
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4777329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nature Cell Biology, 2004, 6, 1122-1128.	10.3	1,873
3	Skeletal Muscle-Specific Ablation of raptor, but Not of rictor, Causes Metabolic Changes and Results in Muscle Dystrophy. Cell Metabolism, 2008, 8, 411-424.	16.2	557
4	Neuropathology in Mice Expressing Human α-Synuclein. Journal of Neuroscience, 2000, 20, 6021-6029.	3.6	522
5	Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. Journal of Clinical Investigation, 2011, 121, 2197-2209.	8.2	467
6	mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. Journal of Clinical Investigation, 2011, 121, 2181-2196.	8.2	462
7	Hepatic mTORC2 Activates Glycolysis and Lipogenesis through Akt, Glucokinase, and SREBP1c. Cell Metabolism, 2012, 15, 725-738.	16.2	452
8	Adipose-Specific Knockout of raptor Results in Lean Mice with Enhanced Mitochondrial Respiration. Cell Metabolism, 2008, 8, 399-410.	16.2	434
9	Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. Journal of Cell Biology, 2009, 187, 859-874.	5.2	320
10	Guidelines for preclinical animal research in ALS/MND: A consensus meeting. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2010, 11, 38-45.	2.1	293
11	Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting. Physiological Reviews, 2015, 95, 809-852.	28.8	287
12	New insights into the roles of agrin. Nature Reviews Molecular Cell Biology, 2003, 4, 295-309.	37.0	285
13	The agrin gene codes for a family of basal lamina proteins that differ in function and distribution. Neuron, 1992, 8, 691-699.	8.1	240
14	An agrin minigene rescues dystrophic symptoms in a mouse model for congenital muscular dystrophy. Nature, 2001, 413, 302-307.	27.8	222
15	Acetylcholine receptor-aggregating activity of agrin isoforms and mapping of the active site Journal of Cell Biology, 1995, 128, 625-636.	5.2	221
16	Cardiac Raptor Ablation Impairs Adaptive Hypertrophy, Alters Metabolic Gene Expression, and Causes Heart Failure in Mice. Circulation, 2011, 123, 1073-1082.	1.6	219
17	Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology. Journal of Cell Biology, 2013, 201, 293-308.	5.2	218
18	Sustained Activation of mTORC1 in Skeletal Muscle Inhibits Constitutive and Starvation-Induced Autophagy and Causes a Severe, Late-Onset Myopathy. Cell Metabolism, 2013, 17, 731-744.	16.2	212

#	Article	IF	CITATIONS
19	Alternative Splicing of Agrin Alters Its Binding to Heparin, Dystroglycan, and the Putative Agrin Receptor. Neuron, 1996, 16, 755-767.	8.1	210
20	cDNA that encodes active agrin. Neuron, 1992, 8, 677-689.	8.1	200
21	Agrin orchestrates synaptic differentiation at the vertebrate neuromuscular junction. Trends in Neurosciences, 1998, 21, 22-27.	8.6	170
22	mTOR complex 2 in adipose tissue negatively controls whole-body growth. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9902-9907.	7.1	162
23	Mammalian animal models for Duchenne muscular dystrophy. Neuromuscular Disorders, 2009, 19, 241-249.	0.6	162
24	The axonally secreted protein axonin-1 is a potent substratum for neurite growth Journal of Cell Biology, 1991, 112, 449-455.	5.2	158
25	Agrin Binds to the Nerve–Muscle Basal Lamina via Laminin. Journal of Cell Biology, 1997, 137, 671-683.	5.2	158
26	Identification of an Agrin Mutation that Causes Congenital Myasthenia and Affects Synapse Function. American Journal of Human Genetics, 2009, 85, 155-167.	6.2	158
27	Agrin Is a Major Heparan Sulfate Proteoglycan in the Human Glomerular Basement Membrane. Journal of Histochemistry and Cytochemistry, 1998, 46, 19-27.	2.5	150
28	Balanced mTORC1 Activity in Oligodendrocytes Is Required for Accurate CNS Myelination. Journal of Neuroscience, 2014, 34, 8432-8448.	3.6	146
29	Agrin isoforms and their role in synaptogenesis. Current Opinion in Cell Biology, 1992, 4, 869-874.	5.4	144
30	The neurite outgrowth inhibitor Nogoâ€A promotes denervation in an amyotrophic lateral sclerosis model. EMBO Reports, 2006, 7, 1162-1167.	4.5	135
31	Inhibition of synapse assembly in mammalian muscle in vivo by RNA interference. EMBO Reports, 2004, 5, 183-188.	4.5	128
32	Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice. Journal of Clinical Investigation, 2015, 125, 1446-1458.	8.2	126
33	Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing. Nature Communications, 2017, 8, 16014.	12.8	125
34	An amino-terminal extension is required for the secretion of chick agrin and its binding to extracellular matrix Journal of Cell Biology, 1995, 131, 1547-1560.	5.2	124
35	Agrin Is a High-affinity Binding Protein of Dystroglycan in Non-muscle Tissue. Journal of Biological Chemistry, 1998, 273, 600-605.	3.4	124
36	Neural Agrin Induces Ectopic Postsynaptic Specializations in Innervated Muscle Fibers. Journal of Neuroscience, 1997, 17, 6534-6544.	3.6	122

#	Article	IF	CITATIONS
37	Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy. Skeletal Muscle, 2013, 3, 6.	4.2	122
38	WNT7B Promotes Bone Formation in part through mTORC1. PLoS Genetics, 2014, 10, e1004145.	3.5	122
39	Agrin is a differentiation-inducing "stop signal―for motoneurons in vitro. Neuron, 1995, 15, 1365-1374.	8.1	121
40	Inactivation of mTORC1 in the Developing Brain Causes Microcephaly and Affects Gliogenesis. Journal of Neuroscience, 2013, 33, 7799-7810.	3.6	121
41	The TSC-mTOR Pathway Mediates Translational Activation of TOP mRNAs by Insulin Largely in a Raptor- or Rictor-Independent Manner. Molecular and Cellular Biology, 2009, 29, 640-649.	2.3	111
42	Mammalian Target of Rapamycin Complex 2 Controls CD8ÂT Cell Memory Differentiation in a Foxo1-Dependent Manner. Cell Reports, 2016, 14, 1206-1217.	6.4	111
43	An Intrinsic Distinction in Neuromuscular Junction Assembly and Maintenance in Different Skeletal Muscles. Neuron, 2002, 34, 357-370.	8.1	106
44	Dystroglycan Is a Dual Receptor for Agrin and Laminin-2 in Schwann Cell Membrane. Journal of Biological Chemistry, 1996, 271, 23418-23423.	3.4	105
45	mTORC1 Controls PNS Myelination along the mTORC1-RXRÎ ³ -SREBP-Lipid Biosynthesis Axis in Schwann Cells. Cell Reports, 2014, 9, 646-660.	6.4	105
46	Structural and functional diversity generated by alternative mRNA splicing. Trends in Biochemical Sciences, 2005, 30, 515-521.	7.5	103
47	Synapse Loss in Cortex of Agrin-Deficient Mice after Genetic Rescue of Perinatal Death. Journal of Neuroscience, 2007, 27, 7183-7195.	3.6	103
48	Yin Yang 1 Deficiency in Skeletal Muscle Protects against Rapamycin-Induced Diabetic-like Symptoms through Activation of Insulin/IGF Signaling. Cell Metabolism, 2012, 15, 505-517.	16.2	99
49	The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia. Nature Communications, 2020, 11, 4510.	12.8	98
50	Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation. Clia, 2012, 60, 1646-1659.	4.9	97
51	Overexpression of miniâ€agrin in skeletal muscle increases muscle integrity and regenerative capacity in lamininâ€Î±2â€deficient mice. FASEB Journal, 2005, 19, 934-942.	0.5	96
52	Molecular Mechanisms and Treatment Options for Muscle Wasting Diseases. Annual Review of Pharmacology and Toxicology, 2011, 51, 373-395.	9.4	92
53	Electron microscopic structure of agrin and mapping of its binding site in laminin-1. EMBO Journal, 1998, 17, 335-343.	7.8	89
54	BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16111-16120	7.1	85

#	Article	IF	CITATIONS
55	A homologue of the axonally secreted protein axonin-1 is an integral membrane protein of nerve fiber tracts involved in neurite fasciculation Journal of Cell Biology, 1989, 109, 2363-2378.	5.2	82
56	mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2817-26.	7.1	82
57	Brief Report: The Differential Roles of mTORC1 and mTORC2 in Mesenchymal Stem Cell Differentiation. Stem Cells, 2015, 33, 1359-1365.	3.2	82
58	Laminin-deficient muscular dystrophy: Molecular pathogenesis and structural repair strategies. Matrix Biology, 2018, 71-72, 174-187.	3.6	80
59	Identification of proteins secreted from axons of embryonic dorsalâ€rootâ€ganglia neurons. FEBS Journal, 1989, 180, 249-258.	0.2	79
60	Substrate-bound agrin induces expression of acetylcholine receptor epsilon-subunit gene in cultured mammalian muscle cells Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 5985-5990.	7.1	79
61	An Alternative Amino-Terminus Expressed in the Central Nervous System Converts Agrin to a Type II Transmembrane Protein. Molecular and Cellular Neurosciences, 2001, 17, 208-225.	2.2	79
62	Activation of mTORC1 in skeletal muscle regulates whole-body metabolism through FGF21. Science Signaling, 2015, 8, ra113.	3.6	78
63	Purification of axonin-1, a protein that is secreted from axons during neurogenesis EMBO Journal, 1989, 8, 55-63.	7.8	77
64	Omigapil Ameliorates the Pathology of Muscle Dystrophy Caused by Laminin-α2 Deficiency. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 787-795.	2.5	77
65	Defective Mitochondrial Morphology and Bioenergetic Function in Mice Lacking the Transcription Factor Yin Yang 1 in Skeletal Muscle. Molecular and Cellular Biology, 2012, 32, 3333-3346.	2.3	77
66	Extracellular matrix of secondary lymphoid organs impacts on B-cell fate and survival. Proceedings of the United States of America, 2013, 110, E2915-24.	7.1	77
67	Oxygen sufficiency controls TOP mRNA translation via the TSC-Rheb-mTOR pathway in a 4E-BP-independent manner. Journal of Molecular Cell Biology, 2014, 6, 255-266.	3.3	77
68	Muscle-selective synaptic disassembly and reorganization in MuSK antibody positive MG mice. Experimental Neurology, 2011, 230, 207-217.	4.1	73
69	mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation. Nature Communications, 2016, 7, 13226.	12.8	72
70	Laminin α2 deficiency and muscular dystrophy; genotype-phenotype correlation in mutant mice. Neuromuscular Disorders, 2003, 13, 207-215.	0.6	71
71	mTORC1 and PKB/Akt control the muscle response to denervation by regulating autophagy and HDAC4. Nature Communications, 2019, 10, 3187.	12.8	71
72	The Ets Transcription Factor GABP Is Required for Postsynaptic Differentiation <i>In Vivo</i> . Journal of Neuroscience, 2000, 20, 5989-5996.	3.6	70

#	Article	IF	CITATIONS
73	Acute mTOR inhibition induces insulin resistance and alters substrate utilization inÂvivo. Molecular Metabolism, 2014, 3, 630-641.	6.5	68
74	Linker molecules between laminins and dystroglycan ameliorate laminin-α2–deficient muscular dystrophy at all disease stages. Journal of Cell Biology, 2007, 176, 979-993.	5.2	67
75	Composition, Synthesis, and Assembly of the Embryonic Chick Retinal Basal Lamina. Developmental Biology, 2000, 220, 111-128.	2.0	65
76	Identification of a lectin causing the degeneration of neuronal processes using engineered embryonic stem cells. Nature Neuroscience, 2007, 10, 712-719.	14.8	65
77	The Role of Nerve- versus Muscle-Derived Factors in Mammalian Neuromuscular Junction Formation. Journal of Neuroscience, 2008, 28, 3333-3340.	3.6	65
78	Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I. Journal of Clinical Investigation, 2017, 127, 549-563.	8.2	64
79	The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory. Nature Communications, 2016, 7, 11613.	12.8	63
80	Mammalian Target of Rapamycin Complex 1 Orchestrates Invariant NKT Cell Differentiation and Effector Function. Journal of Immunology, 2014, 193, 1759-1765.	0.8	62
81	Signaling and aging at the neuromuscular synapse: lessons learnt from neuromuscular diseases. Current Opinion in Pharmacology, 2012, 12, 340-346.	3.5	61
82	Linker proteins restore basement membrane and correct <i>LAMA2</i> -related muscular dystrophy in mice. Science Translational Medicine, 2017, 9, .	12.4	60
83	The heparan sulfate proteoglycan agrin contributes to barrier properties of mouse brain endothelial cells by stabilizing adherens junctions. Cell and Tissue Research, 2014, 358, 465-479.	2.9	59
84	LncRNA-encoded peptides: More than translational noise?. Cell Research, 2017, 27, 604-605.	12.0	59
85	In vivo evidence for mTORC2-mediated actin cytoskeleton rearrangement in neurons. Bioarchitecture, 2013, 3, 113-118.	1.5	58
86	Src-Family Kinases Stabilize the Neuromuscular Synapse In Vivo via Protein Interactions, Phosphorylation, and Cytoskeletal Linkage of Acetylcholine Receptors. Journal of Neuroscience, 2005, 25, 10479-10493.	3.6	54
87	Neuropathology in Mice Expressing Mouse Alpha-Synuclein. PLoS ONE, 2011, 6, e24834.	2.5	53
88	MuSK levels differ between adult skeletal muscles and influence postsynaptic plasticity. European Journal of Neuroscience, 2011, 33, 890-898.	2.6	52
89	mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation. Molecular and Cellular Biology, 2017, 37, .	2.3	51
90	Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy. Cardiovascular Research, 2016, 109, 103-114.	3.8	47

#	Article	IF	CITATIONS
91	Increasing Agrin Function Antagonizes Muscle Atrophy and Motor Impairment in Spinal Muscular Atrophy. Frontiers in Cellular Neuroscience, 2018, 12, 17.	3.7	47
92	Modulation of Agrin Function by Alternative Splicing and Ca2+ Binding. Structure, 2004, 12, 503-515.	3.3	45
93	MTORC1 determines autophagy through ULK1 regulation in skeletal muscle. Autophagy, 2013, 9, 1435-1437.	9.1	45
94	Injection of a Soluble Fragment of Neural Agrin (NT-1654) Considerably Improves the Muscle Pathology Caused by the Disassembly of the Neuromuscular Junction. PLoS ONE, 2014, 9, e88739.	2.5	45
95	Differential localization and anabolic responsiveness of mTOR complexes in human skeletal muscle in response to feeding and exercise. American Journal of Physiology - Cell Physiology, 2017, 313, C604-C611.	4.6	45
96	A newly identified chromosomal microdeletion and an Nâ€box mutation of the AChRϵ gene cause a congenital myasthenic syndrome. Brain, 2002, 125, 1005-1013.	7.6	44
97	Angiotensin II type 1 receptor antagonists alleviate muscle pathology in the mouse model for laminin-1±2-deficient congenital muscular dystrophy (MDC1A). Skeletal Muscle, 2012, 2, 18.	4.2	44
98	mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3. Molecular Metabolism, 2016, 5, 646-655.	6.5	44
99	Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology. Neuron, 2016, 89, 129-146.	8.1	44
100	mTOR controls embryonic and adult myogenesis <i>via</i> mTORC1. Development (Cambridge), 2019, 146,	2.5	44
101	Loss of mTORC1 signaling alters pancreatic $\hat{I}\pm$ cell mass and impairs glucagon secretion. Journal of Clinical Investigation, 2017, 127, 4379-4393.	8.2	44
102	Evidence That Agrin directly Influences Presynaptic Differentiation at Neuromuscular JunctionsIn Vitro. European Journal of Neuroscience, 1997, 9, 2269-2283.	2.6	43
103	A neuronal inhibitory domain in the N-terminal half of agrin. Journal of Neurobiology, 2002, 50, 164-179.	3.6	43
104	Expression of mouse agrin in normal, denervated and dystrophic muscle. Neuromuscular Disorders, 2003, 13, 408-415.	0.6	43
105	Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice. Journal of Physiology, 2017, 595, 4845-4855.	2.9	43
106	Molecular and phenotypic analysis of rodent models reveals conserved and species-specific modulators of human sarcopenia. Communications Biology, 2021, 4, 194.	4.4	43
107	Activation of Muscle-specific Receptor Tyrosine Kinase and Binding to Dystroglycan Are Regulated by Alternative mRNA Splicing of Agrin. Journal of Biological Chemistry, 2006, 281, 36835-36845.	3.4	42
108	Muscle-wide secretion of a miniaturized form of neural agrin rescues focal neuromuscular innervation in agrin mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11406-11411.	7.1	42

#	Article	IF	CITATIONS
109	The laminin-binding domain of agrin is structurally related to N-TIMP-1. Nature Structural Biology, 2001, 8, 705-709.	9.7	41
110	Apoptosis inhibitors and miniâ€agrin have additive benefits in congenital muscular dystrophy mice. EMBO Molecular Medicine, 2011, 3, 465-479.	6.9	40
111	Clustering transmembrane-agrin induces filopodia-like processes on axons and dendrites. Molecular and Cellular Neurosciences, 2006, 31, 515-524.	2.2	39
112	Tyrosine phosphatase regulation of MuSK-dependent acetylcholine receptor clustering. Molecular and Cellular Neurosciences, 2005, 28, 403-416.	2.2	38
113	Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20808-20813.	7.1	38
114	Chimeric protein repair of laminin polymerization ameliorates muscular dystrophy phenotype. Journal of Clinical Investigation, 2017, 127, 1075-1089.	8.2	38
115	Rescue of spinal muscular atrophy mouse models with AAV9-Exon-specific U1 snRNA. Nucleic Acids Research, 2019, 47, 7618-7632.	14.5	37
116	Mapping of the laminin-binding site of the N-terminal agrin domain (NtA). EMBO Journal, 2003, 22, 529-536.	7.8	36
117	m <scp>TORC</scp> 1 and m <scp>TORC</scp> 2 have largely distinct functions in Purkinje cells. European Journal of Neuroscience, 2015, 42, 2595-2612.	2.6	36
118	Collagen XIII Is Required for Neuromuscular Synapse Regeneration and Functional Recovery after Peripheral Nerve Injury. Journal of Neuroscience, 2018, 38, 4243-4258.	3.6	36
119	"Get the Balance Right― Pathological Significance of Autophagy Perturbation in Neuromuscular Disorders. Journal of Neuromuscular Diseases, 2016, 3, 127-155.	2.6	35
120	AChR phosphorylation and aggregation induced by an agrin fragment that lacks the binding domain for alpha-dystroglycan EMBO Journal, 1996, 15, 2625-2631.	7.8	33
121	Sec24- and ARFGAP1-Dependent Trafficking of GABA Transporter-1 Is a Prerequisite for Correct Axonal Targeting. Journal of Neuroscience, 2008, 28, 12453-12464.	3.6	33
122	Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. Nature Communications, 2022, 13, 2025.	12.8	30
123	Fatigue and Muscle Atrophy in a Mouse Model of Myasthenia Gravis Is Paralleled by Loss of Sarcolemmal nNOS. PLoS ONE, 2012, 7, e44148.	2.5	29
124	Alterations to mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism. Skeletal Muscle, 2016, 6, 13.	4.2	28
125	Conjugation of LG Domains of Agrins and Perlecan to Polymerizing Laminin-2 Promotes Acetylcholine Receptor Clustering. Journal of Biological Chemistry, 2005, 280, 41449-41457.	3.4	26
126	Loss of mTOR signaling affects cone function, cone structure and expression of cone specific proteins without affecting cone survival. Experimental Eye Research, 2015, 135, 1-13.	2.6	26

#	Article	IF	CITATIONS
127	Agrin, laminin β2 (s-laminin) and ARIA: their role in neuromuscular development. Current Opinion in Neurobiology, 1996, 6, 97-103.	4.2	25
128	The Rapamycin-Sensitive Complex of Mammalian Target of Rapamycin Is Essential to Maintain Male Fertility. American Journal of Pathology, 2016, 186, 324-336.	3.8	25
129	Neuronal LRP4 regulates synapse formation in the developing CNS. Development (Cambridge), 2017, 144, 4604-4615.	2.5	25
130	A minigene of neural agrin encoding the laminin-binding and acetylcholine receptor-aggregating domains is sufficient to induce postsynaptic differentiation in muscle fibres. European Journal of Neuroscience, 1998, 10, 3141-3152.	2.6	24
131	Conditional disruption of rictor demonstrates a direct requirement for mTORC2 in skin tumor development and continued growth of established tumors. Carcinogenesis, 2015, 36, 487-497.	2.8	24
132	Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation. Journal of Allergy and Clinical Immunology, 2020, 145, 283-300.e8.	2.9	24
133	Agrin is highly expressed by chondrocytes and is required for normal growth. Histochemistry and Cell Biology, 2007, 127, 363-374.	1.7	23
134	mTORC1 signalling is not essential for the maintenance of muscle mass and function in adult sedentary mice. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 259-273.	7.3	23
135	Mammalian Target of Rapamycin Complex 2 Modulates αβTCR Processing and Surface Expression during Thymocyte Development. Journal of Immunology, 2014, 193, 1162-1170.	0.8	22
136	Differential regulation of <scp>AC</scp> hR clustering in the polar and equatorial region of murine muscle spindles. European Journal of Neuroscience, 2015, 41, 69-78.	2.6	21
137	Congenital myasthenic syndromes in two kinships with end-plate acetylcholine receptor and utrophin deficiency. Neurology, 1998, 50, 54-61.	1.1	20
138	Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult. Scientific Reports, 2016, 5, 17705.	3.3	20
139	Synaptic differentiation: the role of agrin in the formation and maintenance of the neuromuscular junction. Cell and Tissue Research, 1997, 290, 357-365.	2.9	19
140	Molecules involved in the formation of synaptic connections in muscle and brain. Matrix Biology, 2001, 20, 3-12.	3.6	17
141	Organization of synaptic myonuclei by Syne proteins and their role during the formation of the nerve-muscle synapse. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5643-5644.	7.1	17
142	mTORC1 plays an important role in osteoblastic regulation of B-lymphopoiesis. Scientific Reports, 2018, 8, 14501.	3.3	17
143	Best Practices and Standard Protocols as a Tool to Enhance Translation for Neuromuscular Disorders. Journal of Neuromuscular Diseases, 2015, 2, 113-117.	2.6	16
144	Cloning and sequencing of mouse skeletal muscle α-dystroglycan. Matrix Biology, 1995, 14, 681-685.	3.6	15

#	Article	IF	CITATIONS
145	Mesoangioblast delivery of miniagrin ameliorates murine model of merosin-deficient congenital muscular dystrophy type 1A. Skeletal Muscle, 2015, 5, 30.	4.2	15
146	The TOR Pathway at the Neuromuscular Junction: More Than a Metabolic Player?. Frontiers in Molecular Neuroscience, 2020, 13, 162.	2.9	14
147	Causes and consequences of age-related changes at the neuromuscular junction. Current Opinion in Physiology, 2018, 4, 32-39.	1.8	13
148	Structure and laminin-binding specificity of the NtA domain expressed in eukaryotic cells. Matrix Biology, 2005, 23, 507-513.	3.6	11
149	mTORC2 affects the maintenance of the muscle stem cell pool. Skeletal Muscle, 2019, 9, 30.	4.2	11
150	Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation–contraction coupling supramolecular complex. Biochemical Journal, 2015, 466, 123-135.	3.7	10
151	Improving Reproducibility of Phenotypic Assessments in the DyW Mouse Model of Laminin-α2 Related Congenital Muscular Dystrophy. Journal of Neuromuscular Diseases, 2017, 4, 115-126.	2.6	10
152	Tyrosine phosphatases such as SHP-2 act in a balance with Src-family kinases in stabilization of postsynaptic clusters of acetylcholine receptors. BMC Neuroscience, 2007, 8, 46.	1.9	9
153	Diverse functions of the extracellular matrix molecule agrin. Seminars in Neuroscience, 1996, 8, 357-366.	2.2	8
154	Reverse protein arrays as novel approach for protein quantification in muscular dystrophies. Neuromuscular Disorders, 2010, 20, 302-309.	0.6	8
155	Muscle-Specific Agrin Isoforms Reduce Phosphorylation of AChR Î ³ and Î [~] Subunits in Cultured Muscle Cells. Molecular and Cellular Neurosciences, 1998, 11, 206-216.	2.2	7
156	Identification of Disease-Specific Autoantibodies in Seronegative Myasthenia Gravis. Annals of the New York Academy of Sciences, 2003, 998, 356-358.	3.8	5
157	Mice carrying an analogous heterozygous dynamin 2 K562E mutation that causes neuropathy in humans develop predominant characteristics of a primary myopathy. Human Molecular Genetics, 2020, 29, 1253-1273.	2.9	5
158	The Role of Dystroglycan and Its Ligands in Physiology and Disease. Physiology, 2000, 15, 255-259.	3.1	4
159	1H, 13C and 15N backbone assignments for the C-terminal globular domain of agrin. Journal of Biomolecular NMR, 2001, 20, 295-296.	2.8	4
160	Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling. American Journal of Physiology - Endocrinology and Metabolism, 2022, 323, E133-E144.	3.5	3
161	M.I.1 Mechanism of laminin assembly: Insight for structural repairs of MDC1A. Neuromuscular Disorders, 2013, 23, 738.	0.6	2
162	Merosin deficient congenital muscular dystrophy type 1A: An international workshop on the road to therapy 15-17 November 2019, Maastricht, the Netherlands. Neuromuscular Disorders, 2021, 31, 673-680.	0.6	2

#	Article	IF	CITATIONS
163	Facilitating orphan drug development: Proceedings of the TREAT-NMD International Conference, December 2015, Washington, DC, USA. Neuromuscular Disorders, 2017, 27, 693-701.	0.6	1
164	M.P.4.07 Reverse protein arrays for efficient protein diagnosis of muscular dystrophies in less than 10mg muscle tissue. Neuromuscular Disorders, 2009, 19, 606.	0.6	0
165	M.I.3 The role of laminins in myomatrix assembly and skeletal muscle stability. Neuromuscular Disorders, 2013, 23, 738-739.	0.6	0
166	G.P.212. Neuromuscular Disorders, 2014, 24, 880.	0.6	0
167	Raptor Ablation in Skeletal Muscle Affects the Structure and Function of the Excitation-Contraction Coupling Macromolecular Complex. Biophysical Journal, 2014, 106, 123a.	0.5	0
168	Inhibition of mTORC2/Akt signaling to enhance the therapeutic potential of CD8 T cells. , 2015, 3, .		0
169	Combined cell and gene therapy to treat merosin deficient congenital muscular dystrophy. Neuromuscular Disorders, 2015, 25, S270.	0.6	0
170	NEUROMUSCULAR JUNCTION DEFECTS. Neuromuscular Disorders, 2018, 28, S29.	0.6	0
171	Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. Journal of Experimental Medicine, 2009, 206, i33-i33.	8.5	Ο