Jose M Luengo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4781925/publications.pdf Version: 2024-02-01

LOSE M LUENCO

#	Article	IF	CITATIONS
1	Bioplastics from microorganisms. Current Opinion in Microbiology, 2003, 6, 251-260.	5.1	315
2	The Homogentisate Pathway: a Central Catabolic Pathway Involved in the Degradation of I-Phenylalanine, I-Tyrosine, and 3-Hydroxyphenylacetate in Pseudomonas putida. Journal of Bacteriology, 2004, 186, 5062-5077.	2.2	225
3	Catabolism of Phenylacetic Acid in Escherichia coli. Journal of Biological Chemistry, 1998, 273, 25974-25986.	3.4	205
4	The phenylacetyl-CoA catabolon: a complex catabolic unit with broad biotechnological applications. Molecular Microbiology, 2001, 39, 1434-1442.	2.5	153
5	Two different pathways are involved in the β-oxidation of n-alkanoic and n-phenylalkanoic acids in Pseudomonas putida U: genetic studies and biotechnological applications. Molecular Microbiology, 2001, 39, 863-874.	2.5	83
6	Genetically engineered Pseudomonas: a factory of new bioplastics with broad applications. Environmental Microbiology, 2001, 3, 612-618.	3.8	79
7	Biochemical Evidence That phaZ Gene Encodes a Specific Intracellular Medium Chain Length Polyhydroxyalkanoate Depolymerase in Pseudomonas putida KT2442. Journal of Biological Chemistry, 2007, 282, 4951-4962.	3.4	77
8	Carbon catabolite repression of penicillin biosynthesis by Penicillium chrysogenum Journal of Antibiotics, 1984, 37, 781-789.	2.0	74
9	A New Class of Glutamate Dehydrogenases (GDH). Journal of Biological Chemistry, 2000, 275, 39529-39542.	3.4	74
10	Production of 3-hydroxy-n-phenylalkanoic acids by a genetically engineered strain of Pseudomonas putida. Applied Microbiology and Biotechnology, 2005, 67, 97-105.	3.6	56
11	Steroids as Environmental Compounds Recalcitrant to Degradation: Genetic Mechanisms of Bacterial Biodegradation Pathways. Genes, 2019, 10, 512.	2.4	56
12	I. Uptake of phenylacetic acid by Penicillium chrysogenum WIS 54-1255: A critical regulatory point in benzylpenicillin biosynthesis Journal of Antibiotics, 1989, 42, 1398-1409.	2.0	51
13	Genetic and ultrastructural analysis of different mutants of Pseudomonas putida affected in the poly-3-hydroxy-n-alkanoate gene cluster. Environmental Microbiology, 2007, 9, 737-751.	3.8	47
14	Microbial Synthesis of Poly(β-hydroxyalkanoates) Bearing Phenyl Groups fromPseudomonasputida:Â Chemical Structure and Characterization. Biomacromolecules, 2001, 2, 562-567.	5.4	45
15	A Two-component Hydroxylase Involved in the Assimilation of 3-Hydroxyphenyl Acetate in Pseudomonas putida. Journal of Biological Chemistry, 2005, 280, 26435-26447.	3.4	45
16	Synthesis and Degradation of Polyhydroxyalkanoates. , 2007, , 397-428.		44
17	Enzymatic Synthesis of Hydrophobic Penicillins Journal of Antibiotics, 1995, 48, 1195-1212.	2.0	43
18	Genetic analyses and molecular characterization of the pathways involved in the conversion of 2-phenylethylamine and 2-phenylethanol into phenylacetic acid in Pseudomonas putida U. Environmental Microbiology, 2008, 10, 413-432.	3.8	43

Jose M Luengo

#	Article	IF	CITATIONS
19	Molecular Cloning and Expression in Different Microbes of the DNA Encoding Pseudomonas putida U Phenylacetyl-CoA Ligase:. Journal of Biological Chemistry, 1996, 271, 33531-33538.	3.4	42
20	Catabolism of aromatics in Pseudomonas putida U. Formal evidence that phenylacetic acid and 4-hydroxyphenylacetic acid are catabolized by two unrelated pathways. FEBS Journal, 1994, 221, 375-381.	0.2	34
21	The 3,4â€dihydroxyphenylacetic acid catabolon, a catabolic unit for degradation of biogenic amines tyramine and dopamine in <i>Pseudomonas putida</i> U. Environmental Microbiology, 2010, 12, 1684-1704.	3.8	31
22	Direct enzymatic synthesis of natural penicillins using phenylacetyl-CoA : 6-APA phenylacetyl transferase of Penicillium chrysogenum : Minimal and maximal side chain length requirements Journal of Antibiotics, 1986, 39, 1754-1759.	2.0	30
23	Direct evaluation of phenylacetyl-CoA : 6-Aminopenicillanic acid acyltransferase of Penicillium chrysogenum by bioassay Journal of Antibiotics, 1986, 39, 1565-1573.	2.0	29
24	Functional analyses of three acylâ€ <scp>CoA</scp> synthetases involved in bile acid degradation in <scp><i>P</i></scp> <i>seudomonas putida</i> â€ <scp>DOC</scp> 21. Environmental Microbiology, 2015, 17, 47-63.	3.8	28
25	The substrate specificity of deacetoxycephalosporin C synthase ("expandaseâ€) of Streptomyces clavuligerus is extremely narrow. Enzyme and Microbial Technology, 1995, 17, 231-234.	3.2	27
26	Catabolism of biogenic amines in <i>Pseudomonas</i> species. Environmental Microbiology, 2020, 22, 1174-1192.	3.8	27
27	III. Repression of phenylacetic acid transport system in Penicillium chrysogenum Wis 54-1255 by free amino acids and ammonium salts Journal of Antibiotics, 1989, 42, 1416-1423.	2.0	22
28	II. Phenylacetic acid transport system in Penicillium chrysogenum Wis 54-1255: Molecular specificity of its induction Journal of Antibiotics, 1989, 42, 1410-1415.	2.0	22
29	Unusual PHA Biosynthesis. Microbiology Monographs, 2010, , 133-186.	0.6	22
30	V. Biosynthesis of benzylpenicillin (G), phenoxymethylpenicillin (V) and octanoylpenicillin (K) from glutathione S-derivatives Journal of Antibiotics, 1990, 43, 684-691.	2.0	18
31	Octanoic acid uptake in Pseudomonas putida U. FEMS Microbiology Letters, 2006, 149, 51-58.	1.8	15
32	Polyâ€3â€hydroxyalkanoate synthases from <i>Pseudomonas putida</i> U: substrate specificity and ultrastructural studies. Microbial Biotechnology, 2008, 1, 170-176.	4.2	15
33	Strategy for Cloning Large Gene Assemblages as Illustrated Using the Phenylacetate and Polyhydroxyalkanoate Gene Clusters. Applied and Environmental Microbiology, 2004, 70, 5019-5025.	3.1	13
34	Acetyl-CoA synthetase fromPseudomonas putidaU is the only acyl-CoA activating enzyme induced by acetate in this bacterium. FEMS Microbiology Letters, 2006, 260, 36-46.	1.8	13
35	IV. Acyl-CoA: 6-APA acyltransferase of Penicillium chrysogenum: Studies on substrate specificity using phenylacetyl-CoA variants Journal of Antibiotics, 1989, 42, 1502-1505.	2.0	12
36	Characterization of an inducible transport system for glycerol in Streptomyces clavuligerus. Repression by L-serine Journal of Antibiotics, 1992, 45, 269-277.	2.0	11

Jose M Luengo

#	Article	IF	CITATIONS
37	Histamine catabolism in <i>Pseudomonas putida</i> U: identification of the genes, catabolic enzymes and regulators. Environmental Microbiology, 2018, 20, 1828-1841.	3.8	11
38	Acyl-CoA: 6-APA acyltransferase from Penicillium chrysogenum. Studies on its hydrolytic activity Journal of Antibiotics, 1991, 44, 108-110.	2.0	10
39	Formation of bulges associated with penicillin production in high-producing strains ofPenicillium chrysogenum. Current Microbiology, 1986, 13, 203-207.	2.2	9
40	The Phenylacetic Acid Uptake System of Aspergillus nidulans is under a creA-Independent Model of Catabolic Repression which Seems to be Mediated by Acetyl-CoA Journal of Antibiotics, 1997, 50, 45-52.	2.0	9
41	Aliphatic molecules (C-6 to C-8) containing double or triple bonds as potential penicillin side-chain precursors Journal of Antibiotics, 1990, 43, 1559-1563.	2.0	8
42	From a Short Amino Acidic Sequence to the Complete Gene. Biochemical and Biophysical Research Communications, 2000, 272, 477-479.	2.1	7
43	Penicillin production by mutants ofPenicillium chrysogenum resistant to polyene macrolide antibiotics. Biotechnology Letters, 1979, 1, 233-238.	2.2	6
44	Steroid catabolism in bacteria: Genetic and functional analyses of stdH and stdJ in Pseudomonas putida DOC21. Canadian Journal of Biotechnology, 2018, 2, 88-99.	0.3	6
45	Cyclization of phenylacetyl-L-cysteinyl-D-valine to benzylpenicillin using cell-free extracts of Streptomyces clavuligerus Journal of Antibiotics, 1986, 39, 1144-1147.	2.0	5
46	The phasin PhaF controls bacterial shape and size in a network-forming strain of Pseudomonas putida. Journal of Biotechnology, 2015, 199, 17-20.	3.8	5
47	Inhibition of penicillin biosynthetic enzymes by halogen derivatives of phenylacetic acid. Journal of Industrial Microbiology, 1994, 13, 144-146.	0.9	4
48	The loss of function of <scp>PhaC</scp> 1 is a survival mechanism that counteracts the stress caused by the overproduction of polyâ€3â€hydroxyalkanoates in <scp><i>P</i></scp> <i>seudomonas putida</i> 1°, <scp><i>fadBA</i></scp> . Environmental Microbiology, 2015, 17, 3182-3194.	3.8	4
49	The Catabolism of Phenylacetic Acid and Other Related Molecules in Pseudomonas putida U. , 2007, , 147-192.		4
50	Enzymatic Synthesis of Penicillins. , 1999, , 239-274.		2
51	Plasmids containing the same origin of replication are useful tools to perform biotechnological studies in Pseudomonas putida U and in E. coli DH10B. Canadian Journal of Biotechnology, 2017, 1, 38-43.	0.3	1
52	Identification and Characterization of the Genes and Enzymes Belonging to the Bile Acid Catabolic Pathway in Pseudomonas. Methods in Molecular Biology, 2017, 1645, 109-142.	0.9	1
53	A genetically engineered strain ofPseudomonas putidaas a useful tool for identifying new therapeutic herbicides. FEMS Microbiology Letters, 2005, 249, 297-302.	1.8	0
54	Purification and characterization of the 4-hydroxyphenylacetic acid-3-hydroxylase from Pseudomonas putida U. FEMS Microbiology Letters, 2006, 157, 47-53.	1.8	0

#	Article	IF	CITATIONS
55	Engineering Strategies for Efficient and Sustainable Production of Medium-Chain Length Polyhydroxyalkanoates in Pseudomonads. , 2021, , 581-660.		0