
Brian P Grady

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4777723/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nucleation of Polypropylene Crystallization by Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2002, 106, 5852-5858.	2.6	347
2	Adsorbed Surfactants as Templates for the Synthesis of Morphologically Controlled Polyaniline and Polypyrrole Nanostructures on Flat Surfaces:Â From Spheres to Wires to Flat Films. Journal of the American Chemical Society, 2003, 125, 14793-14800.	13.7	261
3	Recent Developments Concerning the Dispersion of Carbon Nanotubes in Polymers. Macromolecular Rapid Communications, 2010, 31, 247-257.	3.9	180
4	Nucleation of polyvinyl alcohol crystallization by single-walled carbon nanotubes. Polymer, 2004, 45, 4437-4443.	3.8	177
5	Electrical, mechanical, and glass transition behavior of polycarbonate-based nanocomposites with different multi-walled carbon nanotubes. Polymer, 2011, 52, 3835-3845.	3.8	156
6	Effect of nanotube functionalization on the properties of single-walled carbon nanotube/polyurethane composites. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 490-501.	2.1	121
7	Enhancing the strength of polypropylene fibers with carbon nanotubes. Journal of Applied Polymer Science, 2004, 93, 2926-2933.	2.6	101
8	Aspect ratio effects of multiâ€walled carbon nanotubes on electrical, mechanical, and thermal properties of polycarbonate/MWCNT composites. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 73-83.	2.1	101
9	Review and critical analysis of the morphology of random ionomers across many length scales. Polymer Engineering and Science, 2008, 48, 1029-1051.	3.1	95
10	Unique Thermal Conductivity Behavior of Single-Walled Carbon Nanotubeâ^'Polystyrene Composites. Macromolecules, 2008, 41, 7274-7277.	4.8	95
11	Effects of carbon nanotubes on polymer physics. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 591-623.	2.1	90
12	Resistivity of conductive polymer-coated fabric. Journal of Applied Polymer Science, 2004, 92, 2629-2636.	2.6	89
13	Composites of Single-Walled Carbon Nanotubes and Polystyrene: Preparation and Electrical Conductivity. Chemistry of Materials, 2008, 20, 3120-3126.	6.7	75
14	Magnetic Nanoparticles: Inner Ear Targeted Molecule Delivery and Middle Ear Implant. Audiology and Neuro-Otology, 2006, 11, 123-133.	1.3	72
15	Correlating viscoelastic measurements of fracturing fluid to particles suspension and solids transport. Journal of Petroleum Science and Engineering, 2002, 35, 59-81.	4.2	68
16	Surface-modified calcium carbonate particles by admicellar polymerization to be used as filler for isotactic polypropylene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 275, 114-125.	4.7	68
17	Dispersion of super paramagnetic iron oxide nanoparticles in poly(d,l-lactide-co-glycolide) microparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 292, 125-130.	4.7	66
18	Glass Transition Behavior of Single-Walled Carbon Nanotubeâ^'Polystyrene Composites. Macromolecules, 2009, 42, 6152-6158.	4.8	66

#	Article	IF	CITATIONS
19	Strain-sensitive conductivity of carbon black-filled PVC composites subjected to cyclic loading. Carbon, 2014, 79, 393-405.	10.3	65
20	The Use of Surface Tension to Predict the Formation of 2D Arrays of Latex Spheres Formed via the Langmuirâ 'Blodgett-Like Technique. Langmuir, 2004, 20, 10998-11004.	3.5	61
21	Experimental Studies on the Adsorption of Two Surfactants on Solidâ^'Aqueous Interfaces:  Adsorption Isotherms and Kinetics. Langmuir, 2008, 24, 4806-4816.	3.5	60
22	Heat transfer in high volume fraction CNT nanocomposites: Effects of inter-nanotube thermal resistance. Chemical Physics Letters, 2011, 508, 248-251.	2.6	60
23	Synthesis and characterization of the physical, chemical and mechanical properties of isocyanate-crosslinked vanadia aerogels. Journal of Sol-Gel Science and Technology, 2008, 48, 113-134.	2.4	59
24	Composites of Single-Walled Carbon Nanotubes and Styrene-Isoprene Copolymer Latices. Macromolecular Chemistry and Physics, 2007, 208, 446-456.	2.2	57
25	Xâ€ray diffraction and dynamic mechanical analyses of αâ€chitin whiskerâ€reinforced poly(vinyl alcohol) nanocomposite nanofibers. Polymer International, 2010, 59, 85-91.	3.1	57
26	Properties of Liquid Crystal Epoxy Thermosets Cured in a Magnetic Field. Macromolecules, 2000, 33, 6249-6254.	4.8	56
27	Magnetic Targeted Delivery of Dexamethasone Acetate Across the Round Window Membrane in Guinea Pigs. Otology and Neurotology, 2013, 34, 41-47.	1.3	55
28	The incorporation of poly(lactic-co-glycolic) acid nanoparticles into porcine small intestinal submucosa biomaterials. Biomaterials, 2008, 29, 1159-1166.	11.4	52
29	Tungsten-incorporated cage-type mesoporous silicate: W-KIT-5. Microporous and Mesoporous Materials, 2013, 175, 43-49.	4.4	52
30	Lateral confinement effects on the structural properties of surfactant aggregates: SDS on graphene. Physical Chemistry Chemical Physics, 2010, 12, 13137.	2.8	50
31	High thermal conductivity through simultaneously aligned polyethylene lamellae and graphene nanoplatelets. Nanoscale, 2017, 9, 12867-12873.	5.6	50
32	Nanometer-Thick Poly(pyrrole) Films Formed by Admicellar Polymerization under Conditions of Depleting Adsolubilization. Langmuir, 2002, 18, 3343-3351.	3.5	49
33	Melt rheology and extrudate swell of organobentonite-filled polypropylene nanocomposites. Polymer Testing, 2008, 27, 470-479.	4.8	49
34	Wetting Behavior of Elastomer-Modified Glass Fibers. Langmuir, 2001, 17, 5288-5296.	3.5	45
35	Preparation, characterization and filtration control properties of crosslinked starch nanospheres in water-based drilling fluids. Journal of Molecular Liquids, 2021, 325, 115221.	4.9	45
36	Fabrication of Protein Dot Arrays via Particle Lithography. Langmuir, 2009, 25, 10932-10938.	3.5	41

#	Article	IF	CITATIONS
37	Silica Nanoparticle Wettability: Characterization and Effects on the Emulsion Properties. Industrial & Engineering Chemistry Research, 2015, 54, 4274-4284.	3.7	37
38	Sensor-Enabled Geosynthetics: Use of Conducting Carbon Networks as Geosynthetic Sensors. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2009, 135, 863-874.	3.0	36
39	Effect of carbon black structure on lowâ€strain conductivity of polypropylene and lowâ€density polyethylene composites. Polymer Engineering and Science, 2012, 52, 549-556.	3.1	35
40	Self-assembled surfactants on patterned surfaces: confinement and cooperative effects on aggregate morphology. Physical Chemistry Chemical Physics, 2014, 16, 16388.	2.8	35
41	Competitive Surfactant Adsorption of AOT and TWEEN 20 on Gold Measured Using a Quartz Crystal Microbalance with Dissipation. Langmuir, 2014, 30, 11031-11039.	3.5	35
42	X-ray absorption spectroscopy studies of zinc-neutralized ethylene-methacrylic acid ionomers. Polymer, 1999, 40, 283-288.	3.8	34
43	Different methods for surface modification of hydrophilic particulates with polymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 266, 18-31.	4.7	34
44	Influence of Surface Roughness on Cetyltrimethylammonium Bromide Adsorption from Aqueous Solution. Langmuir, 2011, 27, 6091-6098.	3.5	34
45	Use of surfactants to remove water based inks from plastic films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 189, 55-64.	4.7	33
46	Non-isothermal melt crystallization kinetics for ethylene–acrylic acid copolymers and ethylene–methyl acrylate–acrylic acid terpolymers. European Polymer Journal, 2004, 40, 829-838.	5.4	33
47	Multi-walled carbon nanotubes coated by multi-layer silica for improving thermal conductivity of polymer composites. Journal of Thermal Analysis and Calorimetry, 2013, 113, 467-474.	3.6	33
48	The Room Temperature Annealing Peak in Ionomers: Ionic Crystallites or Water Absorption?. Macromolecules, 1994, 27, 1710-1719.	4.8	32
49	Melt rheology and die swell of PA6/LDPE blends by using lithium ionomer as a compatibilizer. Polymer Bulletin, 2009, 63, 23-35.	3.3	30
50	Adsorption Isotherms of Aqueous C12E6 and Cetyltrimethylammonium Bromide Surfactants on Solid Surfaces in the Presence of Low Molecular Weight Coadsorbents. Langmuir, 2009, 25, 5536-5544.	3.5	30
51	Influence of nanotube characteristics on electrical and thermal properties of MWCNT/polyamide 6,6 composites prepared by melt mixing. Carbon, 2012, 50, 3694-3707.	10.3	30
52	Enhanced angiogenesis of modified porcine small intestinal submucosa with hyaluronic acidâ€poly(lactideâ€ <i>co</i> â€glycolide) nanoparticles: From fabrication to preclinical validation. Journal of Biomedical Materials Research - Part A, 2010, 94A, 712-719.	4.0	29
53	Blends of low-density polyethylene with nylon compatibilized with a sodium-neutralized carboxylate ionomer. European Polymer Journal, 2004, 40, 2409-2420.	5.4	28
54	The effect of graphene flake size on the properties of grapheneâ€based polymer composite films. Journal of Applied Polymer Science, 2021, 138, 49821.	2.6	28

#	Article	IF	CITATIONS
55	Mechanical and thermal properties of UV-curable polyurethane and polyurea acrylates. Journal of Applied Polymer Science, 1993, 49, 1943-1955.	2.6	27
56	Effect of Water on Internal Aggregate Structure in Zinc-Neutralized Ionomers. Macromolecules, 1999, 32, 2989-2995.	4.8	26
57	Stretched PEO–LiCF3SO3 films: Polarized IR spectroscopy and X-ray diffraction. Electrochimica Acta, 2007, 53, 1548-1555.	5.2	26
58	Thermodynamic parameters and counterion binding to the micelle in binary anionic surfactant systems. Journal of Colloid and Interface Science, 2011, 356, 598-604.	9.4	26
59	Blends of metal acetates and polyurethanes containing pyridine groups II. SAXS and EXAFS studies. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 2357-2366.	2.1	24
60	Synthesis and encapsulation of magnetite nanoparticles in PLGA: effect of amount of PLGA on characteristics of encapsulated nanoparticles. Polymer Bulletin, 2012, 69, 795-806.	3.3	24
61	Effect of Coneutralization on Internal Aggregrate Structure in Ethylene-Based Ionomers. Macromolecules, 1999, 32, 2983-2988.	4.8	23
62	Effect of sample size on isothermal crystallization measurements performed in a differential scanning calorimeter: A method to determine avrami parameters without sample thickness effects. Thermochimica Acta, 2006, 443, 147-158.	2.7	23
63	An investigation of the high molecular weight poly(ethylene oxide)-zinc bromide complexes. Polymer, 1997, 38, 6189-6195.	3.8	22
64	Effects of Temperature on Aggregate Local Structure in a Zinc-Neutralized Carboxylate Ionomer. Macromolecules, 2000, 33, 7122-7126.	4.8	21
65	Use of zinc-neutralized ethylene/methacrylic acid copolymer ionomers as blend compatibilizers for nylon 6 and low-density polyethylene. Journal of Applied Polymer Science, 2003, 89, 620-629.	2.6	21
66	Morphology of Zinc-Neutralized Maleated Ethyleneâ^'Propylene Copolymer Ionomers:  Structure of Ionic Aggregates As Studied by X-ray Absorption Spectroscopy. Macromolecules, 2004, 37, 8585-8591.	4.8	21
67	Thermodynamics of mixed anionic/nonionic surfactant adsorption on alumina. Journal of Colloid and Interface Science, 2010, 342, 415-426.	9.4	21
68	Magnetic Assisted Transport of PLGA Nanoparticles Through a Human Round Window Membrane Model. Journal of Nanotechnology in Engineering and Medicine, 2010, 1, .	0.8	21
69	Wetting of polymer surfaces by aqueous surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 409, 30-41.	4.7	21
70	Influence of the sample preparation method of the ultra-small-angle x-ray scattering of lightly sulfonated polystyrenes. Macromolecules, 1993, 26, 4064-4066.	4.8	20
71	Synthesis of Nanometer-Scale Polymeric Structures on Surfaces from Template Assisted Admicellar Polymerization:Â A Comparative Study with Protein Adsorption. Langmuir, 2006, 22, 8010-8016.	3.5	20
72	Morphology of ionic microemulsions: comparison of SANS studies and the net-average curvature (NAC) model. Soft Matter, 2009, 5, 551-561.	2.7	20

#	Article	IF	CITATIONS
73	Positron Annihilation Spectroscopy of Polystyrene Filled with Carbon Nanomaterials. Macromolecules, 2012, 45, 933-940.	4.8	20
74	Rheological characterization of yield stress gels formed via electrostatic heteroaggregation of metal oxide nanoparticles. Soft Matter, 2017, 13, 6743-6755.	2.7	20
75	Surfactants adsorption on crossing stripes and steps. Soft Matter, 2017, 13, 862-874.	2.7	19
76	Study of mesoporous catalysts for conversion of 2,3-butanediol to butenes. Journal of Catalysis, 2017, 354, 182-196.	6.2	19
77	A new finding for carbon nanotubes in polymer blends. Journal of Thermoplastic Composite Materials, 2018, 31, 110-118.	4.2	19
78	Extended x-ray absorption fine-structure studies of the internal aggregate structure in lightly sulfonated polystyrene. 1. Determination of the coordination environment about the cation. Macromolecules, 1994, 27, 6627-6634.	4.8	18
79	Polymerization of styrene-isoprene on glass cloth for use in composite manufacture. Polymer Composites, 1998, 19, 579-587.	4.6	18
80	The influence of processing parameters on the properties of melt-spun polypropylene hollow fibers. Journal of Applied Polymer Science, 2002, 83, 1759-1772.	2.6	18
81	Polypyrrole-coated natural rubber latex by admicellar polymerization. Colloid and Polymer Science, 2002, 280, 509-516.	2.1	18
82	Singleâ€walled carbon nanotube/ultrahighâ€molecularâ€weight polyethylene composites with percolation at low nanotube contents. Polymer Engineering and Science, 2009, 49, 2440-2446.	3.1	18
83	Interfacial behavior and water solubility of various asphaltenes at high temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 378-388.	4.7	18
84	Janus particles as immiscible polymer blend compatibilizers: a review. Colloid and Polymer Science, 2021, 299, 585-593.	2.1	18
85	Calorimetric and Rheological Measurements of Three Commercial Thermosetting Prepreg Epoxies. Journal of Composite Materials, 2006, 40, 873-897.	2.4	17
86	Adsorption of surfactants on carbon black and paper fiber in the presence of calcium ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 389, 206-212.	4.7	17
87	Surfactant Aggregates Templated by Lateral Confinement. Journal of Physical Chemistry B, 2015, 119, 5467-5474.	2.6	17
88	Waste plastics in asphalt concrete: A review. SPE Polymers, 2021, 2, 4-18.	3.3	17
89	Deinking of water-based ink printing from plastic film using nonionic surfactants. Journal of Surfactants and Detergents, 2002, 5, 363-374.	2.1	16
90	Factors Affecting the Synthesis of Polymeric Nanostructures from Template Assisted Admicellar Polymerization. Langmuir, 2007, 23, 10008-10019.	3.5	16

#	Article	IF	CITATIONS
91	Reaction Kinetics and Subsequent Rheology of Carboxymethyl Guar Gum Produced from Guar Splits. Industrial & Engineering Chemistry Research, 2018, 57, 7345-7354.	3.7	16
92	Relative size of ionic aggregates determined by X-ray absorption spectroscopy. Polymer, 2000, 41, 2325-2328.	3.8	15
93	The use of Monte-Carlo simulations to calculate small-angle scattering patterns. Macromolecular Symposia, 2002, 190, 117-130.	0.7	15
94	CMC determination in the presence of surfactant-adsorbing inorganic particulates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 212, 147-153.	4.7	15
95	Viscosity and yield stress reduction in non-colloidal concentrated suspensions by surface modification with polymers and surfactants and/or nanoparticle addition. Journal of Colloid and Interface Science, 2006, 295, 374-387.	9.4	15
96	Pseudosolid, Shear-Thinning Gel Formation in Binary Dispersions of Metal Oxide Nanoparticles at Low Volume Fractions. Langmuir, 2014, 30, 14982-14990.	3.5	15
97	Tensoresistive PVC Coating for Sensor-Enabled Geogrids. Journal of Nanomechanics & Micromechanics, 2014, 4, .	1.4	14
98	Sensor-Enabled Geogrids for Performance Monitoring of Reinforced Soil Structures. Journal of Testing and Evaluation, 2016, 44, 391-401.	0.7	14
99	Properties of polyamic acid ionomers. Journal of Applied Polymer Science, 1993, 47, 1673-1683.	2.6	13
100	Simulation of Small-Angle X-ray Scattering from Single-Particle Systems. Journal of Applied Crystallography, 1998, 31, 594-599.	4.5	13
101	Polystyrene composites of single-walled carbon nanotubes-graft-polystyrene. Polymer International, 2012, 61, 1603-1610.	3.1	13
102	Oil-Induced Viscoelasticity in Micellar Solutions of Alkoxy Sulfate. Langmuir, 2019, 35, 12168-12179.	3.5	13
103	Blends of polyamide 6 with lowâ€density polyethylene compatibilized with ethylene–methacrylic acid based copolymer ionomers: Effect of neutralizing cations. Journal of Applied Polymer Science, 2008, 107, 3090-3098.	2.6	12
104	Atomic Force Microscopy Force Mapping Analysis of an Adsorbed Surfactant above and below the Critical Micelle Concentration. Langmuir, 2018, 34, 7223-7239.	3.5	12
105	EXAFS Studies of Various Sulfonated and Carboxylated Cadmium Ionomers. Macromolecules, 1996, 29, 1685-1690.	4.8	11
106	Adhesion improvement in glass fiber reinforced polyethylene composite via admicellar polymerization. Polymer Composites, 2003, 24, 171-180.	4.6	11
107	The effect of zinc oxide addition on the compatibilization efficiency of maleic anhydride grafted high-density polyethylene compatibilizer for high-density polyethylene/polyamide 6 blends. Journal of Applied Polymer Science, 2007, 103, 3871-3881.	2.6	11
108	Melt Rheology of Low-Density Polyethylene/Polyamide 6 using Ionomer as a Compatibilizer. Polymer Bulletin, 2008, 61, 331-340.	3.3	11

#	Article	IF	CITATIONS
109	Melt-neutralization of maleic anhydride grafted on high-density polyethylene compatibilizer for polyamide-6/high-density polyethylene blend: effect of neutralization level on compatibility of the blend. Polymer Bulletin, 2013, 70, 293-309.	3.3	11
110	The Use of Solution Viscosity to Characterize Single-Walled Carbon Nanotube Dispersions. Macromolecular Chemistry and Physics, 2006, 207, 2167-2169.	2.2	10
111	Effect of carbon nanotube persistence length on heat transfer in nanocomposites: A simulation approach. Applied Physics Letters, 2013, 102, 203116.	3.3	10
112	Effects of pH and Surfactant Precipitation on Surface Tension and CMC Determination of Aqueous Sodium <i>n</i> â€Alkyl Carboxylate Solutions. Journal of Surfactants and Detergents, 2014, 17, 911-917.	2.1	10
113	PMMA composites of singleâ€walled carbon nanotubesâ€ <i>graft</i> â€PMMA. Journal of Applied Polymer Science, 2014, 131, .	2.6	9
114	Extended x-ray absorption fine-structure studies of the internal aggregate structure in lightly sulfonated polystyrene. 2. Effect of uniaxial orientation. Macromolecules, 1994, 27, 6635-6641.	4.8	8
115	Effect of Temperature on Local Structure in Poly(ethylene oxide)â^Zinc Bromide Salt Complexes. Macromolecules, 2001, 34, 8523-8531.	4.8	8
116	An investigation of heat transfer effects in isothermal crystallization studies of low-density polyethylene. Polymer Engineering and Science, 2001, 41, 820-829.	3.1	8
117	Incorporation, Release, and Effectiveness of Dexamethasone in Poly(Lactic-Co-Glycolic Acid) Nanoparticles for Inner Ear Drug Delivery. Journal of Nanotechnology in Engineering and Medicine, 2011, 2, .	0.8	8
118	Modeling of Precipitation Phase Boundaries in Mixed Surfactant Systems Using an Improved Counterion Binding Model. Journal of Surfactants and Detergents, 2012, 15, 523-531.	2.1	8
119	Filler reaggregation and network formation time scale in extruded highâ€density polyethylene/multiwalled carbon nanotube composites. Polymer Engineering and Science, 2012, 52, 1761-1774.	3.1	8
120	Creating polymer templates and their use in the in-situ synthesis of biodegradable composite networks. Polymer, 2014, 55, 2332-2339.	3.8	8
121	Effect of sol-gel polymerization of tetraethylorthosilicate on internal aggregate structure in zinc-neutralized ethylene-methacrylic acid ionomers. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 197-200.	2.1	7
122	Mixtures of Nonionic Surfactants Made from Renewable Resources with Alkyl Sulfates: Comparison of Headgroups. Journal of Surfactants and Detergents, 2011, 14, 77-84.	2.1	7
123	Closure to "Sensor-Enabled Geosynthetics: Use of Conducting Carbon Networks as Geosynthetic Sensors―by Kianoosh Hatami, Brian P. Grady, and Matthew C. Ulmer. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2011, 137, 435-436.	3.0	7
124	Hydroxypropylation of Guar Splits: Kinetics and Rheology. Industrial & Engineering Chemistry Research, 2019, 58, 11673-11679.	3.7	7
125	X-ray photoelectron spectroscopic studies of hydrophilic surfaces modified via admicellar polymerization. Journal of Colloid and Interface Science, 2003, 264, 296-300.	9.4	6
126	Use of surfactants to remove water-based inks from plastic film: effect of calcium ion concentration and length of surfactant hydrophobe. Colloid and Polymer Science, 2004, 283, 154-163.	2.1	6

#	Article	IF	CITATIONS
127	Effects of styrene-isoprene copolymer glass fiber coatings on woven glass cloth epoxy composite performance. Polymer Composites, 2004, 25, 82-93.	4.6	6
128	Atomic-Scale Simulation of Sensor-Enabled Geosynthetics for Health-Monitoring of Reinforced Soil Slopes and Embankments. , 2013, , .		6
129	Influence of tapped density on the degradation profile of multiwall carbon nanotubes. Thermochimica Acta, 2017, 654, 140-145.	2.7	6
130	The use of X-ray absorption spectroscopy in the study of synthetic polymers. Microchemical Journal, 2002, 71, 267-279.	4.5	5
131	Mixtures of Nonionic Surfactants made from Renewable Resources with Alkyl Sulfates and Sodium n-Alkanecarboxylates: Comparison of Mixing Behavior using Rubingh's Treatment. Journal of Surfactants and Detergents, 2013, 16, 893-902.	2.1	5
132	Strength Improvement via Coating of a Cylindrical Hole by Layer-by-Layer Assembled Polymer Particles. ACS Applied Materials & Interfaces, 2010, 2, 1220-1227.	8.0	4
133	Explanation for the Increased Induction Times in Binary Mixed Anionic Surfactant Mixtures. Crystal Growth and Design, 2011, 11, 2948-2956.	3.0	4
134	Long-time crystallization kinetics in zinc-neutralized ethylene–methacrylic acid ionomers. Thermochimica Acta, 2013, 565, 183-193.	2.7	4
135	Compounding of poly(dimethyl siloxane) to reduce tack in natural rubber. Journal of Applied Polymer Science, 2001, 82, 519-526.	2.6	3
136	Blends of ethylene-methyl acrylate-acrylic acid terpolymers with ethylene-acrylic acid copolymers: Mechanical and thermomechanical properties. Journal of Applied Polymer Science, 2004, 91, 2216-2222.	2.6	3
137	Electrical, mechanical, and crystallization properties of ethyleneâ€ŧetrafluoroethylene copolymer/multiwalled carbon nanotube composites. Journal of Applied Polymer Science, 2014, 131, .	2.6	3
138	Anisotropically Functionalized Nanotube Anchors for Improving the Mechanical Strength of Immiscible Polymer Composites. ACS Applied Nano Materials, 2021, 4, 580-589.	5.0	3
139	Magnetite/poly(D,L-lactide-co-glycolide) and hydroxyapatite/poly(D,L-lactide-co-glycolide) prepared by w/o/w emulsion technique for drug carrier: physical characteristic of composite nanoparticles. Colloid and Polymer Science, 2017, 295, 2031-2040.	2.1	2
140	Observing the Effects of Temperature and Surface Roughness on Cetyltrimethylammonium Bromide Adsorption Using a Quartzâ€Crystal Microbalance with Dissipation Monitoring. Journal of Surfactants and Detergents, 2019, 22, 1201-1212.	2.1	2
141	Influence of diameter on the degradation profile of multiwall carbon nanotubes. Journal of Thermal Analysis and Calorimetry, 2019, 138, 1351-1362.	3.6	2
142	Synthesis and Characterization of Novel Surfactants based on 2â€Hydroxyâ€4â€(Methylthio)Butanoic Acid Part 3: Microemulsions from Nonionic Sulfoxide Ester Surfactants. Journal of Surfactants and Detergents, 2019, 22, 95-102.	2.1	2
143	Polystyrene and poly(methyl methacrylate) interfaces reinforced with diblock carbon nanotubes. Polymer Engineering and Science, 2021, 61, 1186-1194.	3.1	2
144	Mechanical properties and rheology of polyalkenoate cements using various low-cost fillers. Journal of Materials Science, 2007, 42, 3632-3644.	3.7	1

#	Article	IF	CITATIONS
145	Synthesis and Characterization of Novel Surfactants Based on 2â€Hydroxyâ€4â€(Methylthio)Butanoic Acid: 1. Anionic Surfactants. Journal of Surfactants and Detergents, 2015, 18, 895-903.	2.1	1
146	Synthesis and Characterization of Novel Surfactants Based on 2â€Hydroxyâ€4â€(methylthio)butanoic Acid: 2. Nonâ€ionic Surfactants. Journal of Surfactants and Detergents, 2017, 20, 503-519.	2.1	1
147	22nd International Symposium on Surfactants in Solution Special Issue. Journal of Surfactants and Detergents, 2019, 22, 933-934.	2.1	1
148	Directly probing surfactant adsorption on nanoscopic trenches and pillars. Journal of Colloid and Interface Science, 2020, 579, 128-139.	9.4	1
149	Magnetite/poly(D,L-lactide-co-glycolide) and hydroxyapatite/poly(D,L-lactide-co-glycolide) prepared by W/O/W emulsion technique for drug carrier: Evaluation of in vitro release of dexamethasone from composite nanoparticles. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018. 67. 629-634.	3.4	0
150	<scp><i>SPE Polymers</i></scp> is the newest member to join our family of <scp>SPE</scp> archival peerâ€reviewed scientific journals. SPE Polymers, 2020, 1, 3-3.	3.3	0
151	Improved coldâ€water detergency of malodourous soil correlating with hydrophilic–lipophilic deviation concept. Journal of Surfactants and Detergents, 0, , .	2.1	0