
Artur M Cavaco-Paulo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4780744/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biotechnology of functional proteins and peptides for hair cosmetic formulations. Trends in Biotechnology, 2022, 40, 591-605.	9.3	15
2	Grafting of Poly(tyrosine) by Laccase Improves the Tensile Strength and Anti-shrinkage of Wool. Journal of Natural Fibers, 2022, 19, 10979-10991.	3.1	7
3	Laccase-catalyzed cross-linking of BSA mediated by tyrosine. International Journal of Biological Macromolecules, 2021, 166, 798-805.	7.5	16
4	Ohmic heating as a new tool for protein scaffold engineering. Materials Science and Engineering C, 2021, 120, 111784.	7.3	5
5	Biotechnological applications of mammalian odorant-binding proteins. Critical Reviews in Biotechnology, 2021, 41, 441-455.	9.0	12
6	Hair resistance to mechanical wear. Wear, 2021, 470-471, 203612.	3.1	3
7	Proteins as Hair Styling Agents. Applied Sciences (Switzerland), 2021, 11, 4245.	2.5	5
8	Effect of ultrasound on protein functionality. Ultrasonics Sonochemistry, 2021, 76, 105653.	8.2	64
9	Changing the shape of wool yarns via laccase-mediated grafting of tyrosine. Journal of Biotechnology, 2021, 339, 73-80.	3.8	3
10	Production of antimicrobial powders of guaiacol oligomers by a laccase-catalyzed synthesis reaction. Process Biochemistry, 2021, 111, 213-220.	3.7	7
11	Satureja montana Essential Oil, Zein Nanoparticles and Their Combination as a Biocontrol Strategy to Reduce Bacterial Spot Disease on Tomato Plants. Horticulturae, 2021, 7, 584.	2.8	7
12	Zein impart hydrophobic and antimicrobial properties to cotton textiles. Reactive and Functional Polymers, 2020, 154, 104664.	4.1	22
13	Stratum corneum lipid matrix with unusual packing: A molecular dynamics study. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110928.	5.0	20
14	Ohmic heating as an innovative approach for the production of keratin films. International Journal of Biological Macromolecules, 2020, 150, 671-680.	7.5	21
15	Antimicrobial Properties of Composites of Chitosan-Silver Doped Zeolites. Journal of Nanoscience and Nanotechnology, 2020, 20, 6295-6304.	0.9	2
16	Release of Fragrances from Cotton Functionalized with Carbohydrate-Binding Module Proteins. ACS Applied Materials & Interfaces, 2019, 11, 28499-28506.	8.0	16
17	Enzyme stabilization for biotechnological applications. , 2019, , 107-131.		3
18	α-Chymotrypsin catalysed oligopeptide synthesis for hair modelling. Journal of Cleaner Production, 2019, 237, 117743.	9.3	2

#	Article	IF	CITATIONS
19	Ultrasound-Assisted Encapsulation of Sacha Inchi (Plukenetia volubilis Linneo.) Oil in Alginate-Chitosan Nanoparticles. Polymers, 2019, 11, 1245.	4.5	21
20	Fusion proteins with chromogenic and keratin binding modules. Scientific Reports, 2019, 9, 14044.	3.3	12
21	Crystallin Fusion Proteins Improve the Thermal Properties of Hair. Frontiers in Bioengineering and Biotechnology, 2019, 7, 298.	4.1	7
22	Catalytic Activation of Esterases by PEGylation for Polyester Synthesis. ChemCatChem, 2019, 11, 2490-2499.	3.7	11
23	Design of a chromogenic substrate for elastase based on split GFP system—Proof of concept for colour switch sensors. Biotechnology Reports (Amsterdam, Netherlands), 2019, 22, e00324.	4.4	2
24	Functionalization of Bacterial Cellulose Nonwoven by Poly(fluorophenol) to Improve Its Hydrophobicity and Durability. Frontiers in Bioengineering and Biotechnology, 2019, 7, 332.	4.1	18
25	Polymeric Electrospun Fibrous Dressings for Topical Co-delivery of Acyclovir and Omega-3 Fatty Acids. Frontiers in Bioengineering and Biotechnology, 2019, 7, 390.	4.1	20
26	Coloured and low conductive fabrics by in situ laccase-catalysed polymerization. Process Biochemistry, 2019, 77, 77-84.	3.7	12
27	"In-situ―lipase-catalyzed cotton coating with polyesters from ethylene glycol and glycerol. Process Biochemistry, 2018, 66, 82-88.	3.7	12
28	Bio-coloration of bacterial cellulose assisted by immobilized laccase. AMB Express, 2018, 8, 19.	3.0	26
29	Enzymatic modification of jute fabrics for enhancing the reinforcement in jute/PP composites. Journal of Thermoplastic Composite Materials, 2018, 31, 483-499.	4.2	17
30	Laccase: a green catalyst for the biosynthesis of poly-phenols. Critical Reviews in Biotechnology, 2018, 38, 294-307.	9.0	134
31	OBP fused with cell-penetrating peptides promotes liposomal transduction. Colloids and Surfaces B: Biointerfaces, 2018, 161, 645-653.	5.0	17
32	Practical insights on enzyme stabilization. Critical Reviews in Biotechnology, 2018, 38, 335-350.	9.0	152
33	Ultrasound-assisted lipase catalyzed hydrolysis of aspirin methyl ester. Ultrasonics Sonochemistry, 2018, 40, 587-593.	8.2	22
34	Conductive Cotton by In Situ Laccase-Polymerization of Aniline. Polymers, 2018, 10, 1023.	4.5	19
35	Internalization of Methotrexate Conjugates by Folate Receptor-α. Biochemistry, 2018, 57, 6780-6786.	2.5	12
36	Polymers from Bamboo Extracts Produced by Laccase. Polymers, 2018, 10, 1141.	4.5	9

#	Article	IF	CITATIONS
37	Exploring PEGylated and immobilized laccases for catechol polymerization. AMB Express, 2018, 8, 134.	3.0	19
38	Two Engineered OBPs with opposite temperature-dependent affinities towards 1-aminoanthracene. Scientific Reports, 2018, 8, 14844.	3.3	8
39	The effect of high-energy environments on the structure of laccase-polymerized poly(catechol). Ultrasonics Sonochemistry, 2018, 48, 275-280.	8.2	23
40	1-Aminoanthracene Transduction into Liposomes Driven by Odorant-Binding Protein Proximity. ACS Applied Materials & Interfaces, 2018, 10, 27531-27539.	8.0	5
41	Enzymatic polymerization of catechol under high-pressure homogenization for the green coloration of textiles. Journal of Cleaner Production, 2018, 202, 792-798.	9.3	17
42	Ultrasound-assisted extraction of hemicellulose and phenolic compounds from bamboo bast fiber powder. PLoS ONE, 2018, 13, e0197537.	2.5	12
43	Permeation of skin with (C ₆₀) fullerene dispersions. Engineering in Life Sciences, 2017, 17, 732-738.	3.6	8
44	In vivo confocal Raman spectroscopy and molecular dynamics analysis of penetration of retinyl acetate into stratum corneum. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 174, 279-285.	3.9	20
45	PEGylation Greatly Enhances Laccase Polymerase Activity. ChemCatChem, 2017, 9, 3888-3894.	3.7	20
46	Lipase-ultrasound assisted synthesis of polyesters. Ultrasonics Sonochemistry, 2017, 38, 496-502.	8.2	29
47	Peptide—protein interactions within human hair keratins. International Journal of Biological Macromolecules, 2017, 101, 805-814.	7.5	17
48	Modulating antioxidant activity and the controlled release capability of laccase mediated catechin grafting of chitosan. Process Biochemistry, 2017, 59, 65-76.	3.7	23
49	Oil-based cyclo-oligosaccharide nanodevices for drug encapsulation. Colloids and Surfaces B: Biointerfaces, 2017, 159, 259-267.	5.0	5
50	Proteinâ€based nanoformulations for αâ€tocopherol encapsulation. Engineering in Life Sciences, 2017, 17, 523-527.	3.6	6
51	Detection of human neutrophil elastase (HNE) on wound dressings as marker of inflammation. Applied Microbiology and Biotechnology, 2017, 101, 1443-1454.	3.6	27
52	Enzymatic coating of cotton with poly (ethylene glutarate). Process Biochemistry, 2017, 59, 91-96.	3.7	8
53	Enzymatic Treatments to Improve Mechanical Properties and Surface Hydrophobicity of Jute Fiber Membranes. BioResources, 2016, 11, .	1.0	7
54	Albumin-Based Nanodevices as Drug Carriers. Current Pharmaceutical Design, 2016, 22, 1371-1390.	1.9	134

#	Article	IF	CITATIONS
55	Laccaseâ€catalyzed synthesis of conducting polyanilineâ€lignosulfonate composite. Journal of Applied Polymer Science, 2016, 133, .	2.6	6
56	Insights on the mechanical behavior of keratin fibrils. International Journal of Biological Macromolecules, 2016, 89, 477-483.	7.5	13
57	Jute hydrophobization via laccase-catalyzed grafting of fluorophenol and fluoroamine. RSC Advances, 2016, 6, 90427-90434.	3.6	12
58	Albumin/asparaginase capsules prepared by ultrasound to retain ammonia. Applied Microbiology and Biotechnology, 2016, 100, 9499-9508.	3.6	10
59	BSA/HSA ratio modulates the properties of Ca2+-induced cold gelation scaffolds. International Journal of Biological Macromolecules, 2016, 89, 535-544.	7.5	9
60	A biologically active delivery material with dried-rehydrated vesicles containing the anti-inflammatory diclofenac for potential wound healing. Journal of Liposome Research, 2016, 26, 269-275.	3.3	8
61	Protein Formulations for Emulsions and Solid-in-Oil Dispersions. Trends in Biotechnology, 2016, 34, 496-505.	9.3	18
62	Enzymatic coating of jute fabrics for enhancing anti-ultraviolent properties via in-situ polymerization of polyhydric phenols. Journal of Industrial Textiles, 2016, 46, 160-176.	2.4	8
63	Ultrasound enhances lipase-catalyzed synthesis of poly (ethylene glutarate). Ultrasonics Sonochemistry, 2016, 31, 506-511.	8.2	44
64	Enzymatic phosphorylation of hair keratin enhances fast adsorption of cationic moieties. International Journal of Biological Macromolecules, 2016, 85, 476-486.	7.5	10
65	Folate-targeted nanoparticles for rheumatoid arthritis therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1113-1126.	3.3	112
66	On the Routines of Wild-Type Silk Fibroin Processing Toward Silk-Inspired Materials: A Review. Macromolecular Materials and Engineering, 2015, 300, 1199-1216.	3.6	47
67	Hydrophobic surface functionalization of lignocellulosic jute fabrics by enzymatic grafting of octadecylamine. International Journal of Biological Macromolecules, 2015, 79, 353-362.	7.5	42
68	The effects of solvent composition on the affinity of a peptide towards hair keratin: experimental and molecular dynamics data. RSC Advances, 2015, 5, 12365-12371.	3.6	18
69	Enzymatic synthesis of poly(catechin)-antibiotic conjugates: an antimicrobial approach for indwelling catheters. Applied Microbiology and Biotechnology, 2015, 99, 637-651.	3.6	16
70	Ultrasound intensification suppresses the need of methanol excess during the biodiesel production with Lipozyme TL-IM. Ultrasonics Sonochemistry, 2015, 27, 530-535.	8.2	55
71	Size controlled protein nanoemulsions for active targeting of folate receptor positive cells. Colloids and Surfaces B: Biointerfaces, 2015, 135, 90-98.	5.0	26
72	Enzymatic processing of protein-based fibers. Applied Microbiology and Biotechnology, 2015, 99, 10387-10397.	3.6	37

#	Article	IF	CITATIONS
73	Ultrasound enhanced laccase applications. Green Chemistry, 2015, 17, 1362-1374.	9.0	52
74	Phosphorylated Silk Fibroin Matrix for Methotrexate Release. Molecular Pharmaceutics, 2015, 12, 75-86.	4.6	10
75	Stabilization of enzymes in micro-emulsions for ultrasound processes. Biochemical Engineering Journal, 2015, 93, 115-118.	3.6	12
76	Laccase coating of catheters with poly(catechin) for biofilm reduction. Biocatalysis and Biotransformation, 2014, 32, 2-12.	2.0	12
77	Sonochemical and hydrodynamic cavitation reactors for laccase/hydrogen peroxide cotton bleaching. Ultrasonics Sonochemistry, 2014, 21, 774-781.	8.2	31
78	Protein micro- and nano-capsules for biomedical applications. Chemical Society Reviews, 2014, 43, 1361-1371.	38.1	110
79	Sonochemically-induced spectral shift as a probe of green fluorescent protein release from nano capsules. RSC Advances, 2014, 4, 10303-10309.	3.6	2
80	Phosphorylation of silk fibroins improves the cytocompatibility of silk fibroin derived materials: A platform for the production of tuneable material. Biotechnology Journal, 2014, 9, 1267-1278.	3.5	8
81	Design of Novel BSA/Hyaluronic Acid Nanodispersions for Transdermal Pharma Purposes. Molecular Pharmaceutics, 2014, 11, 1479-1488.	4.6	22
82	Ultrasonic pilot-scale reactor for enzymatic bleaching of cotton fabrics. Ultrasonics Sonochemistry, 2014, 21, 1535-1543.	8.2	38
83	The Immobilization of Polyethylene Imine Nano and Microspheres on Glass Using High Intensity Ultrasound. International Journal of Applied Ceramic Technology, 2013, 10, E267.	2.1	1
84	Characterization of ligno-cellulosic materials bleached with oxo-diperoxo-molybdates. Carbohydrate Polymers, 2013, 98, 490-494.	10.2	2
85	In vitro and computational studies of transdermal perfusion of nanoformulations containing a large molecular weight protein. Colloids and Surfaces B: Biointerfaces, 2013, 108, 271-278.	5.0	27
86	Functionalization of gauzes with liposomes entrapping an anti-inflammatory drug: A strategy to improve wound healing. Reactive and Functional Polymers, 2013, 73, 1328-1334.	4.1	26
87	Proteinaceous microspheres for targeted RNA delivery prepared by an ultrasonic emulsification method. Journal of Materials Chemistry B, 2013, 1, 82-90.	5.8	16
88	Enzymatic synthesis of antibody-human serum albumin conjugate for targeted drug delivery using tyrosinase from Agaricus bisporus. RSC Advances, 2013, 3, 1460-1467.	3.6	16
89	Liposome and protein based stealth nanoparticles. Faraday Discussions, 2013, 166, 417.	3.2	26
90	Chitosan–lignosulfonates sono-chemically prepared nanoparticles: Characterisation and potential applications. Colloids and Surfaces B: Biointerfaces, 2013, 103, 1-8.	5.0	81

#	Article	IF	CITATIONS
91	HSA nanocapsules functionalized with monoclonal antibodies for targeted drug delivery. International Journal of Pharmaceutics, 2013, 458, 1-8.	5.2	15
92	The activity of LE10 peptide on biological membranes using molecular dynamics, in vitro and in vivo studies. Colloids and Surfaces B: Biointerfaces, 2013, 106, 240-247.	5.0	10
93	Nonionic surfactants and dispersants for biopolishing and stonewashing withHypocrea jecorinacellulases. Coloration Technology, 2013, 129, 49-54.	1.5	10
94	NMR and molecular modelling studies on elastase inhibitor-peptides for wound management. Reactive and Functional Polymers, 2013, 73, 1357-1365.	4.1	6
95	Direct enzymatic esterification of cotton and Avicel with wild-type and engineered cutinases. Cellulose, 2013, 20, 409-416.	4.9	9
96	Production of heterologous cutinases by E. coli and improved enzyme formulation for application on plastic degradation. Electronic Journal of Biotechnology, 2013, 16, .	2.2	11
97	The Use of Keratin in Biomedical Applications. Current Drug Targets, 2013, 14, 612-619.	2.1	90
98	Effects of adsorption properties and mechanical agitation of two detergent cellulases towards cotton cellulose. Biocatalysis and Biotransformation, 2012, 30, 260-271.	2.0	8
99	Decolourization of paprika dye effluent with hydrogen peroxide produced by glucose oxidase. Biocatalysis and Biotransformation, 2012, 30, 255-259.	2.0	1
100	Hydroxylation of polypropylene using the monooxygenase mutant 139-3 from <i>Bacillus megaterium BM3</i> . Biocatalysis and Biotransformation, 2012, 30, 57-62.	2.0	1
101	Protein disulphide isomerase-assisted functionalization of proteinaceous substrates. Biocatalysis and Biotransformation, 2012, 30, 111-124.	2.0	4
102	Woundâ€healing evaluation of entrapped active agents into protein microspheres over cellulosic gauzes. Biotechnology Journal, 2012, 7, 1376-1385.	3.5	11
103	Influence of secretory leukocyte protease inhibitorâ€based peptides on elastase activity and their incorporation in hyaluronic acid hydrogels for chronic wound therapy. Biopolymers, 2012, 98, 576-590.	2.4	9
104	Protein disulphide isomerase-induced refolding of sonochemically prepared Ribonuclease A microspheres. Journal of Biotechnology, 2012, 159, 78-82.	3.8	3
105	Molecular recognition of esterase plays a major role on the removal of fatty soils during detergency. Journal of Biotechnology, 2012, 161, 228-234.	3.8	6
106	Bio-processing of bamboo fibres for textile applications: a mini review. Biocatalysis and Biotransformation, 2012, 30, 141-153.	2.0	29
107	Protein disulphide isomerase-mediated grafting of cysteine-containing peptides onto over-bleached hair. Biocatalysis and Biotransformation, 2012, 30, 10-19.	2.0	26
108	Enzymatic colouration with laccase and peroxidases: Recent progress. Biocatalysis and Biotransformation, 2012, 30, 125-140.	2.0	30

#	Article	IF	CITATIONS
109	Insights on the Mechanism of Formation of Protein Microspheres in a Biphasic System. Molecular Pharmaceutics, 2012, 9, 3079-3088.	4.6	40
110	Novel silk fibroin/elastin wound dressings. Acta Biomaterialia, 2012, 8, 3049-3060.	8.3	213
111	Developing scaffolds for tissue engineering using the Ca ²⁺ â€induced cold gelation by an experimental design approach. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 2269-2278.	3.4	11
112	Releasing Dye Encapsulated in Proteinaceous Microspheres on Conductive Fabrics by Electric Current. ACS Applied Materials & Interfaces, 2012, 4, 2926-2930.	8.0	12
113	Bamboo fibre processing: insights into hemicellulase and cellulase substrate accessibility. Biocatalysis and Biotransformation, 2012, 30, 27-37.	2.0	15
114	Sonochemical Proteinaceous Microspheres for Wound Healing. Advances in Experimental Medicine and Biology, 2012, 733, 155-164.	1.6	10
115	Molecular modeling of hair keratin/peptide complex: Using MMâ€PBSA calculations to describe experimental binding results. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1409-1417.	2.6	13
116	Treatment of cotton with an alkaline <i>Bacillus</i> spp cellulase: Activity towards crystalline cellulose. Biotechnology Journal, 2012, 7, 275-283.	3.5	4
117	Protein microspheres as suitable devices for piroxicam release. Colloids and Surfaces B: Biointerfaces, 2012, 92, 277-285.	5.0	30
118	Folic acid-functionalized human serum albumin nanocapsules for targeted drug delivery to chronically activated macrophages. International Journal of Pharmaceutics, 2012, 427, 460-466.	5.2	77
119	Characterization of potential elastase inhibitor-peptides regulated by a molecular switch for wound dressings applications. Enzyme and Microbial Technology, 2012, 50, 107-114.	3.2	12
120	Fragrance release profile from sonochemically prepared protein microsphere containers. Ultrasonics Sonochemistry, 2012, 19, 858-863.	8.2	34
121	Sonochemical Coating of Cotton and Polyester Fabrics with "Antibacterial―BSA and Casein Spheres. Chemistry - A European Journal, 2012, 18, 365-369.	3.3	29
122	Laccase-catalysed protein–flavonoid conjugates for flax fibre modification. Applied Microbiology and Biotechnology, 2012, 93, 585-600.	3.6	54
123	Enzymatic Surface Hydrolysis of PET: Effect of Structural Diversity on Kinetic Properties of Cutinases from Thermobifida. Macromolecules, 2011, 44, 4632-4640.	4.8	298
124	Sonoproduction of Liposomes and Protein Particles as Templates for Delivery Purposes. Biomacromolecules, 2011, 12, 3353-3368.	5.4	46
125	Tailoring elastase inhibition with synthetic peptides. European Journal of Pharmacology, 2011, 666, 53-60.	3.5	13
126	Engineered <i>Thermobifida fusca</i> cutinase with increased activity on polyester substrates. Biotechnology Journal, 2011, 6, 1230-1239.	3.5	127

#	Article	IF	CITATIONS
127	Changes in the bacterial community structure and diversity during bamboo retting. Biotechnology Journal, 2011, 6, 1262-1271.	3.5	10
128	In situ laccaseâ€assisted overdyeing of denim using flavonoids. Biotechnology Journal, 2011, 6, 1272-1279.	3.5	24
129	Polyoxometalate/laccase-mediated oxidative polymerization of catechol for textile dyeing. Applied Microbiology and Biotechnology, 2011, 89, 981-987.	3.6	44
130	Wound dressings for a proteolytic-rich environment. Applied Microbiology and Biotechnology, 2011, 90, 445-460.	3.6	96
131	Protein disulphide isomerase-assisted functionalization of keratin-based matrices. Applied Microbiology and Biotechnology, 2011, 90, 1311-1321.	3.6	11
132	Encapsulation of RNA Molecules in BSA Microspheres and Internalization into <i>Trypanosoma Brucei</i> Parasites and Human U2OS Cancer Cells. Advanced Functional Materials, 2011, 21, 3659-3666.	14.9	35
133	Antimicrobial and antioxidant linen via laccase-assisted grafting. Reactive and Functional Polymers, 2011, 71, 713-720.	4.1	66
134	Attaching Different Kinds of Proteinaceous Nanospheres to a Variety of Fabrics Using Ultrasound Radiation. Israel Journal of Chemistry, 2010, 50, 524-529.	2.3	12
135	Microspheres of Mixed Proteins. Chemistry - A European Journal, 2010, 16, 2108-2114.	3.3	21
136	Functionalization of cellulose acetate fibers with engineered cutinases. Biotechnology Progress, 2010, 26, 636-643.	2.6	21
137	Polymerization of lignosulfonates by the laccase-HBT (1-hydroxybenzotriazole) system improves dispersibility. Bioresource Technology, 2010, 101, 5054-5062.	9.6	112
138	Effect of ultrasound parameters for unilamellar liposome preparation. Ultrasonics Sonochemistry, 2010, 17, 628-632.	8.2	91
139	Polymerization study of the aromatic amines generated by the biodegradation of azo dyes using the laccase enzyme. Enzyme and Microbial Technology, 2010, 46, 360-365.	3.2	52
140	Characterization of <i>Thermobifida fusca</i> Cutinase-Carbohydrate-Binding Module Fusion Proteins and Their Potential Application in Bioscouring. Applied and Environmental Microbiology, 2010, 76, 6870-6876.	3.1	46
141	Hydrolysis of Cutin by PETâ€Hydrolases. Macromolecular Symposia, 2010, 296, 342-346.	0.7	12
142	Biosensors Based on Laccase for Detection of Commercially Reactive Dyes. Analytical Letters, 2010, 43, 1126-1131.	1.8	4
143	Biology of Human Hair: Know Your Hair to Control It. Advances in Biochemical Engineering/Biotechnology, 2010, 125, 121-143.	1.1	12
144	Protein Matrices for Improved Wound Healing: Elastase Inhibition by a Synthetic Peptide Model. Biomacromolecules, 2010, 11, 2213-2220.	5.4	31

#	Article	IF	CITATIONS
145	A novel aryl acylamidase from <i>Nocardia farcinica</i> hydrolyses polyamide. Biotechnology and Bioengineering, 2009, 102, 1003-1011.	3.3	46
146	Characterisation of enzymatically oxidised lignosulfonates and their application on lignocellulosic fabrics. Polymer International, 2009, 58, 863-868.	3.1	33
147	Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. Journal of Biotechnology, 2009, 143, 207-212.	3.8	183
148	Microaerophilic–aerobic sequential decolourization/biodegradation of textile azo dyes by a facultative Klebsiella sp. strain VN-31. Process Biochemistry, 2009, 44, 446-452.	3.7	113
149	Expression system of CotAâ€laccase for directed evolution and highâ€throughput screenings for the oxidation of highâ€redox potential dyes. Biotechnology Journal, 2009, 4, 558-563.	3.5	48
150	Biodegradable Materials Based on Silk Fibroin and Keratin. Biomacromolecules, 2009, 10, 1019-1019.	5.4	13
151	Proteolytic Enzyme Engineering: A Tool for Wool. Biomacromolecules, 2009, 10, 1655-1661.	5.4	34
152	Bioelectrochemical investigations of aryl-alcohol oxidase from Pleurotus eryngii. Journal of Electroanalytical Chemistry, 2008, 618, 83-86.	3.8	8
153	Incorporation of peptides in phospholipid aggregates using ultrasound. Ultrasonics Sonochemistry, 2008, 15, 1026-1032.	8.2	24
154	Strategies towards the Functionalization of Subtilisin E from <i>Bacillus subtilis</i> for Wool Finishing Applications. Engineering in Life Sciences, 2008, 8, 238-249.	3.6	7
155	Inâ€situ Enzymatic Generation of Hydrogen Peroxide for Bleaching Purposes. Engineering in Life Sciences, 2008, 8, 315-323.	3.6	18
156	Biological Coloration of Flax Fabrics with Flavonoids using Laccase from <i>Trametes hirsuta</i> . Engineering in Life Sciences, 2008, 8, 324-330.	3.6	50
157	Biodegradable Materials Based on Silk Fibroin and Keratin. Biomacromolecules, 2008, 9, 1299-1305.	5.4	332
158	The effect of cellulase treatment in textile washing processes. Coloration Technology, 2008, 113, 218-222.	0.1	33
159	Treatment of cotton fabrics with purified Trichoderma reesei cellulases. Coloration Technology, 2008, 114, 216-220.	0.1	16
160	Enzymes go big: surface hydrolysis and functionalisation of synthetic polymers. Trends in Biotechnology, 2008, 26, 32-38.	9.3	183
161	Enzymatic hydrolysis of PTT polymers and oligomers. Journal of Biotechnology, 2008, 135, 45-51.	3.8	63
162	Surface hydrolysis of polyamide with a new polyamidase from <i>Beauveriabrongniartii</i> . Biocatalysis and Biotransformation, 2008, 26, 371-377.	2.0	21

#	Article	IF	CITATIONS
163	Textile Biotechnology. Biocatalysis and Biotransformation, 2008, 26, 331-331.	2.0	Ο
164	Application of enzymes for textile fibres processing. Biocatalysis and Biotransformation, 2008, 26, 332-349.	2.0	220
165	Biotransformations in synthetic fibres. Biocatalysis and Biotransformation, 2008, 26, 350-356.	2.0	20
166	Enzymatic surface hydrolysis of PET enhances bonding in PVC coating. Biocatalysis and Biotransformation, 2008, 26, 365-370.	2.0	23
167	MALDI-TOF Mass Spectrometry in Textile Industry. NATO Science for Peace and Security Series A: Chemistry and Biology, 2008, , 193-203.	0.5	1
168	Hydrolysis of PET and bis-(benzoyloxyethyl) terephthalate with a new polyesterase from <i>Penicillium citrinum</i> . Biocatalysis and Biotransformation, 2007, 25, 171-177.	2.0	103
169	New Developments of Enzymatic Treatments on Cellulosic Fibers. ACS Symposium Series, 2007, , 186-192.	0.5	2
170	Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers. Journal of Biotechnology, 2007, 128, 849-857.	3.8	161
171	Stability and decolourization ability of Trametes villosa laccase in liquid ultrasonic fields. Ultrasonics Sonochemistry, 2007, 14, 355-362.	8.2	88
172	Combined ultrasound-laccase assisted bleaching of cotton. Ultrasonics Sonochemistry, 2007, 14, 350-354.	8.2	101
173	Staining of wool using the reaction products of ABTS oxidation by Laccase: Synergetic effects of ultrasound and cyclic voltammetry. Ultrasonics Sonochemistry, 2007, 14, 363-367.	8.2	19
174	A novel metalloprotease from Bacillus cereus for protein fibre processing. Enzyme and Microbial Technology, 2007, 40, 1772-1781.	3.2	66
175	Effect of the agitation on the adsorption and hydrolytic efficiency of cutinases on polyethylene terephthalate fibres. Enzyme and Microbial Technology, 2007, 40, 1801-1805.	3.2	48
176	Development and industrialisation of enzymatic shrink-resist process based on modified proteases for wool machine washability. Enzyme and Microbial Technology, 2007, 40, 1656-1661.	3.2	84
177	Influence of mechanical agitation on cutinases and protease activity towards polyamide substrates. Enzyme and Microbial Technology, 2007, 40, 1678-1685.	3.2	56
178	Enzymatic reduction and oxidation of fibre-bound azo-dyes. Enzyme and Microbial Technology, 2007, 40, 1732-1738.	3.2	35
179	Purification and mechanistic characterisation of two polygalacturonases from Sclerotium rolfsii. Enzyme and Microbial Technology, 2007, 40, 1739-1747.	3.2	38
180	Enzymatic synthesis of Tinuvin. Enzyme and Microbial Technology, 2007, 40, 1748-1752.	3.2	15

#	Article	IF	CITATIONS
181	Enzymatic polymerization on the surface of functionalized cellulose fibers. Enzyme and Microbial Technology, 2007, 40, 1782-1787.	3.2	45
182	Laccases for enzymatic colouration of unbleached cotton. Enzyme and Microbial Technology, 2007, 40, 1788-1793.	3.2	55
183	Cotton fabric: A natural matrix suitable for controlled release systems. Enzyme and Microbial Technology, 2007, 40, 1646-1650.	3.2	9
184	Laccase immobilization on enzymatically functionalized polyamide 6,6 fibres. Enzyme and Microbial Technology, 2007, 41, 867-875.	3.2	76
185	Decolourisation of a synthetic textile effluent using a bacterial consortium. Biotechnology Journal, 2007, 2, 370-373.	3.5	3
186	Using a nitrilase for the surface modification of acrylic fibres. Biotechnology Journal, 2007, 2, 353-360.	3.5	33
187	Editorial: Textile biotech. Biotechnology Journal, 2007, 2, 281-281.	3.5	0
188	Enzymatic reduction of azo and indigoid compounds. Applied Microbiology and Biotechnology, 2007, 77, 321-327.	3.6	35
189	Peptide structure: Its effect on penetration into human hair. Journal of Cosmetic Science, 2007, 58, 339-46.	0.1	3
190	Surface modification of polyacrylonitrile with nitrile hydratase and amidase fromAgrobacterium tumefaciens. Biocatalysis and Biotransformation, 2006, 24, 419-425.	2.0	26
191	Immobilization of proteases with a water soluble–insoluble reversible polymer for treatment of wool. Enzyme and Microbial Technology, 2006, 39, 634-640.	3.2	103
192	The effect of additives and mechanical agitation in surface modification of acrylic fibres by cutinase and esterase. Biotechnology Journal, 2006, 1, 842-849.	3.5	22
193	Enzymatic removal of cellulose from cotton/polyester fabric blends. Cellulose, 2006, 13, 611-618.	4.9	43
194	Advances in biotechnology for fibre processing. Biotechnology Letters, 2006, 28, 679-680.	2.2	5
195	A new cuticle scale hydrolysing protease from Beauveria brongniartii. Biotechnology Letters, 2006, 28, 703-710.	2.2	19
196	New Enzyme-based Process Direction to Prevent Wool Shrinking without Substantial Tensile Strength Loss. Biotechnology Letters, 2006, 28, 711-716.	2.2	34
197	Detergent Formulations for Wool Domestic Washings Containing Immobilized Enzymes. Biotechnology Letters, 2006, 28, 725-731.	2.2	19
198	Specificities of a chemically modified laccase from Trametes hirsuta on soluble and cellulose-bound substrates. Biotechnology Letters, 2006, 28, 741-747.	2.2	12

#	Article	IF	CITATIONS
199	Restricting detergent protease action to surface of protein fibres by chemical modification. Applied Microbiology and Biotechnology, 2006, 72, 738-744.	3.6	26
200	New model substrates for enzymes hydrolysing polyethyleneterephthalate and polyamide fibres. Journal of Proteomics, 2006, 69, 89-99.	2.4	125
201	Optimisation of a serine protease coupling to Eudragit S-100 by experimental design techniques. Journal of Chemical Technology and Biotechnology, 2006, 81, 8-16.	3.2	41
202	Surface Modification of Cellulose Fibers with Hydrolases and Kinases. , 2006, , 159-180.		3
203	Kinetics of direct and substrate-mediated electron transfer of versatile peroxidase-modified graphite electrodes. Journal of Electroanalytical Chemistry, 2005, 580, 35-40.	3.8	3
204	Treatment of wool fibres with subtilisin and subtilisin-PEG. Enzyme and Microbial Technology, 2005, 36, 917-922.	3.2	81
205	Laccase kinetics of degradation and coupling reactions. Journal of Molecular Catalysis B: Enzymatic, 2005, 33, 23-28.	1.8	40
206	Environmentally friendly bleaching of cotton using laccases. Environmental Chemistry Letters, 2005, 3, 66-69.	16.2	74
207	Biotransformation of phenolics with laccase containing bacterial spores. Environmental Chemistry Letters, 2005, 3, 74-77.	16.2	71
208	Cutinase?A new tool for biomodification of synthetic fibers. Journal of Polymer Science Part A, 2005, 43, 2448-2450.	2.3	106
209	Influence of organic solvents on cutinase stability and accessibility to polyamide fibers. Journal of Polymer Science Part A, 2005, 43, 2749-2753.	2.3	32
210	Azo Reductase Activity of Intact Saccharomyces cerevisiae Cells Is Dependent on the Fre1p Component of Plasma Membrane Ferric Reductase. Applied and Environmental Microbiology, 2005, 71, 3882-3888.	3.1	46
211	Degradation of Azo Dyes by Trametes villosa Laccase over Long Periods of Oxidative Conditions. Applied and Environmental Microbiology, 2005, 71, 6711-6718.	3.1	151
212	Laccase-catalyzed decolorization of the synthetic azo-dye diamond black PV 200 and of some structurally related derivatives. Biocatalysis and Biotransformation, 2004, 22, 331-339.	2.0	50
213	Enzymes in fibre processing. Biocatalysis and Biotransformation, 2004, 22, 297-297.	2.0	1
214	Influence of structure on dye degradation with laccase mediator systems. Biocatalysis and Biotransformation, 2004, 22, 315-324.	2.0	80
215	New enzymes with potential for PET surface modification. Biocatalysis and Biotransformation, 2004, 22, 341-346.	2.0	90
216	Monitoring biotransformations in polyamide fibres. Biocatalysis and Biotransformation, 2004, 22, 357-360.	2.0	35

#	Article	IF	CITATIONS
217	Characterization of Azo Reduction Activity in a Novel Ascomycete Yeast Strain. Applied and Environmental Microbiology, 2004, 70, 2279-2288.	3.1	133
218	A New Alkali-Thermostable Azoreductase from Bacillus sp. Strain SF. Applied and Environmental Microbiology, 2004, 70, 837-844.	3.1	210
219	Predicting Dye Biodegradation from Redox Potentials. Biotechnology Progress, 2004, 20, 1588-1592.	2.6	76
220	Implementation of batchwise bioscouring of cotton knits. Biocatalysis and Biotransformation, 2004, 22, 375-382.	2.0	36
221	Monitoring biotransformations in polyesters. Biocatalysis and Biotransformation, 2004, 22, 353-356.	2.0	33
222	Effect of Some Process Parameters in Enzymatic Dyeing of Wool. Applied Biochemistry and Biotechnology, 2003, 111, 1-14.	2.9	51
223	Immobilized laccase for decolourization of Reactive Black 5 dyeing effluent. Biotechnology Letters, 2003, 25, 1473-1477.	2.2	131
224	Proteases to Improve the Mechanical Characteristics of Durable Press Finished Cotton Fabrics. Macromolecular Materials and Engineering, 2003, 288, 71-75.	3.6	5
225	Laccases to Improve the Whiteness in a Conventional Bleaching of Cotton. Macromolecular Materials and Engineering, 2003, 288, 807-810.	3.6	84
226	Effect of purifiedTrichoderma reesei cellulases on formation of cotton powder from cotton fabric. Journal of Applied Polymer Science, 2003, 90, 1917-1922.	2.6	9
227	An acid-stable laccase from Sclerotium rolfsii with potential for wool dye decolourization. Enzyme and Microbial Technology, 2003, 33, 766-774.	3.2	104
228	Catalysis and processing. , 2003, , 86-119.		29
229	Protein interactions in enzymatic processes in textiles. Electronic Journal of Biotechnology, 2003, 6, .	2.2	2
230	Hydrogen peroxide generation with immobilized glucose oxidase for textile bleaching. Journal of Biotechnology, 2002, 93, 87-94.	3.8	124
231	An immobilised catalase peroxidase from the alkalothermophilic Bacillus SF for the treatment of textile-bleaching effluents. Applied Microbiology and Biotechnology, 2002, 60, 313-319.	3.6	44
232	Phosphorylation of Cotton Cellulose with Baker's Yeast Hexokinase. Macromolecular Rapid Communications, 2002, 23, 962-964.	3.9	22
233	Lipases to Improve the Performance of Formaldehyde-Free Durable Press Finished Cotton Fabrics. Macromolecular Materials and Engineering, 2002, 287, 462.	3.6	8
234	Studies of stabilization of native catalase using additives. Enzyme and Microbial Technology, 2002, 30, 387-391.	3.2	79

#	Article	IF	CITATIONS
235	Voltammetric monitoring of laccase-catalysed mediated reactions. Bioelectrochemistry, 2002, 58, 149-156.	4.6	110
236	Recycling of textile bleaching effluents for dyeing using immobilized catalase. Biotechnology Letters, 2002, 24, 173-176.	2.2	31
237	Possibilities for Recycling Cellulases After Use in Cotton Processing: Part I: Effects of End-Product Inhibition, Thermal and Mechanical Deactivation, and Cellulase Depletion by Adsorption. Applied Biochemistry and Biotechnology, 2002, 101, 61-76.	2.9	13
238	Possibilities for Recycling Cellulases After Use in Cotton Processing: Part II: Separation of Cellulases from Reaction Products and Released Dyestuffs by Ultrafiltration. Applied Biochemistry and Biotechnology, 2002, 101, 77-92.	2.9	8
239	Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. Journal of Biotechnology, 2001, 89, 131-139.	3.8	227
240	Thermo-alkali-stable catalases from newly isolated Bacillus sp. for the treatment and recycling of textile bleaching effluents. Journal of Biotechnology, 2001, 89, 147-153.	3.8	64
241	Biotechnology in the textile industry—perspectives for the new millennium. Journal of Biotechnology, 2001, 89, 89-90.	3.8	35
242	Immobilization of catalases from Bacillus SF on alumina for the treatment of textile bleaching effluents. Enzyme and Microbial Technology, 2001, 28, 815-819.	3.2	105
243	Bio-preparation of cotton fabrics. Enzyme and Microbial Technology, 2001, 29, 357-362.	3.2	157
244	"In Situ―Enzymatically Prepared Polymers for Wool Coloration. Macromolecular Materials and Engineering, 2001, 286, 691.	3.6	49
245	Desorption of cellulases from cotton powder. Biotechnology Letters, 2001, 23, 1445-1448.	2.2	11
246	Effect of temperature and bath composition on the dyeing of cotton with catalase-treated bleaching effluent. Coloration Technology, 2001, 117, 166-170.	1.5	18
247	Polyoxometalates as mediators in the laccase catalyzed delignification. Journal of Molecular Catalysis B: Enzymatic, 2001, 16, 131-140.	1.8	21
248	Indigo Degradation with Laccases from <i>Polyporus sp.</i> and <i>Sclerotium rolfsii</i> . Textile Reseach Journal, 2001, 71, 420-424.	2.2	25
249	Effects of agitation level on the adsorption, desorption, and activities on cotton fabrics of full length and core domains of EGV (Humicola insolens) and CenA (Cellulomonas fimi). Enzyme and Microbial Technology, 2000, 27, 325-329.	3.2	60
250	Dry action of Trichoderma reesei cellulases on cotton fabrics. Coloration Technology, 2000, 116, 121-125.	1.5	0
251	Nitrile Hydratase and Amidase from Rhodococcus rhodochrous Hydrolyze Acrylic Fibers and Granular Polyacrylonitriles. Applied and Environmental Microbiology, 2000, 66, 1634-1638.	3.1	70
252	Enzymatic Treatment of Lyocell—Clarification of Depilling Mechanisms. Textile Reseach Journal, 2000, 70, 696-699.	2.2	39

#	Article	IF	CITATIONS
253	Enzymatic Decolorization of Textile Dyeing Effluents. Textile Reseach Journal, 2000, 70, 409-414.	2.2	90
254	Influence of Cellulases on Indigo Backstaining. Textile Reseach Journal, 2000, 70, 628-632.	2.2	43
255	Indigo-Cellulase Interactions. Textile Reseach Journal, 2000, 70, 532-536.	2.2	37
256	Decolorization and Detoxification of Textile Dyes with a Laccase from Trametes hirsuta. Applied and Environmental Microbiology, 2000, 66, 3357-3362.	3.1	644
257	Interactions of cotton with CBD peptides. Enzyme and Microbial Technology, 1999, 25, 639-643.	3.2	31
258	Effects of temperature on the cellulose binding ability of cellulase enzymes. Journal of Molecular Catalysis B: Enzymatic, 1999, 7, 233-239.	1.8	51
259	USE OF ENZYMES IN TEXTILE PROCESSING - INDIGO BACKSTAINING DURING CELLULASE WASHING. , 1999, , 191-194.		0
260	Mechanism of cellulase action in textile processes. Carbohydrate Polymers, 1998, 37, 273-277.	10.2	185
261	Indigo Backstaining During Cellulase Washing. Textile Reseach Journal, 1998, 68, 398-401.	2.2	75
262	Processing Textile Fibers with Enzymes: An Overview. ACS Symposium Series, 1998, , 180-189.	0.5	26
263	Hydrolysis of Cotton Cellulose by Engineered Cellulases from Trichoderma reesei. Textile Reseach Journal, 1998, 68, 273-280.	2.2	52
264	Cellulases in the textile industry—an overview. Carbohydrate Polymers, 1997, 34, 423.	10.2	5
265	Effects of Agitation and Endoglucanase Pretreatment on the Hydrolysis of Cotton Fabrics by a Total Cellulase. Textile Reseach Journal, 1996, 66, 287-294.	2.2	81
266	Hair Styling Based on Eutectic Formulations with Peptides. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	0