Dahui Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4781320/publications.pdf

Version: 2024-02-01

74163 81900 5,846 97 39 75 h-index citations g-index papers 99 99 99 6884 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Syntheses of Anthraceneâ€Centered Large PAH Diimides and Conjugated Polymers**. Chemistry - A European Journal, 2022, 28, .	3.3	2
2	A Vinyleneâ€Linkerâ€Based Polymer Acceptor Featuring a Coplanar and Rigid Molecular Conformation Enables Highâ€Performance Allâ€Polymer Solar Cells with Over 17% Efficiency. Advanced Materials, 2022, 34, e2200361.	21.0	131
3	Pyrene-1,5,6,10-tetracarboxyl diimide: a new building block for high-performance electron-transporting polymers. Journal of Materials Chemistry C, 2021, 9, 7599-7606.	5.5	14
4	Regioâ€Regular Polymer Acceptors Enabled by Determined Fluorination on End Groups for Allâ€Polymer Solar Cells with 15.2 % Efficiency. Angewandte Chemie, 2021, 133, 10225-10234.	2.0	13
5	Regioâ€Regular Polymer Acceptors Enabled by Determined Fluorination on End Groups for Allâ€Polymer Solar Cells with 15.2 % Efficiency. Angewandte Chemie - International Edition, 2021, 60, 10137-10146.	13.8	145
6	A Difluoroâ€Monobromo End Group Enables Highâ€Performance Polymer Acceptor and Efficient Allâ€Polymer Solar Cells Processable with Green Solvent under Ambient Condition. Advanced Functional Materials, 2021, 31, 2100791.	14.9	89
7	White Light Luminescence from a Homoâ€conjugated Molecule with Thermally Activated Delayed Fluorescence. Chemistry - an Asian Journal, 2021, 16, 1893-1896.	3.3	1
8	Thiophene-Fused Perylenediimide-Based Polymer Acceptors for High-Performance All-Polymer Solar Cells. Macromolecules, 2021, 54, 1499-1506.	4.8	13
9	Aromatic Stacking Mediated Spin–Spin Coupling in Cyclophane-Assembled Diradicals. Journal of the American Chemical Society, 2021, 143, 17690-17700.	13.7	26
10	Toward MÃ \P bius and Tubular Cyclopolyarene Nanorings via Arylbutadiyne Macrocycles. Angewandte Chemie, 2020, 132, 14964-14970.	2.0	7
11	Toward Möbius and Tubular Cyclopolyarene Nanorings via Arylbutadiyne Macrocycles. Angewandte Chemie - International Edition, 2020, 59, 14854-14860.	13.8	17
12	A polycyclic aromatic hydrocarbon diradical with pH-responsive magnetic properties. Chemical Science, 2020, 11, 5565-5571.	7.4	39
13	SWIR Photodetection and Visualization Realized by Incorporating an Organic SWIR Sensitive Bulk Heterojunction. Advanced Science, 2020, 7, 2000444.	11.2	67
14	Toward an Air-Stable Triradical with Strong Spin Coupling: Synthesis of Substituted Truxene-5,10,15-triyl. Journal of Organic Chemistry, 2020, 85, 5761-5770.	3.2	11
15	Direct Observation of Aggregationâ€Induced Emission Mechanism. Angewandte Chemie, 2020, 132, 15013-15019.	2.0	9
16	Direct Observation of Aggregationâ€Induced Emission Mechanism. Angewandte Chemie - International Edition, 2020, 59, 14903-14909.	13.8	85
17	Tweaking the Molecular Geometry of a Tetraperylenediimide Acceptor. ACS Applied Materials & Samp; Interfaces, 2019, 11, 6970-6977.	8.0	20
18	Ternary organic solar cells based on two compatible PDI-based acceptors with an enhanced power conversion efficiency. Journal of Materials Chemistry A, 2019, 7, 3552-3557.	10.3	58

#	Article	IF	CITATIONS
19	Stepwise on-surface dissymmetric reaction to construct binodal organometallic network. Nature Communications, 2019, 10, 2545.	12.8	26
20	A chlorinated polymer promoted analogue co-donors for efficient ternary all-polymer solar cells. Science China Chemistry, 2019, 62, 238-244.	8.2	29
21	Concurrent Cooperative J-Aggregates and Anticooperative H-Aggregates. Journal of the American Chemical Society, 2018, 140, 5764-5773.	13.7	113
22	Tetrahydrosalen Uranyl(VI) Complexes: Crystal Structures and Solution Binding Study. European Journal of Inorganic Chemistry, 2018, 2018, 1185-1191.	2.0	15
23	New Bichromophoric Triplet Photosensitizer Designs and Their Application in Triplet–Triplet Annihilation Upconversion. Advanced Optical Materials, 2018, 6, 1700981.	7.3	46
24	Improved Electron Transport with Reduced Contact Resistance in Nâ€Doped Polymer Fieldâ€Effect Transistors with a Dimeric Dopant. Macromolecular Rapid Communications, 2018, 39, e1700726.	3.9	9
25	Bromine adatom promoted C–H bond activation in terminal alkynes at room temperature on Ag(111). Physical Chemistry Chemical Physics, 2018, 20, 11081-11088.	2.8	35
26	Roomâ€Temperatureâ€Operated Ultrasensitive Broadband Photodetectors by Perovskite Incorporated with Conjugated Polymer and Singleâ€Wall Carbon Nanotubes. Advanced Functional Materials, 2018, 28, 1705541.	14.9	69
27	Best Practices for New Polymers and Nanoparticulate Systems. Chemistry of Materials, 2018, 30, 6587-6588.	6.7	4
28	Energy Transfer Dynamics in Triplet–Triplet Annihilation Upconversion Using a Bichromophoric Heavy-Atom-Free Sensitizer. Journal of Physical Chemistry A, 2018, 122, 6673-6682.	2.5	40
29	Enhanced Triplet Sensitizing Ability of an Iridium Complex by Intramolecular Energy-Transfer Mechanism. Journal of Physical Chemistry A, 2018, 122, 6963-6969.	2.5	9
30	Side-chain engineering of perylenediimide-vinylene polymer acceptors for high-performance all-polymer solar cells. Materials Chemistry Frontiers, 2017, 1, 1362-1368.	5.9	24
31	Synthesis, solvent-dependent emission and two-photon absorption of a triangular –[D–π–A] ₃ – macrocycle. Organic Chemistry Frontiers, 2017, 4, 737-742.	4.5	3
32	Rollâ€ŧoâ€Roll Printed Largeâ€Area Allâ€Polymer Solar Cells with 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend. Advanced Energy Materials, 2017, 7, 1602742.	19.5	214
33	Improved Performance of Allâ€Polymer Solar Cells Enabled by Naphthodiperylenetetraimideâ€Based Polymer Acceptor. Advanced Materials, 2017, 29, 1700309.	21.0	306
34	All-polymer solar cells with perylenediimide polymer acceptors. Chinese Journal of Polymer Science (English Edition), 2017, 35, 293-301.	3.8	30
35	Selective Adsorption of Coronene atop the Polycyclic Aromatic Diimide Monolayer Investigated by STM and DFT. ACS Omega, 2017, 2, 5611-5617.	3.5	5
36	Two-dimensional (2D) self-assembly of oligo(phenylene-ethynylene) molecules and their triangular platinum(ii) diimine complexes studied using STM. Physical Chemistry Chemical Physics, 2017, 19, 31284-31289.	2.8	9

#	Article	IF	CITATIONS
37	Triplet–Triplet Annihilation Photon Upconversion in Polymer Thin Film: Sensitizer Design. ACS Applied Materials & Samp; Interfaces, 2016, 8, 11441-11449.	8.0	59
38	Stabilizing surface Ag adatoms into tunable single atom arrays by terminal alkyne assembly. Chemical Communications, 2016, 52, 12944-12947.	4.1	15
39	A Vinyleneâ€Bridged Perylenediimideâ€Based Polymeric Acceptor Enabling Efficient Allâ€Polymer Solar Cells Processed under Ambient Conditions. Advanced Materials, 2016, 28, 8483-8489.	21.0	222
40	Helical Folding Competing with Unfolded Aggregation in Phenylene Ethynylene Foldamers. Chemistry - A European Journal, 2016, 22, 11028-11034.	3.3	5
41	STM analysis of surface-adsorbed conjugated oligo(<i>p</i> phenylene-ethynylene) (OPE) nanostructures. Physical Chemistry Chemical Physics, 2016, 18, 31725-31731.	2.8	1
42	A size, shape and concentration controlled self-assembling structure with host–guest recognition at the liquid–solid interface studied by STM. Nanoscale, 2016, 8, 11962-11968.	5.6	32
43	All-Polymer Solar Cells Employing Non-Halogenated Solvent and Additive. Chemistry of Materials, 2016, 28, 5037-5042.	6.7	69
44	Iridium-Based High-Sensitivity Oxygen Sensors and Photosensitizers with Ultralong Triplet Lifetimes. ACS Applied Materials & ACS ACS Applied Materials & ACS	8.0	63
45	New cyclometalated transition-metal based photosensitizers for singlet oxygen generation and photodynamic therapy. Science China Chemistry, 2016, 59, 40-52.	8.2	46
46	Supramolecular aggregates with distinct optical properties from PDI oligomers of similar structures. Physical Chemistry Chemical Physics, 2016, 18, 1905-1910.	2.8	23
47	Developing efficient heavy-atom-free photosensitizers applicable to TTA upconversion in polymer films. Chemical Science, 2016, 7, 1233-1237.	7.4	106
48	Syntheses of polycyclic aromatic diimides via intramolecular cyclization of maleic acid derivatives. New Journal of Chemistry, 2016, 40, 113-121.	2.8	20
49	A NIR dye with high-performance n-type semiconducting properties. Chemical Science, 2016, 7, 499-504.	7.4	48
50	Lattice-Directed Formation of Covalent and Organometallic Molecular Wires by Terminal Alkynes on Ag Surfaces. ACS Nano, 2015, 9, 6305-6314.	14.6	114
51	Two- and three-photon absorption and excitation phosphorescence of oligofluorene-substituted Ir(ppy) ₃ . Chemical Communications, 2015, 51, 3446-3449.	4.1	26
52	Two-Dimensional Self-Assembly of a Pair of Triangular Macrocycles Studied by STM. Journal of Physical Chemistry C, 2015, 119, 9227-9233.	3.1	14
53	Triangular Platinum(II) Metallacycles: Syntheses, Photophysics, and Nonlinear Optics. ACS Applied Materials & Description (II) Metallacycles: Syntheses, Photophysics, and Nonlinear Optics. ACS Applied Materials & Description (II) Metallacycles: Syntheses, Photophysics, and Nonlinear Optics. ACS Applied Materials & Description (II) Metallacycles: Syntheses, Photophysics, and Nonlinear Optics. ACS Applied Materials & Description (II) Metallacycles: Syntheses, Photophysics, and Nonlinear Optics. ACS Applied Materials & Description (II) Metallacycles: Syntheses, Photophysics, and Nonlinear Optics. ACS Applied Materials & Description (II) Metallacycles: Syntheses, Photophysics, and Nonlinear Optics. ACS Applied Materials & Description (II) Metallacycles: Syntheses, Photophysics, and Nonlinear Optics. ACS Applied Materials & Description (II) Metallacycles: Syntheses, Photophysics, and Nonlinear Optics. ACS Applied Materials & Description (II) Metallacycles: Syntheses, Photophysics, and Nonlinear Optics. ACS Applied Materials & Description (II) Metallacycles: ACS Applied Materials & D	8.0	19
54	Cyano- and chloro-substituted coronene diimides as solution-processable electron-transporting semiconductors. Chemical Communications, 2015, 51, 7144-7147.	4.1	21

#	Article	IF	CITATIONS
55	Cyclo-oligomerization of $6,12$ -Diethynyl Indeno $[1,2-\langle i \rangle b \langle i \rangle]$ fluorenes via Diradical Intermediates. Organic Letters, 2015, 17, 5694-5697.	4.6	27
56	Flow-enhanced solution printing of all-polymer solar cells. Nature Communications, 2015, 6, 7955.	12.8	221
57	High Performance Allâ€Polymer Solar Cell via Polymer Sideâ€Chain Engineering. Advanced Materials, 2014, 26, 3767-3772.	21.0	320
58	Probing the intermolecular interactions of aromatic amides containing N-heterocycles and triptycene. CrystEngComm, 2014, 16, 4265-4273.	2.6	15
59	Sensitizer design for efficient triplet–triplet annihilation upconversion: annihilator-appended tris-cyclometalated Ir(iii) complexes. Chemical Communications, 2014, 50, 7828.	4.1	50
60	Triangular-shaped molecular random tiling and molecular rotation in two-dimensional glassy networks. Nanoscale, 2014, 6, 7221-7225.	5.6	9
61	Intramolecular Interactions of Highly π-Conjugated Perylenediimide Oligomers Probed by Single-Molecule Spectroscopy. Journal of Physical Chemistry Letters, 2014, 5, 3895-3901.	4.6	12
62	NIR J-Aggregates of Hydroazaheptacene Tetraimides. Journal of the American Chemical Society, 2014, 136, 28-31.	13.7	109
63	Water-Soluble Triscyclometalated Organoiridium Complex: Phosphorescent Nanoparticle Formation, Nonlinear Optics, and Application for Cell Imaging. ACS Applied Materials & Samp; Interfaces, 2014, 6, 3122-3131.	8.0	38
64	Chemical designs of functional photoactive molecular assemblies. Chemical Society Reviews, 2014, 43, 4199-4221.	38.1	55
65	Efficient molecular recognition based on nonspecific van der Waals interaction at the solid/liquid interface. Chemical Communications, 2014, 50, 11946-11949.	4.1	14
66	Heterohexacene Diimides: <i>Anti-</i> and <i>Syn-</i> Isomers and Quinonoid Forms. Organic Letters, 2014, 16, 1852-1855.	4.6	24
67	New polymer acceptors for organic solar cells: the effect of regio-regularity and device configuration. Journal of Materials Chemistry A, 2013, 1, 6609.	10.3	82
68	Towards rational design of organic electron acceptors for photovoltaics: a study based on perylenediimide derivatives. Chemical Science, 2013, 4, 4389.	7.4	242
69	Effect of bulky substituents on the self-assembly and mixing behavior of arylene ethynylene macrocycles at the solid/liquid interface. Physical Chemistry Chemical Physics, 2013, 15, 11748.	2.8	19
70	Assemblies at the Liquidâ€Solid Interface: Chirality Expression from Molecular Conformers. ChemPhysChem, 2013, 14, 92-95.	2.1	5
71	Electron-transporting PAHs with dual perylenediimides: syntheses and semiconductive characterizations. Chemical Communications, 2013, 49, 2882.	4.1	30
72	Triangular arylene ethynylene macrocycles: syntheses, optical, and thermotropic liquid crystalline properties. Soft Matter, 2012, 8, 2405.	2.7	16

#	Article	IF	CITATIONS
73	Unusual Temperature-Dependent Photophysics of Oligofluorene-Substituted Tris-Cyclometalated Iridium Complexes. Macromolecules, 2012, 45, 133-141.	4.8	27
74	Large hydroazaacene diimides: synthesis, tautomerism, halochromism, and redox-switchable NIR optics. Chemical Science, 2012, 3, 3175.	7.4	56
75	Coronenediimides Synthesized via ICl-Induced Cyclization of Diethynyl Perylenediimides. Organic Letters, 2012, 14, 4654-4657.	4.6	29
76	Helical Folding of Conjugated Oligo(phenyleneethynylene): Chainâ€Length Dependence, Solvent Effects, and Intermolecular Assembly. Chemistry - an Asian Journal, 2012, 7, 2386-2393.	3.3	12
77	Conformational polymorphism of multimeric perylene derivatives observed by using scanning tunneling microscopy. CrystEngComm, 2011, 13, 5566.	2.6	7
78	A Foldamer at the Liquid/Graphite Interface: The Effect of Interfacial Interactions, Solvent, Concentration, and Temperature. Chemistry - A European Journal, 2011, 17, 7061-7068.	3.3	21
79	Oligo(<i>p</i> â€phenyleneâ€ethynylene)s with Backbone Conformation Controlled by Competitive Intramolecular Hydrogen Bonds. Chemistry - A European Journal, 2011, 17, 7087-7094.	3.3	29
80	Recent advances in arylene ethynylene folding systems: Toward functioning. Coordination Chemistry Reviews, 2010, 254, 954-971.	18.8	50
81	Oligo- and Polyfluorene-Tetheredfac-Ir(ppy)3: Substitution Effects. Macromolecules, 2010, 43, 8479-8487.	4.8	28
82	Arylene Ethynylene Macrocycles with Intramolecular Ï€â^Ï€ Stacking. Organic Letters, 2010, 12, 4784-4787.	4.6	34
83	A photoswitch based on self-assembled single microwire of a phenyleneethynylene macrocycle. Chemical Communications, 2010, 46, 5725.	4.1	43
84	Conjugated Dimeric and Trimeric Perylenediimide Oligomers. Organic Letters, 2009, 11, 3426-3429.	4.6	68
85	Theoretical Studies on the Thermodynamic Product Size Distribution in Nucleationâ^'Elongation Polymerization under Imbalanced Stoichiometry. Macromolecules, 2008, 41, 4029-4036.	4.8	18
86	Oligo(<i>p</i> -phenyleneethynylene)s with Hydrogen-Bonded Coplanar Conformation. Organic Letters, 2008, 10, 2669-2672.	4.6	62
87	Folding a Conjugated Chain: Oligo(<i>o</i> -phenyleneethynylene- <i>alt</i> - <i>p</i> -phenyleneethynyleneethynylene). Organic Letters, 2008, 10, 4283-4286.	4.6	38
88	Sensory Responses in Solution vs Solid State:Â A Fluorescence Quenching Study of Poly(iptycenebutadiynylene)s. Macromolecules, 2005, 38, 9377-9384.	4.8	297
89	Conjugated Polymers Containing Large Soluble Diethynyl Iptycenes. Organic Letters, 2005, 7, 4357-4360.	4.6	40
90	Nucleation—Elongation: A Mechanism for Cooperative Supramolecular Polymerization. ChemInform, 2004, 35, no.	0.0	0

ДАНИІ ZHAO

#	Article	IF	CITATION
91	Shape-Persistent Arylene Ethynylene Macrocycles: Syntheses and Supramolecular Chemistry. ChemInform, 2003, 34, no.	0.0	0
92	Nucleation \hat{a} Elongation Polymerization under Imbalanced Stoichiometry. Journal of the American Chemical Society, 2003, 125, 16294-16299.	13.7	66
93	Nucleation–elongation: a mechanism for cooperative supramolecular polymerization. Organic and Biomolecular Chemistry, 2003, 1, 3471-3491.	2.8	421
94	Shape-persistent arylene ethynylene macrocycles: syntheses and supramolecular chemistry. Chemical Communications, 2003, , 807-818.	4.1	327
95	Folding-Driven Reversible Polymerization of Oligo(m-phenylene ethynylene) Imines:  Solvent and Starter Sequence Studies. Macromolecules, 2003, 36, 2712-2720.	4.8	53
96	Reversible Polymerization Driven by Folding. Journal of the American Chemical Society, 2002, 124, 9996-9997.	13.7	88
97	Synthesis and Self-Association of an Imine-Containingm-Phenylene Ethynylene Macrocycle. Journal of Organic Chemistry, 2002, 67, 3548-3554.	3.2	108