Myungjin Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4776082/publications.pdf Version: 2024-02-01

MYUNCUN LEE

#	Article	IF	CITATIONS
1	Antigenic analysis of the HIV-1 envelope trimer implies small differences between structural states 1 and 2. Journal of Biological Chemistry, 2022, 298, 101819.	3.4	9
2	GLYCO: a tool to quantify glycan shielding of glycosylated proteins. Bioinformatics, 2022, 38, 1152-1154.	4.1	2
3	Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host and Microbe, 2021, 29, 819-833.e7.	11.0	444
4	Extended antibody-framework-to-antigen distance observed exclusively with broad HIV-1-neutralizing antibodies recognizing glycan-dense surfaces. Nature Communications, 2021, 12, 6470.	12.8	3
5	On the control of the proton current in the voltage-gated proton channel Hv1. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10321-10326.	7.1	28
6	Validating a Coarse-Grained Voltage Activation Model by Comparing Its Performance to the Results of Monte Carlo Simulations. Journal of Physical Chemistry B, 2017, 121, 11284-11291.	2.6	12
7	Solvent Thermodynamic Driving Force Controls Stacking Interactions between Polyaromatics. Journal of Physical Chemistry C, 2016, 120, 23858-23869.	3.1	10
8	Photo-oxidation activities on Pd-doped TiO2 nanoparticles: critical PdO formation effect. Applied Catalysis B: Environmental, 2015, 165, 20-26.	20.2	40
9	Comparison of the Catalytic Oxidation Reaction on Graphene Oxide and Reduced Graphene Oxide. Journal of Physical Chemistry C, 2014, 118, 1142-1147.	3.1	14
10	The Study of Adsorption Structures of 3-Methyl-5-Pyrazolone on the Ge(100) Surface. Bulletin of the Korean Chemical Society, 2014, 35, 3567-3570.	1.9	2
11	Adsorption Selectivities between Hydroxypyridine and Pyridone Adsorbed on the Ge(100) Surface: Conjugation and Geometric Configuration Effects on Adsorption Structures. Bulletin of the Korean Chemical Society, 2014, 35, 581-586.	1.9	2
12	Annealing Effects after Nitrogen Ion Casting on Monolayer and Multilayer Graphene. Journal of Physical Chemistry C, 2013, 117, 2129-2134.	3.1	31
13	The aniline-to-azobenzene oxidation reaction on monolayer graphene or graphene oxide surfaces fabricated by benzoic acid. Nanoscale Research Letters, 2013, 8, 372.	5.7	0
14	Confirmation of the coexistence of two tautomers of 2-mercaptothiazoline on the Ge(100) surface. Physical Chemistry Chemical Physics, 2013, 15, 16594.	2.8	5
15	Variation of adsorption geometries by the influence of nucleophilicity among p-CPA, p-TPA, and p-NPA on Ge(100). Chemical Physics Letters, 2013, 578, 162-166.	2.6	1
16	The adsorption selectivity of the functional groups of dithiothreitol and 1,4-butanedithiol 2,3-diamino on the Ge(100) surface. Chemical Physics Letters, 2013, 567, 66-72.	2.6	0
17	Adsorption Sequence of Multifunctional Groups: A Study on the Reaction Pathway and the Adsorption Structure of Homocysteine on the Ge(100) Surface. ChemPhysChem, 2013, 14, 2491-2496.	2.1	1
18	Mg Capping Inside p-Tert-butylcalix[4]arene Adsorbed on a Ge(100) Surface. Journal of Physical Chemistry C, 2013, 117, 22903-22907.	3.1	1

#	Article	IF	CITATIONS
19	Coverage Dependent Variation of the Adsorption Structure of 2-Thiophenecarboxaldehyde on the Ge(100)-2 × 1 Reconstructed Surface. Molecules, 2013, 18, 10301-10311.	3.8	1
20	Inter-row Adsorption Configuration and Stability of Threonine Adsorbed on the Ge(100) Surfaces. Bulletin of the Korean Chemical Society, 2013, 34, 1055-1060.	1.9	3