerization of vesicular stomatitis virus matrix protein. Journal of Molecular Biology, 1997, 274, 816-825.	2.0	33
86	Ultrafast Energy Transfer from Chlorophyll <i>c</i> ₂ to Chlorophyll <i>a</i> in Fucoxanthin–Chlorophyll Protein Complex. Journal of Physical Chemistry Letters, 2013, 4, 3590-3595.	2.1	33
87	Vibrational techniques applied to photosynthesis: Resonance Raman and fluorescence line-narrowing. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 12-18.	0.5	33
88	Binding of pigments to the cyanobacterial high-light-inducible protein HliC. Photosynthesis Research, 2018, 137, 29-39.	1.6	32
89	ISOLATION and SPECTROSCOPIC CHARACTERIZATION OF THE B875 ANTENNA COMPLEX OF A MUTANT OF Rhodopseudomonas sphaeroides. Photochemistry and Photobiology, 1985, 42, 573-578.	1.3	31
90	CHEMICALLY MODIFIED PHOTOSYNTHETIC BACTERIAL REACTION CENTERS: CIRCULAR DICHROISM, RAMAN RESONANCE, LOW TEMPERATURE ABSORPTION, FLUORESCENCE AND ODMR SPECTRA AND POLYPEPTIDE COMPOSITION OF BOROHYDRIDE TREATED REACTION CENTERS FROM Rhodobacter sphaeroides R26. Photochemistry and Photobiology, 1988, 47, 293-304.	1.3	31

#	Article	IF	CITATIONS
91	Transfer RNAâ^Pseudouridine Synthetase Pus1 ofSaccharomyces cerevisiaeContains One Atom of Zinc Essential for Its Native Conformation and tRNA Recognitionâ€. Biochemistry, 1998, 37, 7268-7276.	1.2	31
92	Energy dissipation in the ground-state vibrational manifolds of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mi>\hat{l}^2 < /mml:mi> </mml:math> -carotene homologues: A sub-20-fs time-resolved transient grating spectroscopic study. Physical Review B, 2008, 77, .	1.1	31
93	Non-bonding molecular factors influencing the stretching wavenumbers of the conjugated carbonyl groups of bacteriochlorophylla. Journal of Raman Spectroscopy, 1998, 29, 977-981.	1.2	30
94	Different crystal morphologies lead to slightly different conformations of light-harvesting complex II as monitored by variations of the intrinsic fluorescence lifetime. Physical Chemistry Chemical Physics, 2011, 13, 12614.	1.3	30
95	Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study. Journal of Chemical Physics, 2015, 142, 212414.	1.2	30
96	Investigation of cyclodextrin inclusion compounds using FT-IR and Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1995, 51, 1861-1870.	2.0	29
97	Tuning of the redox potential of the primary electron donor in reaction centres of purple bacteria: effects of amino acid polarity and position. FEBS Letters, 2002, 527, 171-175.	1.3	29
98	Structure and Conformation of the Carotenoids in Human Retinal Macular Pigment. PLoS ONE, 2015, 10, e0135779.	1.1	29
99	Bacteriochlorin-protein interactions in native B800-B850, B800 deficient and B800-Bchlap-reconstituted complexes fromRhodopseudomonas acidophila, strain 10050. FEBS Letters, 1999, 449, 269-272.	1.3	28
100	Solvation Effect of Bacteriochlorophyll Excitons in Light-Harvesting Complex LH2. Biophysical Journal, 2007, 93, 2188-2198.	0.2	28
101	Resonance Raman spectroscopy of the B820 subunit of the core antenna from Rhodospirillum rubrum G9. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1183, 369-373.	0.5	27
102	Symmetric Structural Features and Binding Site of the Primary Electron Donor in the Reaction Center of Chlorobium. Biochemistry, 1995, 34, 11099-11105.	1.2	27
103	The Effect of Pressure on the BacteriochlorophyllaBinding Sites of the Core Antenna Complex fromRhodospirillum rubrum. Biochemistry, 1998, 37, 14875-14880.	1.2	27
104	Perturbation of the ground-state electronic structure of FMN by the conserved cysteine in phototropin LOV2 domains. Physical Chemistry Chemical Physics, 2008, 10, 6693.	1.3	27
105	An examination of how structural changes can affect the rate of electron transfer in a mutated bacterial photoreaction centre. Biochemical Journal, 2000, 351, 567-578.	1.7	26
106	Energy Transfer and Trapping in Red-Chlorophyll-Free Photosystem I from <i>Synechococcus</i> WH 7803. Journal of Physical Chemistry B, 2013, 117, 11176-11183.	1.2	26
107	Origin of Absorption Changes Associated with Photoprotective Energy Dissipation in the Absence of Zeaxanthin. Journal of Biological Chemistry, 2011, 286, 91-98.	1.6	25
108	Biochemical and Spectroscopic Characterization of the B800-850 Light-Harvesting Complex from Rhodobacter sulfidophilus and Its B800-830 Spectral Form. Biochemistry, 1995, 34, 10519-10524.	1.2	24

#	Article	IF	Citations
109	Fermi Resonance as a Tool for Probing Peridinin Environment. Journal of Physical Chemistry B, 2014, 118, 5873-5881.	1.2	24
110	Triplet–triplet energy transfer in artificial and natural photosynthetic antennas. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5513-E5521.	3.3	24
111	Pigment interactions in chlorosomes of various green bacteria. Photosynthesis Research, 1994, 41, 175-180.	1.6	23
112	Transmembrane Helix Stability: The Effect of Helix-Helix Interactions Studied by Fourier Transform Infrared Spectroscopy. Biophysical Journal, 1998, 74, 988-994.	0.2	23
113	Tuning antenna function through hydrogen bonds to chlorophyll a. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148078.	0.5	23
114	Structure and Interactions of the ChlorophyllaMolecules in the Higher Plant Lhcb4 Antenna Protein. Journal of Physical Chemistry B, 2000, 104, 9317-9321.	1.2	22
115	Hydrogen Bonding in a Model Bacteriochlorophyll-binding Site Drives Assembly of Light Harvesting Complex. Journal of Biological Chemistry, 2004, 279, 15067-15075.	1.6	22
116	Selfâ€assembly of the octapeptide lanreotide and lanreotideâ€based derivatives: the role of the aromatic residues. Journal of Peptide Science, 2008, 14, 66-75.	0.8	22
117	Light-dependent conformational change of neoxanthin in a siphonous green alga, Codium intricatum, revealed by Raman spectroscopy. Photosynthesis Research, 2014, 121, 69-77.	1.6	22
118	Fourier-transform resonance Raman spectra of cation carotenoid in photosystem II reaction centres. FEBS Letters, 1999, 453, 11-14.	1.3	21
119	Exchanging Cofactors in the Core Antennae from Purple Bacteria: Structure and Properties of Znâ^'Bacteriopheophytin-Containing LH1. Biochemistry, 2000, 39, 1091-1099.	1.2	21
120	Structural Role of (Bacterio)chlorophyll Ligated in the Energetically Unfavorable \hat{l}^2 -Position. Journal of Biological Chemistry, 2006, 281, 10626-10634.	1.6	21
121	Structural and Spectroscopic Consequences of Hexacoordination of a Bacteriochlorophyll Cofactor in the <i>Rhodobacter sphaeroides</i> Reaction Center, Biochemistry, 2010, 49, 1882-1892.	1.2	21
122	In the Unicellular Red Alga Rhodella violacea Iron Deficiency Induces an Accumulation of Uncoupled LHC. Plant and Cell Physiology, 2003, 44, 1141-1151.	1.5	20
123	Electronic and Protein Structural Dynamics of a Photosensory Histidine Kinase. Biochemistry, 2010, 49, 4752-4759.	1.2	20
124	Conformational Switching in a Light-Harvesting Protein as Followed by Single-Molecule Spectroscopy. Biophysical Journal, 2015, 108, 2713-2720.	0.2	20
125	Pigment Binding Site Properties of Two Photosystem II Antenna Proteins. Journal of Biological Chemistry, 2000, 275, 22031-22036.	1.6	19
126	Effect of High Pressure on the Photochemical Reaction Center from Rhodobacter sphaeroides R26.1. Biophysical Journal, 2001, 80, 1487-1497.	0.2	19

#	Article	IF	CITATIONS
127	Identification of intramembrane hydrogen bonding between 131 keto group of bacteriochlorophyll and serine residue $\hat{1}\pm27$ in the LH2 light-harvesting complex. Biochimica Et Biophysica Acta - Bioenergetics, 2003, 1607, 19-26.	0.5	19
128	Temperature Broadening of LH2 Absorption in Glycerol Solution. Photosynthesis Research, 2005, 86, 49-59.	1.6	19
129	Myoglobin with modified tetrapyrrole chromophores: Binding specificity and photochemistry. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 750-763.	0.5	19
130	Binding of bufuralol, dextromethorphan, and 3,4-methylenedioxymethylamphetamine to wild-type and F120A mutant cytochrome P450 2D6 studied by resonance Raman spectroscopy. Biochemical and Biophysical Research Communications, 2006, 343, 772-779.	1.0	19
131	Pigment structure in the violaxanthin–chlorophyll-a-binding protein VCP. Photosynthesis Research, 2017, 134, 51-58.	1.6	19
132	Carotenoid stoichiometry in the LH2 crystal: No spectral evidence for the presence of the second molecule in the $\hat{l}\pm\hat{l}^2$ -apoprotein dimer. FEBS Letters, 2006, 580, 3841-3844.	1.3	18
133	Exciton Band Structure in Bacterial Peripheral Light-Harvesting Complexes. Journal of Physical Chemistry B, 2012, 116, 5192-5198.	1.2	18
134	Lycopene crystalloids exhibit singlet exciton fission in tomatoes. Physical Chemistry Chemical Physics, 2018, 20, 8640-8646.	1.3	18
135	Intergeneric structural variability of the primary donor of photosynthetic bacteria: Resonance raman spectroscopy of reaction centers from two Rhodospirillum and Rhodobacter species. Biochimica Et Biophysica Acta - Bioenergetics, 1987, 890, 368-376.	0.5	17
136	Probing the binding sites of exchanged chlorophyllain LH2 by Raman and site-selection fluorescence spectroscopies. FEBS Letters, 2001, 491, 143-147.	1.3	17
137	Structural Asymmetry of Bacterial Reaction Centers: A Qy Resonant Raman Study of the Monomer Bacteriochlorophylls. Journal of Physical Chemistry A, 2002, 106, 3605-3613.	1.1	17
138	Protein-prosthetic group interactions in bacterial reaction centers: resonance raman spectroscopy of the reaction center of Rhodopseudomonas viridis. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 977, 10-18.	0.5	16
139	Membrane-Associatedc-type Cytochromes from the Green Sulfur BacteriumChlorobium limicolaformathiosulfatophilum: Purification and Characterization of Cytochromec553â€. Biochemistry, 1997, 36, 1927-1932.	1.2	16
140	Role of the C-Terminal Extrinsic Region of the α Polypeptide of the Light-Harvesting 2 Complex ofRhodobacter sphaeroides: A Domain Swap Studyâ€. Biochemistry, 2003, 42, 15114-15123.	1.2	16
141	The Electronic Structure, Stereochemistry and Resonance Raman Spectroscopy of Carotenoids. , 1999, , 189-201.		16
142	Pigment structure in the FCP-like light-harvesting complex from Chromera velia. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1759-1765.	0.5	16
143	Hydrophobic Pockets at the Membrane Interface: An Original Mechanism for Membrane Protein Interactionsâ€. Biochemistry, 2004, 43, 1276-1282.	1.2	15
144	A resonance Raman investigation of the effect of lithium dodecyl sulfate on the B800–850 light-harvesting protein of Rhodopseudomonas acidophila 7750. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 934, 401-405.	0.5	14

#	Article	IF	Citations
145	Pheophytinâ^'Protein Interactions in Photosystem II Studied by Resonance Raman Spectroscopy of Modified Reaction Centers. Biochemistry, 2002, 41, 11449-11455.	1.2	14
146	Excitons in the LH3 Complexes from Purple Bacteria. Journal of Physical Chemistry B, 2013, 117, 11058-11068.	1.2	14
147	A kaleidoscope of photosynthetic antenna proteins and their emerging roles. Plant Physiology, 2022, 189, 1204-1219.	2.3	14
148	Structural characterization and comparison of antenna complexes of R26 and R26.1 mutants of Rhodopseudomonas sphaeroides. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 766, 259-262.	0.5	13
149	Fluorescence Line Narrowing Studies on Isolated Chlorophyll Molecules. Journal of Physical Chemistry B, 2010, 114, 2255-2260.	1.2	13
150	Confronting FCP structure with ultrafast spectroscopy data: evidence for structural variations. Physical Chemistry Chemical Physics, 2021, 23, 806-821.	1.3	13
151	Singlet fission in naturally-organized carotenoid molecules. Physical Chemistry Chemical Physics, 2021, 23, 4768-4776.	1.3	13
152	Hydrogen Bonding and Circular Dichroism of Bacteriochlorophylls in the Rhodobacter capsulatus Light-Harvesting 2 Complex Altered by Combinatorial Mutagenesis. Biochemistry, 1998, 37, 10006-10015.	1.2	12
153	Phototrophic purple sulfur bacteria as heat engines in the South Andros Black Hole. Photosynthesis Research, 2008, 95, 261-268.	1.6	12
154	An examination of how structural changes can affect the rate of electron transfer in a mutated bacterial photoreaction centre. Biochemical Journal, 2000, 351, 567.	1.7	11
155	Biochemical Characterization of the Dissociated Forms from the Core Antenna Proteins from Purple Bacteriaâ€. Biochemistry, 2002, 41, 11812-11819.	1.2	11
156	The reaction order of the dissociation reaction of the B820 subunit of Rhodospirillum rubrumlight-harvesting I complex. FEBS Letters, 2002, 516, 40-42.	1.3	11
157	Spectral dependence of energy transfer in wild-type peripheral light-harvesting complexes of photosynthetic bacteria. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1465-1469.	0.5	11
158	Measurement of Long-Range Interatomic Distances by Solid-State Tritium-NMR Spectroscopy. Journal of the American Chemical Society, 2010, 132, 1734-1735.	6.6	11
159	Energy transfer and trapping in Synechococcus WH 7803. Photosynthesis Research, 2018, 135, 115-124.	1.6	11
160	Is There a Proteic Substructure Common to all Photosynthetic Reaction Centers?., 1990,, 65-68.		11
161	Structural Characterization of High 800 nm-Absorbing Light-Harvesting Complexes from Rhodospirillales from Their Resonance Raman Spectra. Journal of Biochemistry, 1985, 98, 349-354.	0.9	10
162	Heterologous expression of genes encoding bacterial light-harvesting complex II in Rhodobacter capsulatus and Rhodovulum suldophilum. Microbiological Research, 1998, 153, 189-204.	2.5	10

#	Article	IF	Citations
163	A Structural Investigation of the Central ChlorophyllaBinding Sites in the Minor Photosystem II Antenna Protein,Lhcb4â€. Biochemistry, 2002, 41, 2305-2310.	1.2	10
164	Membrane Proteins in Bulk Solution Can Be Used for Quasi-Elastic Neutron Scattering Studies:Â The Case for the Photochemical Reaction Center. Journal of Physical Chemistry B, 2002, 106, 6303-6309.	1.2	10
165	The Role of Aromatic Phenylalanine Residues in Binding Carotenoid to Light-Harvesting Model and Wild-Type Complexes. Journal of Molecular Biology, 2008, 382, 154-166.	2.0	10
166	Spectroscopic Properties of Antenna Complexes from Purple Bacteria. Advances in Photosynthesis and Respiration, 2009, , 199-212.	1.0	10
167	Site, trigger, quenching mechanism and recovery of non-photochemical quenching in cyanobacteria: recent updates. Photosynthesis Research, 2018, 137, 171-180.	1.6	10
168	Title is missing!. Photosynthesis Research, 1999, 59, 223-230.	1.6	9
169	Enzyme activation and catalysis: characterisation of the vibrational modes of substrate and product in protochlorophyllide oxidoreductase. Physical Chemistry Chemical Physics, 2011, 13, 2307-2313.	1.3	9
170	Assignment of IR bands of isolated and protein-bound Peridinin in its fundamental and triplet state by static FTIR, time-resolved step-scan FTIR and DFT calculations. Journal of Molecular Structure, 2015, 1090, 58-64.	1.8	9
171	A Genetic Toolbox for the New Model Cyanobacterium Cyanothece PCC 7425: A Case Study for the Photosynthetic Production of Limonene. Frontiers in Microbiology, 2020, 11, 586601.	1.5	9
172	Pigment conformation and pigment-protein interactions in the reconstituted Lhcb4 antenna protein. FEBS Letters, 2001, 492, 54-57.	1.3	8
173	The effect of internal voids in membrane proteins: high-pressure study of two photochemical reaction centres from Rhodobacter sphaeroides. FEBS Letters, 2004, 560, 221-225.	1.3	8
174	Pigment configuration in the light-harvesting protein of the xanthophyte alga Xanthonema debile. Photosynthesis Research, 2018, 138, 139-148.	1.6	8
175	Structure of the Primary Reactants in Photosystem II: Resonance Raman Studies of D1D2 Particles. , 1990, , 423-426.		8
176	Spectroscopic characterisation of a tetrameric subunit form of the core antenna protein from Rhodospirillum rubrum. FEBS Letters, 2002, 528, 222-226.	1.3	7
177	Large third-order optical nonlinearity realized in symmetric nonpolar carotenoids. Physical Review B, 2008, 78, .	1.1	7
178	Pigment structure in the light-harvesting protein of the siphonous green alga Codium fragile. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148384.	0.5	7
179	Fine tuning of the spectral properties of LH2 by single amino acid residues. Photosynthesis Research, 2008, 96, 145-151.	1.6	6
180	Picosecond excitation energy transfer of allophycocyanin studied in solution and in crystals. Photosynthesis Research, 2018, 135, 79-86.	1.6	6

#	Article	IF	CITATIONS
181	A new, unquenched intermediate of LHCII. Journal of Biological Chemistry, 2021, 296, 100322.	1.6	6
182	An examination of how structural changes can affect the rate of electron transfer in a mutated bacterial photoreaction centre. Biochemical Journal, 2000, 351 Pt 3, 567-78.	1.7	6
183	Small angle neutron scattering measurements on the membrane protein subunit B777 in a detergent microemulsion. Biopolymers, 2001, 58, 231-234.	1.2	5
184	Ultrafast optical responses of -carotene and lycopene probed by sub-20-fs time-resolved coherent spectroscopy. Journal of Luminescence, 2009, 129, 1808-1812.	1.5	5
185	Theory of Triplet Excitation Transfer in the Donor-Oxygen-Acceptor System: Application to Cytochrome b 6 f. Biophysical Journal, 2015, 109, 1735-1745.	0.2	5
186	Carotenoid composition and conformation in retinal oil droplets of the domestic chicken*. PLoS ONE, 2019, 14, e0217418.	1.1	5
187	Resonance Raman Studies of Transient States in Bacterial Reaction Centers. Springer Proceedings in Physics, 1985, , 220-224.	0.1	5
188	Local Environments of Pigments in Reaction Centers of Photosynthetic Bacteria from Resonance Raman Data. Springer Series in Chemical Physics, 1985, , 138-145.	0.2	5
189	Resonance Raman Studies in Photosynthesis â€" Chlorophyll and Carotenoid Molecules. , 1996, , 161-176.		5
190	Absorption Detected Magnetic Resonance of D1/D2-Complexes from < i > Pisum sativum < /i > *. Zeitschrift Fur Physikalische Chemie, 1993, 182, 167-180.	1.4	4
191	Electron Transfer Towards the RCI-Type Photosystem in the Green Sulphur Bacterium Chlorobium limicola Forma Thiosulphatophilum Studied by Time-Resolved Optical Spectroscopy In Vivo. FEBS Journal, 1997, 249, 630-636.	0.2	4
192	Certain species of the Proteobacteria possess unusual bacteriochlorophylla environments in their light-harvesting proteins., 1999, 5, 338-345.		4
193	Steady-state spectroscopy of zinc-bacteriopheophytin containing LH1––an in vitro and in silico study. Chemical Physics, 2002, 275, 31-45.	0.9	4
194	Probing the pigment binding sites in LHCII with resonance Raman spectroscopy: The effect of mutations at S123. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1490-1496.	0.5	4
195	Derivation of original RESP atomic partial charges for MD simulations of the LDAO surfactant with AMBER: applications to a model of micelle and a fragment of the lipid kinase PI4KA. Journal of Biomolecular Structure and Dynamics, 2017, 35, 159-181.	2.0	4
196	Metal Cations Induced αβâ€BChl <i>a</i> Heterogeneity in LH1 as Revealed by Temperatureâ€Dependent Fluorescence Splitting. ChemPhysChem, 2017, 18, 2295-2301.	1.0	4
197	Modeling Dynamic Conformations of Organic Molecules: Alkyne Carotenoids in Solution. Journal of Physical Chemistry A, 2020, 124, 2792-2801.	1.1	4
198	Resonance Raman spectroscopy of metalâ€substituted bacteriochlorophylls: characterization of Raman bands sensitive to bacteriochlorin conformation. Journal of Raman Spectroscopy, 1997, 28, 599-604.	1.2	3

#	Article	IF	CITATIONS
199	Electronic and Vibrational Properties of Allene Carotenoids. Journal of Physical Chemistry A, 2022, 126, 813-824.	1.1	3
200	The effects of the detergent LDAO on the carotenoid metabolism and growth of Rhodovulum sulfidophilum. Microbiological Research, 1996, 151, 421-426.	2.5	2
201	Thirdâ€order optical nonlinearity of βâ€carotene homologues. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S31.	0.8	2
202	Pigment organisation in the membrane-intrinsic major light-harvesting complex of Amphidinium carterae: Structural characterisation of the peridinins and chlorophylls a and c2 by resonance Raman spectroscopy and from sequence analysis. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1187-1199.	0.5	2
203	Apoprotein heterogeneity increases spectral disorder and a step-wise modification of the B850 fluorescence peak position. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 137-144.	0.5	2
204	Rhodocyclus Gelatinosus Reaction Center: Characterization of the Quinones and Structure of the Primary Donor., 1992,, 133-139.		2
205	Protein-prosthetic Group Interactions in Bacterial Reaction Centers. , 1988, , 41-50.		2
206	The Pigment-Protein Interactions of Some Unusual Light-Harvesting Antennae: A Raman Study. , 1995, , 251-254.		2
207	Influence of Metal Exchange on Absorption Spectra of the Light Harvesting Complex of Rhodospirillum Rubrum., 1995,, 259-262.		2
208	Fourier transform resonance Raman studies of photosynthetic proteins., 1993, 1921, 94.		1
209	Thermodynamics of the β ₂ association in lightâ€harvesting complex I of <i>Rhodospirillum rubrum</i> . FEBS Journal, 2008, 275, 1240-1247.	2.2	1
210	Structure of the Primary Electron Donor in Photosystem I: Difference Resonance Raman Spectrocopy of CP1 Particles. , 1989, , 263-266.		1
211	Resonance Raman studies of photosynthetic membrane proteins., 1991,,.		O
212	Tribute to Rienk van Grondelle. Journal of Physical Chemistry B, 2013, 117, 10945-10946.	1.2	0
213	Probing Reaction Center Asymmetry Using Low Temperature Absorption Spectroscopy of Rhodobacter sphaeroides Reaction Centers Containing Bacteriopheophytin Anions. Springer Series in Biophysics, 1990, , 11-18.	0.4	O
214	H-Bonds and Functional Properties of Bacteriochlorophyll Cofactors in Photosynthetic Proteins. , 1997, , 71-74.		0
215	Altered Bacteriochlorophyll Associations in Combinatorial Mutants of the Rhodobacter Capsulatus Light Harvesting 2 Complex. , 1998, , 73-76.		0
216	Structural Origin of High-800 Peripheral Antenna Complexes. , 1998, , 69-72.		0