
Hiroyuki Iwamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4780091/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The 3D structure of fibrous material is fully restorable from its X-ray diffraction pattern. IUCrJ, 2021, 8, 544-548.	2.2	2
2	Overview of "2SEA Frontiers of Synchrotron Radiation Biophysics―session of symposia in the 57th Annual Meeting of Biophysical Society of Japan. Biophysical Reviews, 2020, 12, 297-298.	3.2	1
3	Structural model for differential cap maturation at growing microtubule ends. ELife, 2020, 9, .	6.0	44
4	Synchrotron radiation X-ray diffraction studies on muscle: past, present, and future. Biophysical Reviews, 2019, 11, 547-558.	3.2	10
5	Kinesin-binding–triggered conformation switching of microtubules contributes to polarized transport. Journal of Cell Biology, 2018, 217, 4164-4183.	5.2	87
6	Effects of myosin inhibitors on the X-ray diffraction patterns of relaxed and calcium-activated rabbit skeletal muscle fibers. Biophysics and Physicobiology, 2018, 15, 111-120.	1.0	14
7	Synchrotron Radiation X-ray Diffraction Techniques Applied to Insect Flight Muscle. International Journal of Molecular Sciences, 2018, 19, 1748.	4.1	13
8	Song-producing Machinery of Cicadas. Seibutsu Butsuri, 2018, 58, 245-247.	0.1	0
9	The earliest molecular response to stretch of insect flight muscle as revealed by fast X-ray diffraction recording. Scientific Reports, 2017, 7, 42272.	3.3	10
10	The tymbal muscle of cicada has flight muscle-type sarcomeric architecture and protein expression. Zoological Letters, 2017, 3, 15.	1.3	2
11	Xâ€ray fiber diffraction analysis shows dynamic changes in axial tubulin repeats in native microtubules depending on paclitaxel content, temperature and CTPâ€hydrolysis. Cytoskeleton, 2016, 73, 131-144.	2.0	17
12	Myopathy-inducing mutation H40Y in ACTA1 hampers actin filament structure and function. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1453-1458.	3.8	18
13	A Beetle Flight Muscle Displays Leg Muscle Microstructure. Biophysical Journal, 2016, 111, 1295-1303.	0.5	11
14	X-ray diffraction pattern from the flight muscle of Toxorhynchites towadensis reveals the specific phylogenic position of mosquito among Diptera. Zoological Letters, 2015, 1, 24.	1.3	4
15	X-Ray Fiber Diffraction Recordings from Oriented Demembranated Chlamydomonas Flagellar Axonemes. Biophysical Journal, 2015, 108, 2843-2853.	0.5	4
16	X-ray recordings reveal how a human disease-linked skeletal muscle α-actin mutation leads to contractile dysfunction. Journal of Structural Biology, 2015, 192, 331-335.	2.8	10
17	Aberrant post-translational modifications compromise human myosin motor function in old age. Aging Cell, 2015, 14, 228-235.	6.7	49
18	X-ray diffraction from flight muscle with a headless myosin mutation: implications for interpreting reflection patterns. Frontiers in Physiology, 2014, 5, 416.	2.8	3

ΗΙROYUKI ΙWAMOTO

#	Article	IF	CITATIONS
19	Pointedâ€end capping by tropomodulin modulates actomyosin crossbridge formation in skeletal muscle fibers. FASEB Journal, 2014, 28, 408-415.	0.5	14
20	Myofilament lattice structure in presence of a skeletal myopathy-related tropomyosin mutation. Journal of Muscle Research and Cell Motility, 2013, 34, 171-175.	2.0	4
21	The long C-terminal extension of insect flight muscle-specific troponin-l isoform is not required for stretch activation. Biochemical and Biophysical Research Communications, 2013, 431, 47-51.	2.1	7
22	Flight muscle-specific Pro-Ala-rich extension of troponin is important for maintaining the insect-type myofilament lattice integrity. Journal of Structural Biology, 2013, 183, 33-39.	2.8	4
23	The fraction of strongly bound cross-bridges is increased in mice that carry the myopathy-linked myosin heavy chain mutation MYH4L342Q. DMM Disease Models and Mechanisms, 2013, 6, 834-40.	2.4	5
24	Skeletal and cardiac α-actin isoforms differently modulate myosin cross-bridge formation and myofibre force production. Human Molecular Genetics, 2013, 22, 4398-4404.	2.9	13
25	X-ray diffraction recording from single axonemes of eukaryotic flagella. Journal of Structural Biology, 2012, 178, 329-337.	2.8	3
26	Role of Pro-Ala-Rich Extension of Troponin in Insect Flight Muscle as Examined by X-Ray Diffraction. Biophysical Journal, 2012, 102, 148a.	0.5	4
27	Hard X-ray Fourier transform holography from an array of oriented referenced objects. Journal of Synchrotron Radiation, 2011, 18, 564-568.	2.4	12
28	Disrupted myosin crossâ€bridge cycling kinetics triggers muscle weakness in nebulinâ€related myopathy. FASEB Journal, 2011, 25, 1903-1913.	0.5	51
29	Structure, function and evolution of insect flight muscle. Biophysics (Nagoya-shi, Japan), 2011, 7, 21-28.	0.4	38
30	A myopathy-linked tropomyosin mutation severely alters thin filament conformational changes during activation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9807-9812.	7.1	42
31	Fast X-Ray Recordings Reveal Dynamic Action of Contractile andÂRegulatory Proteins in Stretch-Activated Insect Flight Muscle. Biophysical Journal, 2010, 99, 184-192.	0.5	27
32	Monitoring the Structural Behavior of Troponin and Myoplasmic Free Ca2+ Concentration during Twitch of Frog Skeletal Muscle. Biophysical Journal, 2010, 99, 193-200.	0.5	18
33	Structure, Function and Evolution of Insect Flight Muscle. Seibutsu Butsuri, 2010, 50, 168-173.	0.1	3
34	X-ray Fiber Diffraction Studies on Flagellar Axonemes. Methods in Cell Biology, 2009, 91, 89-109.	1.1	5
35	Quality evaluation of quick-frozen biological specimens by simultaneous microbeam SAXS/WAXS recordings. Journal of Synchrotron Radiation, 2009, 16, 336-345.	2.4	6
36	Evidence for Unique Structural Change of Thin Filaments upon Calcium Activation of Insect Flight Muscle. Journal of Molecular Biology, 2009, 390, 99-111.	4.2	26

ΗΙROYUKI ΙWAMOTO

#	Article	IF	CITATIONS
37	Dynamics of Thin-Filament Activation in Rabbit Skeletal Muscle Fibers Examined by Time-Resolved X-Ray Diffraction. Biophysical Journal, 2009, 96, 1045-1055.	0.5	20
38	Quick Shear-Flow Alignment of Biological Filaments for X-ray Fiber Diffraction Facilitated by Methylcellulose. Biophysical Journal, 2009, 97, 3132-3138.	0.5	13
39	A Peculiar Meridional Reflection in the X-ray Diffraction Pattern fromÂDipteran Flight Muscle Suggests an Alternating Arrangement of Tropomyosin Isoforms. Biophysical Journal, 2009, 96, 230a-231a.	0.5	1
40	On the ability of 8-bromoadenosine triphosphate to support contractility of vertebrate skeletal muscle fibers. Journal of Muscle Research and Cell Motility, 2008, 29, 45-55.	2.0	0
41	Theory of diffraction from eukaryotic flagellar axonemes. Cytoskeleton, 2008, 65, 563-571.	4.4	6
42	2P-153 Structural change of the thin filament in insect flight muscle upon calcium activation(The 46th) Tj ETQq0	0.0.1gBT	Oyerlock 10
43	Flight muscle myofibrillogenesis in the pupal stage of <i>Drosophila</i> as examined by X-ray microdiffraction and conventional diffraction. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2297-2305.	2.6	8
44	Diversity of Structural Behavior in Vertebrate Conventional Myosins Complexed with Actin. Journal of Molecular Biology, 2007, 369, 249-264.	4.2	14
45	Structural Changes of Cross-Bridges on Transition from Isometric to Shortening State in Frog Skeletal Muscle. Biophysical Journal, 2006, 91, 4110-4120.	0.5	10
	Physiological consequences of thin filament cooperativity for vertebrate striated muscle		

46	contraction: a theoretical study. Journal of Muscle Research and Cell Motility, 2006, 27, 21-35.	2.0	2
47	Evolution of long-range myofibrillar crystallinity in insect flight muscle as examined by X-ray cryomicrodiffraction. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 677-685.	2.6	23
48	X-ray microdiffraction and conventional diffraction from frozen-hydrated biological specimens. Journal of Synchrotron Radiation, 2005, 12, 479-483.	2.4	10
49	Structural Changes of Actin-Bound Myosin Heads after a Quick Length Change in Frog Skeletal Muscle. Biophysical Journal, 2005, 89, 1150-1164.	0.5	17
50	Intensity of X-ray reflections from skeletal muscle thin filaments partially occupied with myosin heads: effect of cooperative binding. Journal of Muscle Research and Cell Motility, 2004, 25, 329-335.	2.0	6
51	Structural Transients of Contractile Proteins upon Sudden ATP Liberation in Skeletal Muscle Fibers. Biophysical Journal, 2004, 87, 430-441.	0.5	22
52	Thymol: a classical small-molecule compound that has a dual effect (potentiating and inhibitory) on myosin. Biochemical and Biophysical Research Communications, 2004, 318, 786-791.	2.1	16
53	Rigor-Force Producing Cross-Bridges in Skeletal Muscle Fibers Activated by a Substoichiometric Amount of ATP. Biophysical Journal, 2003, 85, 1741-1753.	0.5	2
54	Static and Dynamic X-Ray Diffraction Recordings from Living Mammalian and Amphibian Skeletal Muscles. Biophysical Journal, 2003, 85, 2492-2506.	0.5	40

4

ΗΙROYUKI ΙWAMOTO

#	Article	IF	CITATIONS
55	States of thin filament regulatory proteins as revealed by combined cross-linking/X-ray diffraction techniques 1 1Edited by M. F. Moody. Journal of Molecular Biology, 2002, 317, 707-720.	4.2	25
56	Direct X-Ray Observation of a Single Hexagonal Myofilament Lattice in Native Myofibrils of Striated Muscle. Biophysical Journal, 2002, 83, 1074-1081.	0.5	21
57	X-ray diffraction evidence for the lack of stereospecific protein interactions in highly activated actomyosin complex. Journal of Molecular Biology, 2001, 305, 863-874.	4.2	38
58	Time-resolved two-dimensional X-ray diffraction study of the effect of shortening on activation of contracting skeletal muscle. Pflugers Archiv European Journal of Physiology, 2000, 439, 646-649.	2.8	3
59	Influence of Ionic Strength on the Actomyosin Reaction Steps in Contracting Skeletal Muscle Fibers. Biophysical Journal, 2000, 78, 3138-3149.	0.5	25
60	Thin Filament Cooperativity as a Major Determinant of Shortening Velocity in Skeletal Muscle Fibers. Biophysical Journal, 1998, 74, 1452-1464.	0.5	27
61	Effect of a cardiotonic agent, MCI-154, on the contractile properties of skinned skeletal muscle fibers. European Journal of Pharmacology, 1998, 341, 243-252.	3.5	12