Frank Koopmans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4776658/publications.pdf

Version: 2024-02-01

24 papers 2,356 citations

567281 15 h-index 642732 23 g-index

25 all docs

 $\begin{array}{c} 25 \\ \text{docs citations} \end{array}$

25 times ranked

3081 citing authors

#	Article	IF	CITATIONS
1	Single-nuclei isoform RNA sequencing unlocks barcoded exon connectivity in frozen brain tissue. Nature Biotechnology, 2022, 40, 1082-1092.	17.5	52
2	Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 2022, 604, 502-508.	27.8	929
3	Functional brain defects in a mouse model of a chromosomal $t(1;11)$ translocation that disrupts DISC1 and confers increased risk of psychiatric illness. Translational Psychiatry, 2021, 11, 135.	4.8	3
4	Age-Dependent Hippocampal Proteomics in the APP/PS1 Alzheimer Mouse Model: A Comparative Analysis with Classical SWATH/DIA and directDIA Approaches. Cells, 2021, 10, 1588.	4.1	11
5	Systematic assessment of variability in the proteome of iPSC derivatives. Stem Cell Research, 2021, 56, 102512.	0.7	8
6	The proteome of granulovacuolar degeneration and neurofibrillary tangles in Alzheimer's disease. Acta Neuropathologica, 2021, 141, 341-358.	7.7	29
7	Neuroproteomics of cognitively healthy centenarians in the context of aging and Alzheimer's disease Alzheimer's and Dementia, 2021, 17 Suppl 3, e053681.	0.8	0
8	Recent Developments in Data Independent Acquisition (DIA) Mass Spectrometry: Application of Quantitative Analysis of the Brain Proteome. Frontiers in Molecular Neuroscience, 2020, 13, 564446.	2.9	47
9	Stitching the synapse: Cross-linking mass spectrometry into resolving synaptic protein interactions. Science Advances, 2020, 6, eaax5783.	10.3	74
10	Glycine Receptor Complex Analysis Using Immunoprecipitationâ€Blue Native Gel Electrophoresisâ€Mass Spectrometry. Proteomics, 2020, 20, e1900403.	2.2	7
11	Spliceâ€dependent transâ€synaptic <scp>PTP</scp> δ– <scp>IL</scp> 1 <scp>RAPL</scp> 1 interaction regulates synapse formation and non― <scp>REM</scp> sleep. EMBO Journal, 2020, 39, e104150.	7.8	22
12	<scp>SALM</scp> 1 controls synapse development by promoting Fâ€actin/PIP2â€dependent Neurexin clustering. EMBO Journal, 2019, 38, e101289.	7.8	17
13	SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron, 2019, 103, 217-234.e4.	8.1	518
14	A Fast and Economical Sample Preparation Protocol for Interaction Proteomics Analysis. Proteomics, 2019, 19, 1900027.	2.2	11
15	Data-Independent Acquisition (SWATH) Mass Spectrometry Analysis of Protein Content in Primary Neuronal Cultures. Neuromethods, 2019, , 119-127.	0.3	4
16	MIR137 schizophrenia-associated locus controls synaptic function by regulating synaptogenesis, synapse maturation and synaptic transmission. Human Molecular Genetics, 2018, 27, 1879-1891.	2.9	58
17	Comparative Analyses of Data Independent Acquisition Mass Spectrometric Approaches: DIA, WiSIMâ€DIA, and Untargeted DIA. Proteomics, 2018, 18, 1700304.	2.2	71
18	Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells. Nature Biotechnology, 2018, 36, 1197-1202.	17.5	253

#	Article	IF	CITATION
19	Comparative Hippocampal Synaptic Proteomes of Rodents and Primates: Differences in Neuroplasticity-Related Proteins. Frontiers in Molecular Neuroscience, 2018, 11, 364.	2.9	43
20	Correlation profiling of brain sub-cellular proteomes reveals co-assembly of synaptic proteins and subcellular distribution. Scientific Reports, 2017, 7, 12107.	3.3	55
21	Interaction proteomics of canonical Caspr2 (CNTNAP2) reveals the presence of two Caspr2 isoforms with overlapping interactomes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 827-833.	2.3	32
22	Interaction Proteomics Reveals Brain Region-Specific AMPA Receptor Complexes. Journal of Proteome Research, 2014, 13, 5695-5706.	3.7	63
23	Empirical Bayesian Random Censoring Threshold Model Improves Detection of Differentially Abundant Proteins. Journal of Proteome Research, 2014, 13, 3871-3880.	3.7	20
24	Identifying true protein complex constituents in interaction proteomics: The example of the DMXL2 protein complex. Proteomics, 2012, 12, 2428-2432.	2.2	27