## Yi-Hao Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4776541/publications.pdf Version: 2024-02-01



YI-HAO KANC

| #  | Article                                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg<br>atoms. Frontiers of Physics, 2022, 17, 1.                                                                                                                                                     | 5.0 | 19        |
| 2  | Quantum control with Lyapunov function and bang-bang solution in the optomechanics system.<br>Frontiers of Physics, 2022, 17, 1.                                                                                                                                                            | 5.0 | 6         |
| 3  | Nonadiabatic geometric quantum computation with cat-state qubits via invariant-based reverse<br>engineering. Physical Review Research, 2022, 4, .                                                                                                                                           | 3.6 | 43        |
| 4  | Accurate Parity Meter Based on Coherent State Measurement. Annalen Der Physik, 2022, 534, .                                                                                                                                                                                                 | 2.4 | 5         |
| 5  | Generation of Three-Atom Singlet State with High-Fidelity by Lyapunov Control. International Journal of Theoretical Physics, 2021, 60, 1416-1424.                                                                                                                                           | 1.2 | 0         |
| 6  | Unconventional Geometric Phase Gate of Transmon Qubits With Inverse Hamiltonian Engineering. IEEE<br>Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-7.                                                                                                                      | 2.9 | 3         |
| 7  | Entanglement Creations and Quantum Gate Implementations of Spin Qubits With Lyapunov Control.<br>IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-7.                                                                                                                     | 2.9 | 0         |
| 8  | Robust and high-fidelity nondestructive Rydberg parity meter. Physical Review A, 2020, 102, .                                                                                                                                                                                               | 2.5 | 39        |
| 9  | Robust Generation of Logical Qubit Singlet States with Reverse Engineering and Optimal Control with Spin Qubits. Advanced Quantum Technologies, 2020, 3, 2000113.                                                                                                                           | 3.9 | 7         |
| 10 | Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade. Physical<br>Review A, 2020, 102, .                                                                                                                                                                        | 2.5 | 33        |
| 11 | Accelerated and Robust Generation of <i>W</i> State by Parametric Amplification and Inverse<br>Hamiltonian Engineering. Annalen Der Physik, 2020, 532, 2000002.                                                                                                                             | 2.4 | 9         |
| 12 | Flexible scheme for the implementation of nonadiabatic geometric quantum computation. Physical Review A, 2020, 101, .                                                                                                                                                                       | 2.5 | 42        |
| 13 | Deterministic interconversions between the Greenberger-Horne-Zeilinger states and the <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:mi>W</mml:mi> states by<br/>invariant-based pulse design. Physical Review A, 2020, 101, .</mml:math<br>                           | 2.5 | 34        |
| 14 | Efficient implementation of complete and nondestructive Bell-state measurement for trapped ions with reverse engineering. Laser Physics Letters, 2020, 17, 125204.                                                                                                                          | 1.4 | 4         |
| 15 | Effective discrimination of chiral molecules in a cavity. Optics Letters, 2020, 45, 4952.                                                                                                                                                                                                   | 3.3 | 27        |
| 16 | Deterministic conversions between Greenberger-Horne-Zeilinger states and <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:mi>W</mml:mi> states of spin<br/>qubits via Lie-transform-based inverse Hamiltonian engineering. Physical Review A, 2019, 100, .</mml:math<br> | 2.5 | 22        |
| 17 | Shortcuts to adiabatic for implementing controlled phase gate with Cooper-pair box qubits in circuit quantum electrodynamics system. Quantum Information Processing, 2019, 18, 1.                                                                                                           | 2.2 | 8         |
| 18 | Oneâ€Step Implementation of N â€Qubit Nonadiabatic Holonomic Quantum Gates with Superconducting<br>Qubits via Inverse Hamiltonian Engineering. Annalen Der Physik, 2019, 531, 1800427.                                                                                                      | 2.4 | 9         |

YI-HAO KANG

| #  | Article                                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Complete and Nondestructive Atomic Greenberger–Horne–Zeilinger‧tate Analysis Assisted by<br>Invariantâ€Based Inverse Engineering. Annalen Der Physik, 2019, 531, 1800447.                                                                                                                                      | 2.4 | 9         |
| 20 | Nonadiabatic holonomic quantum computation using Rydberg blockade. Physical Review A, 2018, 97, .                                                                                                                                                                                                              | 2.5 | 63        |
| 21 | Quantum state transfer in spin chains via shortcuts to adiabaticity. Physical Review A, 2018, 97, .                                                                                                                                                                                                            | 2.5 | 30        |
| 22 | Pulse design for multilevel systems by utilizing Lie transforms. Physical Review A, 2018, 97, .                                                                                                                                                                                                                | 2.5 | 27        |
| 23 | Shortcut Scheme for Oneâ€5tep Implementation of a Threeâ€Qubit Nonadiabatic Holonomic Gate. Annalen<br>Der Physik, 2018, 530, 1800179.                                                                                                                                                                         | 2.4 | 12        |
| 24 | Shortcuts to adiabatic for implementing controlled-not gate with superconducting quantum interference device qubits. Quantum Information Processing, 2018, 17, 1.                                                                                                                                              | 2.2 | 9         |
| 25 | Complete and Nondestructive Atomic Bellâ€State Analysis Assisted by Inverse Engineering. Annalen Der<br>Physik, 2018, 530, 1800133.                                                                                                                                                                            | 2.4 | 9         |
| 26 | Accelerating adiabatic quantum transfer for three-level <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si48.gif" display="inline"<br/>overflow="scroll"&gt;<mml:mi>ĥ</mml:mi>-type structure systems via picture<br/>transformation. Annals of Physics, 2017, 379, 102-111.</mml:math<br> | 2.8 | 3         |
| 27 | Reverse engineering of a Hamiltonian for a three-level system via the Rodrigues' rotation formula.<br>Laser Physics Letters, 2017, 14, 025201.                                                                                                                                                                 | 1.4 | 14        |
| 28 | Rapid generation of a three-dimensional entangled state for two atoms trapped in a cavity via shortcuts to adiabatic passage. Quantum Information Processing, 2017, 16, 1.                                                                                                                                     | 2.2 | 8         |
| 29 | Invariantâ€Based Pulse Design for Threeâ€Level Systems Without the Rotatingâ€Wave Approximation.<br>Annalen Der Physik, 2017, 529, 1700004.                                                                                                                                                                    | 2.4 | 9         |
| 30 | Fast and Robust Quantum Information Transfer in Annular and Radial Superconducting Networks.<br>Annalen Der Physik, 2017, 529, 1700154.                                                                                                                                                                        | 2.4 | 14        |
| 31 | Fast quantum state engineering via universal SU(2) transformation. Physical Review A, 2017, 96, .                                                                                                                                                                                                              | 2.5 | 34        |
| 32 | Complete Bell-state analysis for superconducting-quantum-interference-device qubits with a transitionless tracking algorithm. Physical Review A, 2017, 96, .                                                                                                                                                   | 2.5 | 34        |
| 33 | Reverse engineering of a Hamiltonian by designing the evolution operators. Scientific Reports, 2016, 6, 30151.                                                                                                                                                                                                 | 3.3 | 42        |
| 34 | Two-photon phase gate with linear optical elements and atom–cavity system. Quantum Information<br>Processing, 2016, 15, 4521-4535.                                                                                                                                                                             | 2.2 | 10        |
| 35 | Fast preparation of <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:mi>W</mml:mi> states with<br/>superconducting quantum interference devices by using dressed states. Physical Review A, 2016, 94, .</mml:math<br>                                                                       | 2.5 | 77        |
| 36 | Fast generation of W states of superconducting qubits with multiple Schrödinger dynamics.<br>Scientific Reports, 2016, 6, 36737.                                                                                                                                                                               | 3.3 | 43        |

YI-HAO KANG

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Efficient preparation of Greenberger–Horne–Zeilinger state and W state of atoms with the help of<br>the controlled phase flip gates in quantum nodes connected by collective-noise channels. Journal of<br>Modern Optics, 2015, 62, 449-462. | 1.3 | 4         |
| 38 | Efficient spin Bell states and Greenberger–Horne–Zeilinger states analysis in the quantum<br>dot–microcavity coupled system. Applied Physics B: Lasers and Optics, 2015, 119, 259-271.                                                       | 2.2 | 5         |
| 39 | Effective scheme for preparation of a spin-qubit Greenberger–Horne–Zeilinger state and W state in a quantum-dot-microcavity system. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1323.                            | 2.1 | 12        |
| 40 | Efficient and flexible protocol for implementing two-qubit controlled phase gates with cross-Kerr<br>nonlinearity. Journal of Modern Optics, 2014, 61, 175-181.                                                                              | 1.3 | 4         |
| 41 | Complete polarized photons Bell-states and Greenberger–Horne–Zeilinger-states analysis assisted by atoms. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 2077.                                                      | 2.1 | 16        |
| 42 | Effective Protocol for Generation of the Greenberger-Horne-Zeilinger State and Implementation of<br>Controlled Phase Gate with Cross-Kerr Nonlinearity. International Journal of Theoretical Physics,<br>2014, 53, 17-27.                    | 1.2 | 6         |
| 43 | Effective scheme for generation of \$\$N\$\$ N -dimension atomic Greenberger–Horne–Zeilinger states.<br>Quantum Information Processing, 2014, 13, 1255-1265.                                                                                 | 2.2 | 2         |
| 44 | Efficient error correction for N-particle polarized entangled states distribution over the collective-noise channel exploiting time entanglement. Applied Physics B: Lasers and Optics, 2014, 116, 977-984.                                  | 2.2 | 7         |
| 45 | Effective protocol for preparation of three-atom Greenberger-Horne-Zeilinger state and W state with the help of cross-Kerr nonlinearity. Open Physics, 2013, 11, .                                                                           | 1.7 | 0         |
| 46 | Effective preparation of the <i>N</i> -dimension spin Greenberger–Horne–Zeilinger state with quantum<br>dots embedded in microcavities. Journal of Modern Optics, 0, , 1-10.                                                                 | 1.3 | 0         |
| 47 | Chiral Discrimination via Shortcuts to Adiabaticity and Optimal Control. Annalen Der Physik, 0, , 2100573.                                                                                                                                   | 2.4 | 6         |