
Marcus C S Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4776419/publications.pdf Version: 2024-02-01

MADCUS C S LEE

#	Article	IF	CITATIONS
1	Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention. Cell Chemical Biology, 2022, 29, 191-201.e8.	5.2	39
2	Reaction hijacking of tyrosine tRNA synthetase as a new whole-of-life-cycle antimalarial strategy. Science, 2022, 376, 1074-1079.	12.6	25
3	PfMFR3: A Multidrug-Resistant Modulator in <i>Plasmodium falciparum</i> . ACS Infectious Diseases, 2021, 7, 811-825.	3.8	16
4	Scientists on a RAMPAGE to find apicomplexan transcription start sites. Nature Reviews Microbiology, 2021, 19, 483-483.	28.6	0
5	MalDA, Accelerating Malaria Drug Discovery. Trends in Parasitology, 2021, 37, 493-507.	3.3	51
6	Prioritization of Molecular Targets for Antimalarial Drug Discovery. ACS Infectious Diseases, 2021, 7, 2764-2776.	3.8	35
7	Lumefantrine attenuates Plasmodium falciparum artemisinin resistance during the early ring stage. International Journal for Parasitology: Drugs and Drug Resistance, 2021, 17, 186-190.	3.4	3
8	Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chemical Biology, 2020, 27, 158-171.e3.	5.2	54
9	Defining multiplicity of vector uptake in transfected Plasmodium parasites. Scientific Reports, 2020, 10, 10894.	3.3	9
10	The Key Glycolytic Enzyme Phosphofructokinase Is Involved in Resistance to Antiplasmodial Glycosides. MBio, 2020, 11, .	4.1	5
11	Inhibition of Resistance-Refractory P. falciparum Kinase PKG Delivers Prophylactic, Blood Stage, and Transmission-Blocking Antiplasmodial Activity. Cell Chemical Biology, 2020, 27, 806-816.e8.	5.2	56
12	The Antimalarial Natural Product Salinipostin A Identifies Essential α/β Serine Hydrolases Involved in Lipid Metabolism in P.Âfalciparum Parasites. Cell Chemical Biology, 2020, 27, 143-157.e5.	5.2	48
13	Pan-active imidazolopiperazine antimalarials target the Plasmodium falciparum intracellular secretory pathway. Nature Communications, 2020, 11, 1780.	12.8	27
14	Insights into the intracellular localization, protein associations and artemisinin resistance properties of Plasmodium falciparumÂK13. PLoS Pathogens, 2020, 16, e1008482.	4.7	60
15	Cutting back malaria: CRISPR/Cas9 genome editing of Plasmodium. Briefings in Functional Genomics, 2019, 18, 281-289.	2.7	38
16	Nedd8 hydrolysis by UCH proteases in Plasmodium parasites. PLoS Pathogens, 2019, 15, e1008086.	4.7	19
17	Overexpression of plasmepsin II and plasmepsin III does not directly cause reduction in Plasmodium falciparum sensitivity to artesunate, chloroquine and piperaquine. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 9, 16-22.	3.4	32
18	Identification and Mechanistic Understanding of Dihydroorotate Dehydrogenase Point Mutations in <i>Plasmodium falciparum</i> that Confer <i>in Vitro</i> Resistance to the Clinical Candidate DSM265. ACS Infectious Diseases, 2019, 5, 90-101.	3.8	43

MARCUS C S LEE

#	Article	IF	CITATIONS
19	Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science, 2018, 359, 191-199.	12.6	194
20	Antimalarial efficacy of MMV390048, an inhibitor of <i>Plasmodium</i> phosphatidylinositol 4-kinase. Science Translational Medicine, 2017, 9, .	12.4	204
21	A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue. Nature Communications, 2017, 8, 14574.	12.8	110
22	CRISPRâ€Cas9â€modified <i>pfmdr1</i> protects <i>Plasmodium falciparum</i> asexual blood stages and gametocytes against a class of piperazineâ€containing compounds but potentiates artemisininâ€based combination therapy partner drugs. Molecular Microbiology, 2016, 101, 381-393.	2.5	56
23	UDP-galactose and acetyl-CoA transporters as Plasmodium multidrug resistance genes. Nature Microbiology, 2016, 1, 16166.	13.3	102
24	A broad analysis of resistance development in the malaria parasite. Nature Communications, 2016, 7, 11901.	12.8	94
25	A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature, 2015, 522, 315-320.	27.8	353
26	Profiling the Essential Nature of Lipid Metabolism in Asexual Blood and Gametocyte Stages of Plasmodium falciparum. Cell Host and Microbe, 2015, 18, 371-381.	11.0	144
27	Body weight satisfaction and disordered eating among youth who are active in sport in Singapore. Pedagogics, Psychology, Medical-Biological Problems of Physical Training and Sports, 2015, 19, 51-58.	0.4	1
28	KAF156 Is an Antimalarial Clinical Candidate with Potential for Use in Prophylaxis, Treatment, and Prevention of Disease Transmission. Antimicrobial Agents and Chemotherapy, 2014, 58, 5060-5067.	3.2	122
29	(+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of <i>Plasmodium</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5455-62.	7.1	199
30	<i>N</i> -Aryl-2-aminobenzimidazoles: Novel, Efficacious, Antimalarial Lead Compounds. Journal of Medicinal Chemistry, 2014, 57, 6642-6652.	6.4	37
31	Targeting Plasmodium PI(4)K to eliminate malaria. Nature, 2013, 504, 248-253.	27.8	377
32	An integrated strategy for efficient vector construction and multi-gene expression in Plasmodium falciparum. Malaria Journal, 2013, 12, 373.	2.3	18
33	Wherever I may roam: Protein and membrane trafficking in P. falciparum-infected red blood cells. Molecular and Biochemical Parasitology, 2012, 186, 95-116.	1.1	56
34	Site-specific genome editing in Plasmodium falciparum using engineered zinc-finger nucleases. Nature Methods, 2012, 9, 993-998.	19.0	149
35	Imaging of <i>Plasmodium</i> Liver Stages to Drive Next-Generation Antimalarial Drug Discovery. Science, 2011, 334, 1372-1377.	12.6	308
36	Quantitative assessment of <i>Plasmodium falciparum</i> sexual development reveals potent transmission-blocking activity by methylene blue. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1214-23.	7.1	293

MARCUS C S LEE

#	Article	IF	CITATIONS
37	Spiroindolones, a Potent Compound Class for the Treatment of Malaria. Science, 2010, 329, 1175-1180.	12.6	1,031
38	A Method for Rapid Genetic Integration into Plasmodium falciparum Utilizing Mycobacteriophage Bxb1 Integrase. Methods in Molecular Biology, 2010, 634, 87-100.	0.9	50
39	Genomewide Analysis Reveals Novel Pathways Affecting Endoplasmic Reticulum Homeostasis, Protein Modification and Quality Control. Genetics, 2009, 182, 757-769.	2.9	62
40	Arresting malaria parasite egress from infected red blood cells. Nature Chemical Biology, 2008, 4, 161-162.	8.0	9
41	<i>Plasmodium falciparum</i> Sec24 marks transitional ER that exports a model cargo via a diacidic motif. Molecular Microbiology, 2008, 68, 1535-1546.	2.5	49
42	Inhibiting Endoplasmic Reticulum (ER)-associated Degradation of Misfolded Yor1p Does Not Permit ER Export Despite the Presence of a Diacidic Sorting Signal. Molecular Biology of the Cell, 2007, 18, 3398-3413.	2.1	51
43	Molecular mechanisms of COPII vesicle formation. Seminars in Cell and Developmental Biology, 2007, 18, 424-434.	5.0	79
44	Sar1p N-Terminal Helix Initiates Membrane Curvature and Completes the Fission of a COPII Vesicle. Cell, 2005, 122, 605-617.	28.9	455
45	CELL BIOLOGY: BAR Domains Go on a Bender. Science, 2004, 303, 479-480.	12.6	32
46	BI-DIRECTIONAL PROTEIN TRANSPORT BETWEEN THE ER AND GOLGI. Annual Review of Cell and Developmental Biology, 2004, 20, 87-123.	9.4	815
47	Multiple Cargo Binding Sites on the COPII Subunit Sec24p Ensure Capture of Diverse Membrane Proteins into Transport Vesicles. Cell, 2003, 114, 497-509.	28.9	461
48	Ceramide Biosynthesis Is Required for the Formation of the Oligomeric H+-ATPase Pma1p in the Yeast Endoplasmic Reticulum. Journal of Biological Chemistry, 2002, 277, 22395-22401.	3.4	124
49	The solution structure of C1-T1, a two-domain proteinase inhibitor derived from a circular precursor protein from Nicotiana alata11Edited by P. E. Wright. Journal of Molecular Biology, 2001, 306, 69-79.	4.2	20
50	Identification of a novel four-domain member of the proteinase inhibitor II family from the stigmas of Nicotiana alata. Plant Molecular Biology, 2000, 42, 329-333.	3.9	33
51	Identification and Characterization of a Prevacuolar Compartment in Stigmas of Nicotiana alata. Plant Cell, 1999, 11, 1499-1508.	6.6	54
52	A novel two-chain proteinase inhibitor generated by circularization of a multidomain precursor protein. Nature Structural Biology, 1999, 6, 526-530.	9.7	51
53	Structure of a putative ancestral protein encoded by a single sequence repeat from a multidomain proteinase inhibitor gene fromNicotiana alata. Structure, 1999, 7, 793-802.	3.3	21