W Kimryn Rathmell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4781645/publications.pdf

Version: 2024-02-01

105 papers

13,271 citations

66343 42 h-index 99 g-index

114 all docs

 $\begin{array}{c} 114 \\ \text{docs citations} \end{array}$

114 times ranked 17353 citing authors

#	Article	IF	CITATIONS
1	Sunitinib and Axitinib increase secretion and glycolytic activity of small extracellular vesicles in renal cell carcinoma. Cancer Gene Therapy, 2022, 29, 683-696.	4.6	4
2	The therapeutic implications of immunosuppressive tumor aerobic glycolysis. Cellular and Molecular Immunology, 2022, 19, 46-58.	10.5	39
3	Apoptolidin family glycomacrolides target leukemia through inhibition of ATP synthase. Nature Chemical Biology, 2022, 18, 360-367.	8.0	20
4	Pearls of wisdom for aspiring physician-scientist residency applicants and program directors. JCI Insight, 2022, 7, .	5.0	5
5	From Basic Science to Clinical Translation in Kidney Cancer: A Report from the Second Kidney Cancer Research Summit. Clinical Cancer Research, 2022, 28, 831-839.	7.0	12
6	Spatial models of tumour evolution. Nature Ecology and Evolution, 2022, 6, 26-27.	7.8	1
7	Stimulating TAM-mediated anti-tumor immunity with mannose-decorated nanoparticles in ovarian cancer. BMC Cancer, 2022, 22, 497.	2.6	13
8	Management of Metastatic Clear Cell Renal Cell Carcinoma: ASCO Guideline. Journal of Clinical Oncology, 2022, 40, 2957-2995.	1.6	97
9	Evaluation, diagnosis and surveillance of renal masses in the setting of VHL disease. World Journal of Urology, 2021, 39, 2409-2415.	2.2	28
10	Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nature Reviews Nephrology, 2021, 17, 245-261.	9.6	278
11	Summary from the Kidney Cancer Association's Inaugural Think Thank: Coalition for a Cure. Clinical Genitourinary Cancer, 2021, 19, 167-175.	1.9	4
12	Association of the neutrophil to eosinophil ratio with response to immunotherapy-based combinations in metastatic renal cell carcinoma Journal of Clinical Oncology, 2021, 39, 341-341.	1.6	0
13	Clinical Features and Multiplatform Molecular Analysis Assist in Understanding Patient Response to Anti-PD-1/PD-L1 in Renal Cell Carcinoma. Cancers, 2021, 13, 1475.	3.7	10
14	Cell-programmed nutrient partitioning in the tumour microenvironment. Nature, 2021, 593, 282-288.	27.8	491
15	A cytoskeletal function for PBRM1 reading methylated microtubules. Science Advances, 2021, 7, .	10.3	17
16	Neuronal SETD2 activity links microtubule methylation to an anxiety-like phenotype in mice. Brain, 2021, 144, 2527-2540.	7.6	17
17	Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages. Cell, 2021, 184, 2988-3005.e16.	28.9	166
18	Molecular determinants for \hat{l}_{\pm} -tubulin methylation by SETD2. Journal of Biological Chemistry, 2021, 297, 100898.	3.4	11

#	Article	IF	CITATIONS
19	Genetic risk assessment for hereditary renal cell carcinoma: Clinical consensus statement. Cancer, 2021, 127, 3957-3966.	4.1	11
20	Pushing the boundaries with collision collaboration: the marriage of ideas. Journal of Clinical Investigation, 2021, 131, .	8.2	0
21	Integrative computational immunogenomic profiling of cortisolâ€secreting adrenocortical carcinoma. Journal of Cellular and Molecular Medicine, 2021, 25, 10061-10072.	3.6	6
22	Association of baseline neutrophil-to-eosinophil ratio with response to nivolumab plus ipilimumab in patients with metastatic renal cell carcinoma. Biomarker Research, 2021, 9, 80.	6.8	16
23	Upcycling the TCA cycleâ€"rewiring tumour-associated fibroblasts. Nature Metabolism, 2021, 3, 1439-1440.	11.9	0
24	Belzutifan for Renal Cell Carcinoma in von Hippel–Lindau Disease. New England Journal of Medicine, 2021, 385, 2036-2046.	27.0	274
25	The Huntingtin-interacting protein SETD2/HYPB is an actin lysine methyltransferase. Science Advances, 2020, 6, .	10.3	29
26	Fine-Needle Aspiration-Based Patient-Derived Cancer Organoids. IScience, 2020, 23, 101408.	4.1	39
27	PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nature Communications, 2020, 11, 2135.	12.8	114
28	COVID-19 impact on early career investigators: a call for action. Nature Reviews Cancer, 2020, 20, 357-358.	28.4	48
29	Beyond glycolysis: Hypoxia signaling as a master regulator of alternative metabolic pathways and the implications in clear cell renal cell carcinoma. Cancer Letters, 2020, 489, 19-28.	7.2	23
30	Pilot Study of [18F] Fluorodeoxyglucose Positron Emission Tomography (FDG-PET)/Magnetic Resonance Imaging (MRI) for Staging of Muscle-invasive Bladder Cancer (MIBC). Clinical Genitourinary Cancer, 2020, 18, 378-386.e1.	1.9	15
31	Modeling clear cell renal cell carcinoma and therapeutic implications. Oncogene, 2020, 39, 3413-3426.	5.9	86
32	Macrophages Promote Aortic Valve Cell Calcification and Alter STAT3 Splicing. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e153-e165.	2.4	24
33	Neoadjuvant pazopanib and molecular analysis of tissue response in renal cell carcinoma. JCI Insight, 2020, 5, .	5.0	11
34	DNA hypomethylation promotes transposable element expression and activation of immune signaling in renal cell cancer. JCI Insight, 2020, 5, .	5.0	41
35	CD28 costimulation drives tumor-infiltrating T cell glycolysis to promote inflammation. JCI Insight, 2020, 5, .	5.0	52
36	The tumor microenvironment as a metabolic barrier to effector T cells and immunotherapy. ELife, 2020, 9 , .	6.0	168

3

#	Article	IF	Citations
37	Disruptions in the realm of medical science. Journal of Clinical Investigation, 2020, 130, 2731-2732.	8.2	O
38	$\langle i \rangle$ SETD2 $\langle i \rangle$ loss sensitizes cells to PI3KÎ ² and AKT inhibition. Oncotarget, 2019, 10, 647-659.	1.8	7
39	Updated Recommendations on the Diagnosis, Management, and Clinical Trial Eligibility Criteria for Patients With Renal Medullary Carcinoma. Clinical Genitourinary Cancer, 2019, 17, 1-6.	1.9	60
40	Transformation to academic leadership: The role of mentorship and executive coaching Consulting Psychology Journal, 2019, 71, 141-160.	0.8	16
41	Hypoxia, angiogenesis, and metabolism in the hereditary kidney cancers. Journal of Clinical Investigation, 2019, 129, 442-451.	8.2	76
42	The 2019 Nobel Prize honors fundamental discoveries in hypoxia response. Journal of Clinical Investigation, 2019, 130, 4-6.	8.2	17
43	The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. Cell Reports, 2018, 23, 313-326.e5.	6.4	523
44	Set2 methyltransferase facilitates cell cycle progression by maintaining transcriptional fidelity. Nucleic Acids Research, 2018, 46, 1331-1344.	14.5	23
45	High Frequency of Ovarian Cyst Development in Vhl;Snf5 Mice. American Journal of Pathology, 2018, 188, 1510-1516.	3.8	0
46	Phase II Study of Two Weeks on, One Week off Sunitinib Scheduling in Patients With Metastatic Renal Cell Carcinoma. Journal of Clinical Oncology, 2018, 36, 1588-1593.	1.6	39
47	Metabolic Pathways in Kidney Cancer: Current Therapies and Future Directions. Journal of Clinical Oncology, 2018, 36, 3540-3546.	1.6	41
48	Systematic Review: ClearCode 34 – A Validated Prognostic Signature in Clear Cell Renal Cell Carcinoma (ccRCC). Kidney Cancer, 2018, 2, 23-29.	0.4	23
49	Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism. Cell, 2018, 175, 1780-1795.e19.	28.9	445
50	Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors. JAMA Oncology, 2018, 4, 1721.	7.1	1,625
51	VHL substrate transcription factor ZHX2 as an oncogenic driver in clear cell renal cell carcinoma. Science, 2018, 361, 290-295.	12.6	134
52	Epigenetic modifiers: activities in renal cell carcinoma. Nature Reviews Urology, 2018, 15, 599-614.	3.8	68
53	<i>SETD2</i> Haploinsufficiency for Microtubule Methylation Is an Early Driver of Genomic Instability in Renal Cell Carcinoma. Cancer Research, 2018, 78, 3135-3146.	0.9	48
54	Ultrasound Molecular Imaging of VEGFR-2 in Clear-Cell Renal Cell Carcinoma Tracks Disease Response to Antiangiogenic and Notch-Inhibition Therapy. Theranostics, 2018, 8, 141-155.	10.0	33

#	Article	IF	Citations
55	Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nature Medicine, 2018, 24, 749-757.	30.7	900
56	Endogenous retrovirus expression is associated with response to immune checkpoint pathway in clear cell renal cell carcinoma. JCI Insight, $2018, 3, \ldots$	5.0	128
57	Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. Journal of Clinical Investigation, 2018, 128, 4804-4820.	8.2	210
58	Balancing dual demands on the physician-scientist workforce. Journal of Clinical Investigation, 2018, 128, 3204-3205.	8.2	5
59	Strategies to overcome therapeutic resistance in renal cell carcinoma. Urologic Oncology: Seminars and Original Investigations, 2017, 35, 102-110.	1.6	35
60	Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell, 2017, 31, 181-193.	16.8	532
61	Molecular Subtypes Improve Prognostic Value of International Metastatic Renal Cell Carcinoma Database Consortium Prognostic Model. Oncologist, 2017, 22, 286-292.	3.7	54
62	Clinical and immunologic correlates of response to PD-1 blockade in a patient with metastatic renal medullary carcinoma., 2017, 5, 1.		68
63	Management and outcomes of patients with renal medullary carcinoma: a multicentre collaborative study. BJU International, 2017, 120, 782-792.	2.5	68
64	HNF1B Loss Exacerbates the Development of Chromophobe Renal Cell Carcinomas. Cancer Research, 2017, 77, 5313-5326.	0.9	19
65	Renal cancer subtypes: Should we be lumping or splitting for therapeutic decision making?. Cancer, 2017, 123, 200-209.	4.1	30
66	A Case Report of Severe Type B Lactic Acidosis Following First Dose of Nivolumab in a VHL-Mutated Metastatic Renal Cell Carcinoma. Kidney Cancer, 2017, 1, 83-88.	0.4	4
67	Metabolic Alterations in Cancer and Their Potential as Therapeutic Targets. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 825-832.	3.8	25
68	Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight, 2017, 2, .	5.0	257
69	Renal Medullary Carcinoma: Establishing Standards in Practice. Journal of Oncology Practice, 2017, 13, 414-421.	2.5	52
70	Untangling ccRCC prognosis with SLINKY. Oncotarget, 2017, 8, 18620-18621.	1.8	1
71	Tyrosine Kinase Signaling in Clear Cell and Papillary Renal Cell Carcinoma Revealed by Mass Spectrometry–Based Phosphotyrosine Proteomics. Clinical Cancer Research, 2016, 22, 5605-5616.	7.0	19
72	AMPK Is Essential to Balance Glycolysis and Mitochondrial Metabolism to Control T-ALL Cell Stress and Survival. Cell Metabolism, 2016, 23, 649-662.	16.2	195

#	Article	IF	CITATIONS
73	Rest ASSUREd, much can be learned from adjuvant studies in renal cancer. Nature Reviews Nephrology, 2016, 12, 317-318.	9.6	7
74	Methylated \hat{l}_{\pm} -tubulin antibodies recognize a new microtubule modification on mitotic microtubules. MAbs, 2016, 8, 1590-1597.	5.2	15
75	Dual Chromatin and Cytoskeletal Remodeling by SETD2. Cell, 2016, 166, 950-962.	28.9	204
76	Tumor Mutational Load and Immune Parameters across Metastatic Renal Cell Carcinoma Risk Groups. Cancer Immunology Research, 2016, 4, 820-822.	3.4	63
77	Structure/Function Analysis of Recurrent Mutations in SETD2 Protein Reveals a Critical and Conserved Role for a SET Domain Residue in Maintaining Protein Stability and Histone H3 Lys-36 Trimethylation. Journal of Biological Chemistry, 2016, 291, 21283-21295.	3.4	64
78	Insights into the Genetic Basis of the Renal Cell Carcinomas from The Cancer Genome Atlas. Molecular Cancer Research, 2016, 14, 589-598.	3.4	29
79	Alternate Metabolic Programs Define Regional Variation of Relevant Biological Features in Renal Cell Carcinoma Progression. Clinical Cancer Research, 2016, 22, 2950-2959.	7.0	21
80	Management of Indeterminate Cystic Kidney Lesions: Review of Contrast-enhanced Ultrasound as a Diagnostic Tool. Urology, 2016, 87, 1-10.	1.0	23
81	Patients with ClearCode34-identified molecular subtypes of clear cell renal cell carcinoma represent unique populations with distinct comorbidities. Urologic Oncology: Seminars and Original Investigations, 2016, 34, 122.e1-122.e7.	1.6	23
82	Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. New England Journal of Medicine, 2016, 374, 135-145.	27.0	1,040
83	Ror2 as a Therapeutic Target in Cancer. , 2015, 150, 143-148.		80
84	Neoadjuvant chemotherapy administration and time to cystectomy for muscle-invasive bladder cancer: An evaluation of transitions between academic and community settings. Urologic Oncology: Seminars and Original Investigations, 2015, 33, 386.e1-386.e6.	1.6	15
85	HIF1α and HIF2α Exert Distinct Nutrient Preferences in Renal Cells. PLoS ONE, 2014, 9, e98705.	2.5	13
86	ClearCode34: A Prognostic Risk Predictor for Localized Clear Cell Renal Cell Carcinoma. European Urology, 2014, 66, 77-84.	1.9	234
87	Renal cell carcinoma. BMJ, The, 2014, 349, g4797-g4797.	6.0	509
88	Reply to Alexander S. Parker, Brad C. Leibovich, Jeanette E. Eckel-Passow, John C. Cheville's Letter to the Editor re: Samira A. Brooks, A. Rose Brannon, Joel S. Parker, et al. ClearCode34: A Prognostic Risk Predictor for Localized Clear Cell Renal Cell Carcinoma. Eur Urol 2014;66:77–84. European Urology, 2014, 66, e92.	1.9	0
89	The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma. Cancer Cell, 2014, 26, 319-330.	16.8	665
90	Roadmap for the development of the University of North Carolina at Chapel Hill Genitourinary OncoLogy Databaseâ€"UNC GOLD. Urologic Oncology: Seminars and Original Investigations, 2014, 32, 32.e1-32.e9.	1.6	8

#	Article	IF	CITATIONS
91	Expression of Ror2 Mediates Invasive Phenotypes in Renal Cell Carcinoma. PLoS ONE, 2014, 9, e116101.	2.5	20
92	Receptor Tyrosine Kinase-like Orphan Receptor 2 (Ror2) Expression Creates a Poised State of Wnt Signaling in Renal Cancer. Journal of Biological Chemistry, 2013, 288, 26301-26310.	3.4	29
93	Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncology, The, 2013, 14, 159-167.	10.7	383
94	InÂVivo HIF-Mediated Reductive Carboxylation Is Regulated by Citrate Levels and Sensitizes VHL-Deficient Cells to Glutamine Deprivation. Cell Metabolism, 2013, 17, 372-385.	16.2	280
95	State of the Science: An Update on Renal Cell Carcinoma. Molecular Cancer Research, 2012, 10, 859-880.	3.4	142
96	Recent updates in renal cell carcinoma. Current Opinion in Oncology, 2010, 22, 250-256.	2.4	31
97	Molecular Stratification of Clear Cell Renal Cell Carcinoma by Consensus Clustering Reveals Distinct Subtypes and Survival Patterns. Genes and Cancer, 2010, 1, 152-163.	1.9	283
98	Neoadjuvant treatment of renal cell carcinoma. Urologic Oncology: Seminars and Original Investigations, 2010, 28, 69-73.	1.6	8
99	HIF-α Effects on c-Myc Distinguish Two Subtypes of Sporadic VHL-Deficient Clear Cell Renal Carcinoma. Cancer Cell, 2008, 14, 435-446.	16.8	441
100	High-Dose-Intensity MVAC for Advanced Renal Medullary Carcinoma: Report of Three Cases and Literature Review. Urology, 2008, 72, 659-663.	1.0	43
101	<i>VHL</i> iinactivation in renal cell carcinoma: implications for diagnosis, prognosis and treatment. Expert Review of Anticancer Therapy, 2008, 8, 63-73.	2.4	63
102	von Hippel–Lindau mutation in mice recapitulates Chuvash polycythemia via hypoxia-inducible factor-2α signaling and splenic erythropoiesis. Journal of Clinical Investigation, 2007, 117, 3879-89.	8.2	102
103	Renal cell carcinoma. Current Opinion in Oncology, 2004, 16, 247-252.	2.4	9
104	HIF transcription factor expression and induction of hypoxic response genes in a retroperitoneal angiosarcoma. Anticancer Research, 2004, 24, 167-9.	1.1	22
105	Ligand-independent integrin beta1 signaling supports lung adenocarcinoma development. JCI Insight, 0,	5.0	8