Frank Koopmans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4776658/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 2022, 604, 502-508.	27.8	929
2	SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron, 2019, 103, 217-234.e4.	8.1	518
3	Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells. Nature Biotechnology, 2018, 36, 1197-1202.	17.5	253
4	Stitching the synapse: Cross-linking mass spectrometry into resolving synaptic protein interactions. Science Advances, 2020, 6, eaax5783.	10.3	74
5	Comparative Analyses of Data Independent Acquisition Mass Spectrometric Approaches: DIA, WiSIMâ€ÐIA, and Untargeted DIA. Proteomics, 2018, 18, 1700304.	2.2	71
6	Interaction Proteomics Reveals Brain Region-Specific AMPA Receptor Complexes. Journal of Proteome Research, 2014, 13, 5695-5706.	3.7	63
7	MIR137 schizophrenia-associated locus controls synaptic function by regulating synaptogenesis, synapse maturation and synaptic transmission. Human Molecular Genetics, 2018, 27, 1879-1891.	2.9	58
8	Correlation profiling of brain sub-cellular proteomes reveals co-assembly of synaptic proteins and subcellular distribution. Scientific Reports, 2017, 7, 12107.	3.3	55
9	Single-nuclei isoform RNA sequencing unlocks barcoded exon connectivity in frozen brain tissue. Nature Biotechnology, 2022, 40, 1082-1092.	17.5	52
10	Recent Developments in Data Independent Acquisition (DIA) Mass Spectrometry: Application of Quantitative Analysis of the Brain Proteome. Frontiers in Molecular Neuroscience, 2020, 13, 564446.	2.9	47
11	Comparative Hippocampal Synaptic Proteomes of Rodents and Primates: Differences in Neuroplasticity-Related Proteins. Frontiers in Molecular Neuroscience, 2018, 11, 364.	2.9	43
12	Interaction proteomics of canonical Caspr2 (CNTNAP2) reveals the presence of two Caspr2 isoforms with overlapping interactomes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 827-833.	2.3	32
13	The proteome of granulovacuolar degeneration and neurofibrillary tangles in Alzheimer's disease. Acta Neuropathologica, 2021, 141, 341-358.	7.7	29
14	Identifying true protein complex constituents in interaction proteomics: The example of the DMXL2 protein complex. Proteomics, 2012, 12, 2428-2432.	2.2	27
15	Spliceâ€dependent transâ€synaptic <scp>PTP</scp> δ– <scp>IL</scp> 1 <scp>RAPL</scp> 1 interaction regulates synapse formation and non― <scp>REM</scp> sleep. EMBO Journal, 2020, 39, e104150.	7.8	22
16	Empirical Bayesian Random Censoring Threshold Model Improves Detection of Differentially Abundant Proteins. Journal of Proteome Research, 2014, 13, 3871-3880.	3.7	20
17	<scp>SALM</scp> 1 controls synapse development by promoting Fâ€actin/PIP2â€dependent Neurexin clustering. EMBO Journal, 2019, 38, e101289.	7.8	17
18	A Fast and Economical Sample Preparation Protocol for Interaction Proteomics Analysis. Proteomics, 2019. 19. 1900027.	2.2	11

FRANK KOOPMANS

#	Article	IF	CITATIONS
19	Age-Dependent Hippocampal Proteomics in the APP/PS1 Alzheimer Mouse Model: A Comparative Analysis with Classical SWATH/DIA and directDIA Approaches. Cells, 2021, 10, 1588.	4.1	11
20	Systematic assessment of variability in the proteome of iPSC derivatives. Stem Cell Research, 2021, 56, 102512.	0.7	8
21	Glycine Receptor Complex Analysis Using Immunoprecipitationâ€Blue Native Gel Electrophoresisâ€Mass Spectrometry. Proteomics, 2020, 20, e1900403.	2.2	7
22	Data-Independent Acquisition (SWATH) Mass Spectrometry Analysis of Protein Content in Primary Neuronal Cultures. Neuromethods, 2019, , 119-127.	0.3	4
23	Functional brain defects in a mouse model of a chromosomal t(1;11) translocation that disrupts DISC1 and confers increased risk of psychiatric illness. Translational Psychiatry, 2021, 11, 135.	4.8	3
24	Neuroproteomics of cognitively healthy centenarians in the context of aging and Alzheimer's disease Alzheimer's and Dementia, 2021, 17 Suppl 3, e053681.	0.8	0