
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4775173/publications.pdf Version: 2024-02-01

0

#	Article	IF	CITATIONS
1	Probing Electronic States in Monolayer Semiconductors through Static and Transient Thirdâ€Harmonic Spectroscopies. Advanced Materials, 2022, 34, e2107104.	21.0	10
2	Direct generation of entangled photon pairs in nonlinear optical waveguides. Nanophotonics, 2022, .	6.0	3
3	Atomic Floquet physics revealed by free electrons. Physical Review Research, 2022, 4, .	3.6	5
4	Low‣oss Tunable Infrared Plasmons in the Highâ€Mobility Perovskite (Ba,La)SnO ₃ . Small, 2022, 18, e2106897.	10.0	3
5	Active control of micrometer plasmon propagation in suspended graphene. Nature Communications, 2022, 13, 1465.	12.8	31
6	Tunable Planar Focusing Based on Hyperbolic Phonon Polaritons in αâ€MoO ₃ . Advanced Materials, 2022, 34, e2105590.	21.0	32
7	Inelastic Mach-Zehnder Interferometry with Free Electrons. Physical Review Letters, 2022, 128, 147401.	7.8	8
8	Unveiling the Coupling of Single Metallic Nanoparticles to Whispering-Gallery Microcavities. Nano Letters, 2022, 22, 319-327.	9.1	15
9	Highâ€Harmonic Generation Enhancement with Graphene Heterostructures. Advanced Optical Materials, 2022, 10, .	7.3	6
10	Sub-nanometer mapping of strain-induced band structure variations in planar nanowire core-shell heterostructures. Nature Communications, 2022, 13, .	12.8	10
11	Giant enhancement of third-harmonic generation in graphene–metal heterostructures. Nature Nanotechnology, 2021, 16, 318-324.	31.5	47
12	Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nature Materials, 2021, 20, 43-48.	27.5	84
13	Chiral Light Emission from a Sphere Revealed by Nanoscale Relative-Phase Mapping. ACS Nano, 2021, 15, 2219-2228.	14.6	29
14	Rotational Doppler cooling and heating. Science Advances, 2021, 7, .	10.3	8
15	Fundamental limits to the excitation of polaritons in thin films. , 2021, , .		0
16	Ultrafast Momentum-Resolved Free-Electron Probing of Optically Pumped Plasmon Thermal Dynamics. ACS Photonics, 2021, 8, 614-624.	6.6	4
17	Optical Coherence Transfer Mediated by Free Electrons. , 2021, , .		1

18 Spectrometer-free electron probe of ultrafast thermal dynamics in optically excited samples. , 2021, , .

#	Article	IF	CITATIONS
19	Quantum Prescription of Electron Energy Loss Spectroscopy in Crystalline Films. , 2021, , .		0
20	Anisotropic second-harmonic generation from monocrystalline gold flakes. Optics Letters, 2021, 46, 833.	3.3	6
21	Generation, characterization, and manipulation of quantum correlations in electron beams. Npj Quantum Information, 2021, 7, .	6.7	6
22	Optical Excitations with Electron Beams: ChallengesÂandÂOpportunities. ACS Photonics, 2021, 8, 945-974.	6.6	85
23	Modulation of Cathodoluminescence Emission by Interference with External Light. ACS Nano, 2021, 15, 7290-7304.	14.6	28
24	Optical Modulation of Electron Beams in Free Space. Physical Review Letters, 2021, 126, 123901.	7.8	32
25	Can Copper Nanostructures Sustain High-Quality Plasmons?. Nano Letters, 2021, 21, 2444-2452.	9.1	43
26	Complete coupling of focused light to surface polaritons. Optica, 2021, 8, 520.	9.3	6
27	Optical coherence transfer mediated by free electrons. Science Advances, 2021, 7, .	10.3	51
28	Spontaneous and stimulated electron–photon interactions in nanoscale plasmonic near fields. Light: Science and Applications, 2021, 10, 82.	16.6	40
29	Optical response of noble metal nanostructures: quantum surface effects in crystallographic facets. Optica, 2021, 8, 710.	9.3	28
30	Theory of Atomic-Scale Vibrational Mapping and Isotope Identification with Electron Beams. ACS Nano, 2021, 15, 9890-9899.	14.6	9
31	Towards plasmonic-enhanced optical nonlinearities in graphene metal-heterostructures. , 2021, , .		0
32	Nonlinear Tunable Vibrational Response in Hexagonal Boron Nitride. ACS Nano, 2021, 15, 13415-13426.	14.6	5
33	Tailored nanoscale plasmon-enhanced vibrational electron spectroscopy. Microscopy and Microanalysis, 2021, 27, 320-321.	0.4	0
34	Atomicallyâ€Precise Texturing of Hexagonal Boron Nitride Nanostripes. Advanced Science, 2021, 8, e2101455.	11.2	9
35	Exploring electronic coupling of optical and phonon excitations at the nanoscale. Microscopy and Microanalysis, 2021, 27, 1202-1203.	0.4	2
36	2-Grating Inelastic Free Electron Interferometry. Microscopy and Microanalysis, 2021, 27, 1474-1477.	0.4	2

#	Article	IF	CITATIONS
37	Giant All-Optical Modulation of Second-Harmonic Generation Mediated by Dark Excitons. ACS Photonics, 2021, 8, 2320-2328.	6.6	11
38	Revealing Nanoscale Confinement Effects on Hyperbolic Phonon Polaritons with an Electron Beam. Small, 2021, 17, e2103404.	10.0	14
39	Comment on "Free-Electron–Bound-Electron Resonant Interactionâ€, Physical Review Letters, 2021, 126, 019501.	7.8	5
40	Optothermal generation and manipulation of plasmons in in atomically thin films. , 2021, , .		0
41	Free-Electron Interactions with Designed van der Waals Materials: Novel Source of Lensed X-ray Radiation. , 2021, , .		1
42	Charge Dynamics Electron Microscopy. , 2021, , .		2
43	Inelastic Scattering of Electron Beams by Nonreciprocal Nanotructures. Physical Review Letters, 2021, 127, 157404.	7.8	2
44	Modulation of cathodoluminescence emission by interference with external light. , 2021, , .		2
45	Nonlinear plasmonic response in atomically thin metal films. Nanophotonics, 2021, 10, 4149-4159.	6.0	4
46	Longitudinal and transverse modulation of electron wave function with light, and its application to electron microscopy. , 2021, , .		0
47	Manipulating chemistry through nanoparticle morphology. Nanoscale Horizons, 2020, 5, 102-108.	8.0	27
48	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	14.6	2,153
49	Cathodoluminescence Phase Extraction of the Coupling between Nanoparticles and Surface Plasmon Polaritons. Nano Letters, 2020, 20, 592-598.	9.1	28
50	Anomalous Thermodiffusion of Electrons in Graphene. Physical Review Letters, 2020, 125, 176802.	7.8	4
51	Chemical identification through two-dimensional electron energy-loss spectroscopy. Science Advances, 2020, 6, eabb4713.	10.3	2
52	Electron Beam Aberration Correction Using Optical Near Fields. Physical Review Letters, 2020, 125, 030801.	7.8	32
53	Ultrafast Topological Engineering in Metamaterials. Physical Review Letters, 2020, 125, 037403.	7.8	16
54	Plasmon-Enhanced Optical Chirality through Hotspot Formation in Surfactant-Directed Self-Assembly of Gold Nanorods, ACS Nano, 2020, 14, 16712-16722	14.6	53

#	Article	IF	CITATIONS
55	Quantum Aspects of Electron-Light-Plasmon Interactions at the Atomic Scale. Microscopy and Microanalysis, 2020, 26, 3026-3026.	0.4	0
56	Tunable free-electron X-ray radiation from van der Waals materials. Nature Photonics, 2020, 14, 686-692.	31.4	48
57	Electrically driven photon emission from individual atomic defects in monolayer WS ₂ . Science Advances, 2020, 6, .	10.3	53
58	Electron Beam Aberration Correction Using Optical Fields. Microscopy and Microanalysis, 2020, 26, 2974-2974.	0.4	0
59	Thermal manipulation of plasmons in atomically thin films. Light: Science and Applications, 2020, 9, 87.	16.6	35
60	Probing Chirality with Inelastic Electron-Light Scattering. Nano Letters, 2020, 20, 4377-4383.	9.1	23
61	Nonlinear Interactions between Free Electrons and Nanographenes. Nano Letters, 2020, 20, 4792-4800.	9.1	11
62	Back to Normal: An Old Physics Route to Reduce SARS-CoV-2 Transmission in Indoor Spaces. ACS Nano, 2020, 14, 7704-7713.	14.6	88
63	Room Temperature Graphene Mid-Infrared Bolometer with a Broad Operational Wavelength Range. ACS Photonics, 2020, 7, 1206-1215.	6.6	41
64	Semimetals for high-performance photodetection. Nature Materials, 2020, 19, 830-837.	27.5	181
65	Tailored Nanoscale Plasmon-Enhanced Vibrational Electron Spectroscopy. Nano Letters, 2020, 20, 2973-2979.	9.1	36
66	Nanoscale Nonlinear Spectroscopy with Electron Beams. ACS Photonics, 2020, 7, 1290-1296.	6.6	18
67	Electron diffraction by vacuum fluctuations. New Journal of Physics, 2020, 22, 103057.	2.9	11
68	Strong-field-driven dynamics and high-harmonic generation in interacting one dimensional systems. Physical Review Research, 2020, 2, .	3.6	14
69	Theory of electron energy-loss spectroscopy in atomically thin metallic films. Physical Review Research, 2020, 2, .	3.6	6
70	Efficient generation of extreme terahertz harmonics in three-dimensional Dirac semimetals. Physical Review Research, 2020, 2, .	3.6	29
71	Free-electron shaping using quantum light. Optica, 2020, 7, 1820.	9.3	32
72	Optothermal Generation and Manipulation of Plasmons. , 2020, , .		0

72 Optothermal Generation and Manipulation of Plasmons. , 2020, , .

5

#	Article	IF	CITATIONS
73	Giant enhancement of high-harmonic generation in graphene-metal heterostructures. , 2020, , .		0
74	Quantum Effects in the Interaction of Optical Excitations and Fast Electrons. , 2020, , .		0
75	Magnetically activated rotational vacuum friction. Physical Review A, 2019, 99, .	2.5	14
76	Circular Dichroism in Rotating Particles. Physical Review Letters, 2019, 123, 066803.	7.8	12
77	Electron-beam spectroscopy for nanophotonics. Nature Materials, 2019, 18, 1158-1171.	27.5	193
78	Nonlinear Graphene Nanoplasmonics. Accounts of Chemical Research, 2019, 52, 2536-2547.	15.6	52
79	Single-Plasmon Thermo-Optical Switching in Graphene. Nano Letters, 2019, 19, 3743-3750.	9.1	22
80	Plasmonics in Atomically Thin Crystalline Silver Films. ACS Nano, 2019, 13, 7771-7779.	14.6	86
81	Holographic imaging of electromagnetic fields via electron-light quantum interference. Science Advances, 2019, 5, eaav8358.	10.3	58
82	Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy. Science Advances, 2019, 5, eaav8965.	10.3	111
83	Quantum computing with graphene plasmons. Npj Quantum Information, 2019, 5, .	6.7	51
84	Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields. Nature Materials, 2019, 18, 573-579.	27.5	120
85	Tunable plasmons in ultrathin metal films. Nature Photonics, 2019, 13, 328-333.	31.4	181
86	Fundamental Limits to the Coupling between Light and 2D Polaritons by Small Scatterers. ACS Nano, 2019, 13, 5184-5197.	14.6	23
87	Plasmon generation through electron tunneling in twisted double-layer graphene and metal-insulator-graphene systems. Physical Review B, 2019, 99, .	3.2	4
88	Gas identification with graphene plasmons. Nature Communications, 2019, 10, 1131.	12.8	154
89	Gain-Assisted Plasmon Resonance Narrowing and Its Application in Sensing. Physical Review Applied, 2019, 11, .	3.8	21
90	Graphene: Free electron scattering within an inverted honeycomb lattice. Physical Review B, 2019, 99, .	3.2	9

#	Article	IF	CITATIONS
91	Imaging the Renner–Teller effect using laser-induced electron diffraction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8173-8177.	7.1	41
92	Visible Optical Resonances in Electrically Doped DNA. ACS Photonics, 2019, 6, 932-938.	6.6	1
93	Stimulated electron energy loss and gain in an electron microscope without a pulsed electron gun. Ultramicroscopy, 2019, 203, 44-51.	1.9	36
94	Quantum effects in the acoustic plasmons of atomically thin heterostructures. Optica, 2019, 6, 630.	9.3	35
95	Quantum effects in the acoustic plasmons of atomically thin heterostructures: publisher's note. Optica, 2019, 6, 798.	9.3	3
96	Probing quantum optical excitations with fast electrons. Optica, 2019, 6, 1524.	9.3	89
97	Huge plasmon-enhanced Third Harmonic Generation with graphene nanoribbons. , 2019, , .		Ο
98	Nanomaterialâ€Based Plasmonâ€Enhanced Infrared Spectroscopy. Advanced Materials, 2018, 30, e1704896.	21.0	124
99	Enhanced graphene nonlinear response through geometrical plasmon focusing. Applied Physics Letters, 2018, 112, 061107.	3.3	2
100	Enhancement of Nonlinear Optical Phenomena by Localized Resonances. ACS Photonics, 2018, 5, 1521-1527.	6.6	12
101	meV Resolution in Laser-Assisted Energy-Filtered Transmission Electron Microscopy. ACS Photonics, 2018, 5, 759-764.	6.6	70
102	Continuous-wave multiphoton photoemission from plasmonic nanostars. Communications Physics, 2018, 1, .	5.3	37
103	Ultrafast nonlinear optical response of Dirac fermions in graphene. Nature Communications, 2018, 9, 1018.	12.8	110
104	Nonlinear Atom-Plasmon Interactions Enabled by Nanostructured Graphene. Physical Review Letters, 2018, 121, 257403.	7.8	20
105	Lasing and Amplification from Two-Dimensional Atom Arrays. Physical Review Letters, 2018, 121, 163602.	7.8	20
106	Optical harmonic generation in monolayer group-VI transition metal dichalcogenides. Physical Review B, 2018, 98, .	3.2	92
107	Transient nonlinear plasmonics in nanostructured graphene. Optica, 2018, 5, 429.	9.3	14
108	Unveiling and Imaging Degenerate States in Plasmonic Nanoparticles with Nanometer Resolution. ACS Nano, 2018, 12, 8436-8446.	14.6	22

#	Article	IF	CITATIONS
109	Photothermal Engineering of Graphene Plasmons. Physical Review Letters, 2018, 121, 057404.	7.8	22
110	Efficient orbital angular momentum transfer between plasmons and free electrons. Physical Review B, 2018, 98, .	3.2	35
111	Ultrafast electron energy-loss spectroscopy in transmission electron microscopy. MRS Bulletin, 2018, 43, 497-503.	3.5	22
112	Attosecond coherent control of free-electron wave functions using semi-infinite light fields. Nature Communications, 2018, 9, 2694.	12.8	136
113	Efficient electrical detection of mid-infrared graphene plasmons at room temperature. Nature Materials, 2018, 17, 986-992.	27.5	119
114	Plasmon-assisted high-harmonic generation in graphene. Nature Communications, 2017, 8, 14380.	12.8	128
115	Hybrid plasmonic nanoresonators as efficient solar heat shields. Nano Energy, 2017, 37, 118-125.	16.0	30
116	Double-layer graphene for enhanced tunable infrared plasmonics. Light: Science and Applications, 2017, 6, e16277-e16277.	16.6	143
117	Lateral Casimir Force on a Rotating Particle near a Planar Surface. Physical Review Letters, 2017, 118, 133605.	7.8	69
118	Ultrafast radiative heat transfer. Nature Communications, 2017, 8, 2.	12.8	108
119	Optimization of Nanoparticle-Based SERS Substrates through Large-Scale Realistic Simulations. ACS Photonics, 2017, 4, 329-337.	6.6	135
120	Strong Plasmon-Phonon Splitting and Hybridization in 2D Materials Revealed through a Self-Energy Approach. ACS Photonics, 2017, 4, 2908-2915.	6.6	9
121	Universal analytical modeling of plasmonic nanoparticles. Chemical Society Reviews, 2017, 46, 6710-6724.	38.1	137
122	Plasmonics simulations including nonlocal effects using a boundary element method approach. International Journal of Modern Physics B, 2017, 31, 1740007.	2.0	12
123	Plasmonic Nano-Oven by Concatenation of Multishell Photothermal Enhancement. ACS Nano, 2017, 11, 7915-7924.	14.6	32
124	Analytical Modeling of Graphene Plasmons. ACS Photonics, 2017, 4, 3106-3114.	6.6	54
125	Analytical description of the nonlinear plasmonic response in nanographene. Physical Review B, 2017, 96, .	3.2	21
126	Intrinsic Plasmon–Phonon Interactions in Highly Doped Graphene: AÂNear-Field Imaging Study. Nano Letters, 2017, 17, 5908-5913.	9.1	42

#	Article	IF	CITATIONS
127	Plasmon Generation through Electron Tunneling in Graphene. ACS Photonics, 2017, 4, 2367-2375.	6.6	41
128	Nonlocal plasmonic response of doped and optically pumped graphene, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2, and black phosphorus. Physical Review B, 2017, 96, .</mml:mn></mml:msub></mml:math 	l:m a. 2 <td>ml:ໝາຍb></td>	ml :ໝ າຍb>
129	Topologically protected Dirac plasmons in a graphene superlattice. Nature Communications, 2017, 8, 1243.	12.8	66
130	How To Identify Plasmons from the Optical Response of Nanostructures. ACS Nano, 2017, 11, 7321-7335.	14.6	72
131	Theory of graphene saturable absorption. Physical Review B, 2017, 95, .	3.2	128
132	Special Issue "2D Materials for Nanophotonics― ACS Photonics, 2017, 4, 2959-2961.	6.6	9
133	Nonperturbative theory of graphene saturable absorption. , 2017, , .		2
134	Electron refraction at lateral atomic interfaces. Journal of Applied Physics, 2017, 122, .	2.5	4
135	Hot-Electron Dynamics and Thermalization in Small Metallic Nanoparticles. ACS Photonics, 2016, 3, 1637-1646.	6.6	129
136	Ultrafast and Broadband Tuning of Resonant Optical Nanostructures Using Phaseâ€Change Materials. Advanced Optical Materials, 2016, 4, 1060-1066.	7.3	67
137	Complete optical absorption of ultrashort pulses by plasmons in nanostructured graphene (Conference Presentation). , 2016, , .		Ο
138	Ultrasensitive multiplex optical quantification of bacteria in large samples of biofluids. Scientific Reports, 2016, 6, 29014.	3.3	59
139	Self-organization of frozen light in near-zero-index media with cubic nonlinearity. Scientific Reports, 2016, 6, 20088.	3.3	21
140	Structural Coloring of Glass Using Dewetted Nanoparticles and Ultrathin Films of Metals. ACS Photonics, 2016, 3, 1194-1201.	6.6	67
141	Molecular Plasmon–Phonon Coupling. Nano Letters, 2016, 16, 6390-6395.	9.1	20
142	Electrical Detection of Single Graphene Plasmons. ACS Nano, 2016, 10, 8045-8053.	14.6	17
143	Plasmons in doped finite carbon nanotubes and their interactions with fast electrons and quantum emitters. Physical Review B, 2016, 94, .	3.2	8
144	Nonlinear Plasmonic Sensing with Nanographene. Physical Review Letters, 2016, 117, 123904.	7.8	60

#	Article	IF	CITATIONS
145	Smith-Purcell radiation emission in aperiodic arrays. Physical Review B, 2016, 94, .	3.2	21
146	Electron diffraction by plasmon waves. Physical Review B, 2016, 94, .	3.2	45
147	Graphene-Based Active Random Metamaterials for Cavity-Free Lasing. Physical Review Letters, 2016, 116, 217401.	7.8	41
148	Polaritons in van der Waals materials. Science, 2016, 354, .	12.6	799
149	Femtosecond plasmon and photon wave packets excited by a high-energy electron on a metal or dielectric surface. Physical Review B, 2016, 94, .	3.2	14
150	Imaging and controlling plasmonic interference fields at buried interfaces. Nature Communications, 2016, 7, 13156.	12.8	58
151	Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas. Scientific Reports, 2016, 6, 32144.	3.3	42
152	Quantum Effects in the Nonlinear Response of Graphene Plasmons. ACS Nano, 2016, 10, 1995-2003.	14.6	88
153	Phonon excitation by electron beams in nanographenes. Physical Review B, 2015, 92, .	3.2	10
154	Ultraefficient Coupling of a Quantum Emitter to the Tunable Guided Plasmons of a Carbon Nanotube. Physical Review Letters, 2015, 115, 173601.	7.8	47
155	Interference of surface plasmons and Smith-Purcell emission probed by angle-resolved cathodoluminescence spectroscopy. Physical Review B, 2015, 91, .	3.2	29
156	Plasmon–Phonon Interactions in Topological Insulator Microrings. Advanced Optical Materials, 2015, 3, 1257-1263.	7.3	72
157	Propagation and localization of quantum dot emission along a gap-plasmonic transmission line. Optics Express, 2015, 23, 29296.	3.4	6
158	Graphene opto-electronics and plasmonics for infrared frequencies. , 2015, , .		0
159	Plasmon-Enhanced Nonlinear Wave Mixing in Nanostructured Graphene. ACS Photonics, 2015, 2, 306-312.	6.6	64
160	Unveiling Nanometer Scale Extinction and Scattering Phenomena through Combined Electron Energy Loss Spectroscopy and Cathodoluminescence Measurements. Nano Letters, 2015, 15, 1229-1237.	9.1	143
161	Electrical control of optical emitter relaxation pathways enabled by graphene. Nature Physics, 2015, 11, 281-287.	16.7	99
162	Molecular Sensing with Tunable Graphene Plasmons. ACS Photonics, 2015, 2, 876-882.	6.6	96

#	Article	IF	CITATIONS
163	Molecular Plasmonics. Nano Letters, 2015, 15, 6208-6214.	9.1	80
164	Mid-infrared plasmonic biosensing with graphene. Science, 2015, 349, 165-168.	12.6	1,167
165	Controlled Living Nanowire Growth: Precise Control over the Morphology and Optical Properties of AgAuAg Bimetallic Nanowires. Nano Letters, 2015, 15, 5427-5437.	9.1	122
166	Quantum nonlocal effects in individual and interacting graphene nanoribbons. Light: Science and Applications, 2015, 4, e241-e241.	16.6	48
167	Plasmonics in atomically thin materials. Faraday Discussions, 2015, 178, 87-107.	3.2	38
168	Resonant Visible Light Modulation with Graphene. ACS Photonics, 2015, 2, 550-558.	6.6	71
169	Plasmon wave function of graphene nanoribbons. New Journal of Physics, 2015, 17, 083013.	2.9	23
170	Ultimate Limit of Light Extinction by Nanophotonic Structures. Nano Letters, 2015, 15, 7633-7638.	9.1	25
171	Amplification of the Evanescent Field of Free Electrons. ACS Photonics, 2015, 2, 1236-1240.	6.6	36
172	Second-order quantum nonlinear optical processes in single graphene nanostructures and arrays. New Journal of Physics, 2015, 17, 083031.	2.9	47
173	Pronounced Linewidth Narrowing of an Aluminum Nanoparticle Plasmon Resonance by Interaction with an Aluminum Metallic Film. Nano Letters, 2015, 15, 6946-6951.	9.1	149
174	Extraordinary absorption of sound in porous lamella-crystals. Scientific Reports, 2015, 4, 4674.	3.3	50
175	Optical Sensing and Light Modulation with Atomically Thin Materials. , 2015, , .		Ο
176	Plasmon-Induced Nonlinear Phenomena in Atomic-Scale Structures. , 2015, , .		0
177	SERS Platforms of Plasmonic Hydrophobic Surfaces for Analyte Concentration: Hierarchically Assembled Gold Nanorods on Anodized Aluminum. Particle and Particle Systems Characterization, 2014, 31, 1134-1140.	2.3	18
178	An optical fiber network oracle for NP-complete problems. Light: Science and Applications, 2014, 3, e147-e147.	16.6	47
179	Near-field nanoimprinting using colloidal monolayers. Optics Express, 2014, 22, 8226.	3.4	12
180	Electrically tunable nonlinear plasmonics in graphene nanoislands. Nature Communications, 2014, 5, 5725.	12.8	143

#	Article	IF	CITATIONS
181	Graphene optical-to-thermal converter. Applied Physics Letters, 2014, 105, .	3.3	16
182	3D plasmonic chiral colloids. Nanoscale, 2014, 6, 2077.	5.6	98
183	Graphene Plasmonics: Challenges and Opportunities. ACS Photonics, 2014, 1, 135-152.	6.6	1,000
184	Tunable plasmons in atomically thin gold nanodisks. Nature Communications, 2014, 5, 3548.	12.8	127
185	Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays. Nano Letters, 2014, 14, 299-304.	9.1	565
186	Phonon-Mediated Mid-Infrared Photoresponse of Graphene. Nano Letters, 2014, 14, 6374-6381.	9.1	64
187	Chemical speciation of heavy metals by surface-enhanced Raman scattering spectroscopy: identification and quantification of inorganic- and methyl-mercury in water. Nanoscale, 2014, 6, 8368-8375.	5.6	92
188	Dichroism in the Interaction between Vortex Electron Beams, Plasmons, and Molecules. Physical Review Letters, 2014, 113, 066102.	7.8	79
189	Extraordinary Absorption of Decorated Undoped Graphene. Physical Review Letters, 2014, 112, 077401.	7.8	50
190	Plasmons in inhomogeneously doped neutral and charged graphene nanodisks. Applied Physics Letters, 2014, 104, 131103.	3.3	18
191	Surface Plasmon Dependence on the Electron Density Profile at Metal Surfaces. ACS Nano, 2014, 8, 9558-9566.	14.6	90
192	Toward Ultimate Nanoplasmonics Modeling. ACS Nano, 2014, 8, 7559-7570.	14.6	132
193	Deterministic Optical-Near-Field-Assisted Positioning of Nitrogen-Vacancy Centers. Nano Letters, 2014, 14, 1520-1525.	9.1	49
194	Accessing the optical properties of single nanoobjects at the nanometer scale through fast electron based spectroscopies. , 2014, , .		0
195	The magnetic response of graphene split-ring metamaterials. Light: Science and Applications, 2013, 2, e78-e78.	16.6	121
196	Fast optical modulation of the fluorescence from a single nitrogen–vacancy centre. Nature Physics, 2013, 9, 785-789.	16.7	31
197	Single-Photon Nonlinear Optics with Graphene Plasmons. Physical Review Letters, 2013, 111, 247401.	7.8	172
198	Strong Plasmon Reflection at Nanometer-Size Gaps in Monolayer Graphene on SiC. Nano Letters, 2013, 13, 6210-6215.	9.1	121

#	Article	IF	CITATIONS
199	Theory of random nanoparticle layers in photovoltaic devices applied to self-aggregated metal samples. Solar Energy Materials and Solar Cells, 2013, 109, 294-299.	6.2	16
200	The Planar Parabolic Optical Antenna. Nano Letters, 2013, 13, 188-193.	9.1	33
201	Three-dimensional optical manipulation of a single electron spin. Nature Nanotechnology, 2013, 8, 175-179.	31.5	127
202	Plasmons driven by single electrons in graphene nanoislands. Nanophotonics, 2013, 2, 139-151.	6.0	41
203	Efficient modal-expansion discrete-dipole approximation: Application to the simulation of optical extinction and electron energy-loss spectroscopies. Physical Review B, 2013, 88, .	3.2	10
204	Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene. ACS Nano, 2013, 7, 2388-2395.	14.6	622
205	Graphene Nanophotonics. Science, 2013, 339, 917-918.	12.6	129
206	Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle. Nano Letters, 2013, 13, 1736-1742.	9.1	394
207	Universal Distance-Scaling of Nonradiative Energy Transfer to Graphene. Nano Letters, 2013, 13, 2030-2035.	9.1	197
208	Alternating Plasmonic Nanoparticle Heterochains Made by Polymerase Chain Reaction and Their Optical Properties. Journal of Physical Chemistry Letters, 2013, 4, 641-647.	4.6	72
209	Optical Field Enhancement by Strong Plasmon Interaction in Graphene Nanostructures. Physical Review Letters, 2013, 110, 187401.	7.8	86
210	Ultrasound Transmission Through Periodically Perforated Plates. Springer Series in Materials Science, 2013, , 83-113.	0.6	0
211	Three-Dimensional Plasmonic Chiral Tetramers Assembled by DNA Origami. Nano Letters, 2013, 13, 2128-2133.	9.1	254
212	Effect of Ag nanoparticles integrated within antireflection coatings for solar cells. Journal of Renewable and Sustainable Energy, 2013, 5, 033116.	2.0	26
213	Quantum junction plasmons in graphene dimers. Laser and Photonics Reviews, 2013, 7, 297-302.	8.7	14
214	Plasmonic energy transfer in periodically doped graphene. New Journal of Physics, 2013, 15, 033042.	2.9	25
215	Tunable Molecular Plasmons in Polycyclic Aromatic Hydrocarbons. ACS Nano, 2013, 7, 3635-3643.	14.6	101
216	Multiple Excitation of Confined Graphene Plasmons by Single Free Electrons. ACS Nano, 2013, 7, 11409-11419.	14.6	91

#	Article	IF	CITATIONS
217	Controlled Interaction of Surface Quantum-Well Electronic States. Nano Letters, 2013, 13, 6130-6135.	9.1	42
218	Magnetic and electric response of single subwavelength holes. Physical Review B, 2013, 88, .	3.2	32
219	Excitation of confined modes on particle arrays. Optics Express, 2013, 21, 5636.	3.4	12
220	Plasmon electron energy-gain spectroscopy. New Journal of Physics, 2013, 15, 103021.	2.9	43
221	Optical generation of intense ultrashort magnetic pulses at the nanoscale. New Journal of Physics, 2013, 15, 113035.	2.9	20
222	Plasmonic scattering from single subwavelength holes: Separating the electric and magnetic contributions. , 2013, , .		0
223	Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle. Beilstein Journal of Nanotechnology, 2013, 4, 501-509.	2.8	14
224	Temporal quantum control with graphene. New Journal of Physics, 2012, 14, 123020.	2.9	23
225	Power transfer between neighboring planar waveguides. Optics Express, 2012, 20, 3152.	3.4	3
226	Looking through the mirror: Optical microcavity-mirror image photonic interaction. Optics Express, 2012, 20, 11247.	3.4	16
227	Self-organization approach for THz polaritonic metamaterials. Optics Express, 2012, 20, 14663.	3.4	42
228	Quantitative imaging of the optical near field. Optics Express, 2012, 20, 22063.	3.4	13
229	Magnetic polarization in the optical absorption of metallic nanoparticles. Optics Express, 2012, 20, 28142.	3.4	13
230	Amplification of the Evanescent Field of Free Electrons. , 2012, , .		1
231	Interacting plasmon and phonon polaritons in aligned nano- and microwires. Optics Express, 2012, 20, 10879.	3.4	26
232	Radiative heat transfer between neighboring particles. Physical Review B, 2012, 86, .	3.2	60
233	Nanoscale mapping of plasmons, photons, and excitons. MRS Bulletin, 2012, 37, 39-46.	3.5	17
234	Quantum Finite-Size Effects in Graphene Plasmons. ACS Nano, 2012, 6, 1766-1775.	14.6	280

#	Article	IF	CITATIONS
235	Negative refraction and backward waves in layered acoustic metamaterials. Physical Review B, 2012, 86, ·	3.2	17
236	Organized Plasmonic Clusters with High Coordination Number and Extraordinary Enhancement in Surfaceâ€Enhanced Raman Scattering (SERS). Angewandte Chemie - International Edition, 2012, 51, 12688-12693.	13.8	154
237	Plasmons go quantum. Nature, 2012, 483, 417-418.	27.8	37
238	Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study. Nano Letters, 2012, 12, 4172-4180.	9.1	139
239	Rotational Quantum Friction. Physical Review Letters, 2012, 109, 123604.	7.8	112
240	Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons. ACS Nano, 2012, 6, 431-440.	14.6	646
241	Low-loss terahertz superconducting plasmonics. New Journal of Physics, 2012, 14, 115006.	2.9	35
242	Plasmon Blockade in Nanostructured Graphene. ACS Nano, 2012, 6, 1724-1731.	14.6	60
243	Anisotropic Metamaterials for Full Control of Acoustic Waves. Physical Review Letters, 2012, 108, 124301.	7.8	230
244	Plasmon Scattering from Single Subwavelength Holes. Physical Review Letters, 2012, 108, 127402.	7.8	69
245	Plasmons in electrostatically doped graphene. Applied Physics Letters, 2012, 100, .	3.3	70
246	Engineering surface waves in flat phononic plates. Physical Review B, 2012, 85, .	3.2	28
247	Complete Optical Absorption in Periodically Patterned Graphene. Physical Review Letters, 2012, 108, 047401.	7.8	1,087
248	Optical nano-imaging of gate-tunable graphene plasmons. Nature, 2012, 487, 77-81.	27.8	1,820
249	From Nano to Micro: Synthesis and Optical Properties of Homogeneous Spheroidal Gold Particles and Their Superlattices. Langmuir, 2012, 28, 8909-8914.	3.5	52
250	Surface Plasmon Mapping of Dumbbell-Shaped Gold Nanorods: The Effect of Silver Coating. Langmuir, 2012, 28, 9063-9070.	3.5	32
251	Tunable Quantum Dot Arrays Formed from Self-Assembled Metal-Organic Networks. Physical Review Letters, 2011, 106, 026802.	7.8	71
252	Lifshitz Transition across the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>Ag</mml:mi><mml:mo>/</mml:mo><mml:mi>Cu</mml:mi><mml:mo stretchy="false">(<mml:mn>111</mml:mn><mml:mo) 0="" 10="" 50="" 57="" etqq0="" overlock="" rgbt="" td="" td<="" tf="" tj=""><td>(stretshy="</td><td>ˈfalsø">)</td></mml:mo)></mml:mo </mml:math>	(str ets hy="	ˈfal sø ">)

Review Letters, 2011, 107, 066803.

#	Article	IF	CITATIONS
253	Gap and Mie Plasmons in Individual Silver Nanospheres near a Silver Surface. Nano Letters, 2011, 11, 91-95.	9.1	126
254	Enhancing the Radiative Rate in IIIâ^'V Semiconductor Plasmonic Coreâ^'Shell Nanowire Resonators. Nano Letters, 2011, 11, 372-376.	9.1	40
255	Quantum Plexcitonics: Strongly Interacting Plasmons and Excitons. Nano Letters, 2011, 11, 2318-2323.	9.1	354
256	Reduced radiation losses in electron beam excited propagating plasmons. Optics Express, 2011, 19, 18713.	3.4	2
257	Spatially resolved measurements of plasmonic eigenstates in complex-shaped, asymmetric nanoparticles: gold nanostars. EPJ Applied Physics, 2011, 54, 33512.	0.7	34
258	Sound transmission through perforated plates with subwavelength hole arrays: A rigid-solid model. Wave Motion, 2011, 48, 235-242.	2.0	28
259	Single-Photon Generation by Electron Beams. Nano Letters, 2011, 11, 5099-5103.	9.1	36
260	Graphene Plasmonics: A Platform for Strong Light–Matter Interactions. Nano Letters, 2011, 11, 3370-3377.	9.1	2,393
261	Spatial Nonlocality in the Optical Response of Metal Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 19470-19475.	3.1	264
262	Stimulated Light Emission and Inelastic Scattering by a Classical Linear System of Rotating Particles. Physical Review Letters, 2011, 106, 213601.	7.8	6
263	Microphotonic parabolic light directors fabricated by two-photon lithography. Applied Physics Letters, 2011, 99, .	3.3	69
264	Symmetry breaking and gap opening in two-dimensional hexagonal lattices. New Journal of Physics, 2011, 13, 013026.	2.9	33
265	Acoustic field enhancement and subwavelength imaging by coupling to slab waveguide modes. Applied Physics Letters, 2010, 97, 164103.	3.3	20
266	Nonlocal Effects in the Optical Response of Metal Nanoparticles. , 2010, , .		4
267	Nano-optic of metamaterials by spatially resolved Electron Energy Loss Spectroscopy. , 2010, , .		0
268	Ultrasmall Mode Volume Plasmonic Nanodisk Resonators. Nano Letters, 2010, 10, 1537-1541.	9.1	190
269	Optical excitations in electron microscopy. Reviews of Modern Physics, 2010, 82, 209-275.	45.6	1,165
270	Ultraviolet optical near-fields of microspheres imprinted in phase change films. Applied Physics Letters, 2010, 96, 193108.	3.3	19

F JAVIER GARCÃA DE ABAJO

#	Article	IF	CITATIONS
271	Controllable excitation of gap plasmons by electron beams in metallic nanowire pairs. Physical Review B, 2010, 82, .	3.2	16
272	Tuneable electron-beam-driven nanoscale light source. Journal of Optics (United Kingdom), 2010, 12, 024012.	2.2	20
273	SERS-Based Ultrasensitive Detection with Tips-shaped Anisotropic Particles. , 2010, , .		0
274	Spectral Imaging of Individual Split-Ring Resonators. Physical Review Letters, 2010, 105, 255501.	7.8	79
275	Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate. Physical Review B, 2010, 82, .	3.2	193
276	Nanoscale Control of Optical Heating in Complex Plasmonic Systems. ACS Nano, 2010, 4, 709-716.	14.6	621
277	Transmitting Hertzian Optical Nanoantenna with Free-Electron Feed. Nano Letters, 2010, 10, 3250-3252.	9.1	38
278	Two-Dimensional Quasistatic Stationary Short Range Surface Plasmons in Flat Nanoprisms. Nano Letters, 2010, 10, 902-907.	9.1	103
279	Surface Enhanced Raman Scattering Using Star-Shaped Gold Colloidal Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 7336-7340.	3.1	224
280	Vacuum Friction in Rotating Particles. Physical Review Letters, 2010, 105, 113601.	7.8	93
281	Thermal and vacuum friction acting on rotating particles. Physical Review A, 2010, 82, .	2.5	48
282	Slow plasmonic slab waveguide as a superlens for visible light. Physical Review B, 2010, 82, .	3.2	10
283	Extraordinary All-Dielectric Light Enhancement over Large Volumes. Nano Letters, 2010, 10, 4450-4455.	9.1	30
284	Broadband Purcell enhancement in plasmonic ring cavities. Physical Review B, 2010, 82, .	3.2	74
285	Light Concentration at the Nanometer Scale. Journal of Physical Chemistry Letters, 2010, 1, 2428-2434.	4.6	290
286	Multiphoton Absorption and Emission by Interaction of Swift Electrons with Evanescent Light Fields. Nano Letters, 2010, 10, 1859-1863.	9.1	184
287	Lateral engineering of surface states – towards surface-state nanoelectronics. Nanoscale, 2010, 2, 717.	5.6	27
288	Nanolocalization of Ultrashort Time-Reversed Pulses in Random Nanoparticle Assemblies. , 2010, , .		0

#	Article	IF	CITATIONS
289	Dispersion of metal-insulator-metal plasmon polaritons probed by cathodoluminescence imaging spectroscopy. Physical Review B, 2009, 80, .	3.2	39
290	Optical Emission from the Interaction of Fast Electrons with Metallic Films Containing a Circular Aperture: A Study of Radiative Decoherence of Fast Electrons. Physical Review Letters, 2009, 102, 237401.	7.8	7
291	Influence of lattice symmetry on ultrasound transmission through plates with subwavelength aperture arrays. Applied Physics Letters, 2009, 95, .	3.3	33
292	Photonic Binding in Silicon-Colloid Microcavities. Physical Review Letters, 2009, 103, 103902.	7.8	17
293	Diacritical study of light, electrons and sound scattering by particles and holes. New Journal of Physics, 2009, 11, 093013.	2.9	27
294	Towards Femtojoule Nanoparticle Phase-Change Memory. Japanese Journal of Applied Physics, 2009, 48, 03A065.	1.5	15
295	Imprinting the Optical Near Field of Microstructures with Nanometer Resolution. Small, 2009, 5, 1825-1829.	10.0	34
296	Photons and electrons team up. Nature, 2009, 462, 861-861.	27.8	9
297	Light Well: A Tunable Free-Electron Light Source on a Chip. Physical Review Letters, 2009, 103, 113901.	7.8	151
298	Robust Plasmon Waveguides in Strongly Interacting Nanowire Arrays. Nano Letters, 2009, 9, 1285-1289.	9.1	103
299	Dichotomous Array of Chiral Quantum Corrals by a Self-Assembled Nanoporous Kagomé Network. Nano Letters, 2009, 9, 3509-3514.	9.1	78
300	Angle-Dependent Ultrasonic Transmission through Plates with Subwavelength Hole Arrays. Physical Review Letters, 2009, 102, 144301.	7.8	74
301	Efficient Generation of Propagating Plasmons by Electron Beams. Nano Letters, 2009, 9, 1176-1181.	9.1	68
302	How grooves reflect and confine surface†plasmon polaritons. Optics Express, 2009, 17, 10385.	3.4	54
303	Analytic coherent control of plasmon propagation in nanostructures. Optics Express, 2009, 17, 14235.	3.4	66
304	Near-field focusing with optical phase antennas. Optics Express, 2009, 17, 17801.	3.4	12
305	Confined collective excitations of self-standing and supported planar periodic particle arrays. Optics Express, 2009, 17, 18826.	3.4	28
306	Plasmonics in buried structures. Optics Express, 2009, 17, 18866.	3.4	3

#	Article	IF	CITATIONS
307	Coupling of gap plasmons in multi-wire waveguides. Optics Express, 2009, 17, 19401.	3.4	25
308	Anisotropy and particle-size effects in nanostructured plasmonic metamaterials. Optics Express, 2009, 17, 22012.	3.4	25
309	Modal Decomposition of Surfaceâ^'Plasmon Whispering Gallery Resonators. Nano Letters, 2009, 9, 3147-3150.	9.1	80
310	Spectroscopy, Imaging, and Modeling of Individual Gold Decahedra. Journal of Physical Chemistry C, 2009, 113, 18623-18631.	3.1	71
311	Nano-optical Trapping of Rayleigh Particles and <i>Escherichia coli</i> Bacteria with Resonant Optical Antennas. Nano Letters, 2009, 9, 3387-3391.	9.1	326
312	Probing Bright and Dark Surface-Plasmon Modes in Individual and Coupled Noble Metal Nanoparticles Using an Electron Beam. Nano Letters, 2009, 9, 399-404.	9.1	321
313	Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence. Physical Review B, 2009, 79, .	3.2	132
314	Influence of the tip in near-field imaging of nanoparticle plasmonic modes: Weak and strong coupling regimes. Physical Review B, 2009, 79, .	3.2	104
315	Zeptomol Detection Through Controlled Ultrasensitive Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 2009, 131, 4616-4618.	13.7	520
316	Modeling the Optical Response of Highly Faceted Metal Nanoparticles with a Fully 3D Boundary Element Method. Advanced Materials, 2008, 20, 4288-4293.	21.0	116
317	Modelling the optical response of gold nanoparticles. Chemical Society Reviews, 2008, 37, 1792.	38.1	1,072
318	Omnidirectional absorption in nanostructured metal surfaces. Nature Photonics, 2008, 2, 299-301.	31.4	430
319	Extraordinary Sound Screening in Perforated Plates. Physical Review Letters, 2008, 101, 084302.	7.8	125
320	Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides. Journal of Physical Chemistry C, 2008, 112, 17983-17987.	3.1	500
321	High-yield synthesis and optical response of gold nanostars. Nanotechnology, 2008, 19, 015606.	2.6	602
322	Near-Field Optical Phase Antennas for Long-Range Plasmon Coupling. Nano Letters, 2008, 8, 2479-2484.	9.1	15
323	Mapping the Plasmon Resonances of Metallic Nanoantennas. Nano Letters, 2008, 8, 631-636.	9.1	354
324	Substrate-enhanced infrared near-field spectroscopy. Optics Express, 2008, 16, 1529.	3.4	103

#	Article	IF	CITATIONS
325	Plasmon guided modes in nanoparticle metamaterials. Optics Express, 2008, 16, 4499.	3.4	38
326	Plasmon-Based Nanolenses Assembled on a Well-Defined DNA Template. Journal of the American Chemical Society, 2008, 130, 2750-2751.	13.7	139
327	Imaging optical near fields at metallic nanoscale voids. Physical Review B, 2008, 78, .	3.2	23
328	Probing the Photonic Local Density of States with Electron Energy Loss Spectroscopy. Physical Review Letters, 2008, 100, 106804.	7.8	300
329	Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling. Applied Physics Letters, 2008, 92, .	3.3	99
330	Mapping plasmons in nanoantennas via cathodoluminescence. New Journal of Physics, 2008, 10, 105009.	2.9	100
331	Electron energy-gain spectroscopy. New Journal of Physics, 2008, 10, 073035.	2.9	112
332	High-energy photoelectron diffraction: model calculations and future possibilities. New Journal of Physics, 2008, 10, 113002.	2.9	48
333	Mapping Surface Plasmons on a Single Metallic Nanoparticle. , 2008, , .		2
334	Interplay between electronic states and structure during Au faceting. New Journal of Physics, 2008, 10, 113017.	2.9	5
335	Plasmon excitations at diffuse interfaces. Journal of Physics Condensed Matter, 2008, 20, 304205.	1.8	3
336	Optically Tunable Surfaces with Trapped Particles in Microcavities. Physical Review Letters, 2008, 101, 136802.	7.8	40
337	Luminescence readout of nanoparticle phase state. Applied Physics Letters, 2008, 92, .	3.3	8
338	Influence of the hole filling fraction on the ultrasonic transmission through plates with subwavelength aperture arrays. Applied Physics Letters, 2008, 93, .	3.3	29
339	Surface exciton polaritons in individual Au nanoparticles in the far-ultraviolet spectral regime. Physical Review B, 2008, 77, .	3.2	23
340	Plasmon molecules in overlapping nanovoids. Physical Review B, 2008, 77, .	3.2	9
341	Combining electronic and optical spectroscopy at the nanometer scale in a STEM. , 2008, , 351-352.		0
342	Total light absorption in plasmonic nanostructures. Journal of Optics, 2007, 9, S458-S462.	1.5	17

#	Article	IF	CITATIONS
343	Nanoscale force manipulation in the vicinity of a metal nanostructure. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, S249-S258.	1.5	11
344	Adaptive Sub-Wavelength Control of Nano-Optical Fields. , 2007, , LWD2.		0
345	Strong terahertz absorption bands in a scaled plasmonic crystal. Applied Physics Letters, 2007, 90, 251910.	3.3	22
346	Size effects in angle-resolved photoelectron spectroscopy of free rare-gas clusters. Physical Review A, 2007, 75, .	2.5	26
347	Enhanced microwave transmission through quasicrystal hole arrays. Applied Physics Letters, 2007, 91, 081503.	3.3	38
348	Mapping Surface Plasmons on a Single Mmetallic Nanoparticle using Sub-nm Resolved EELS Spectrum-Imaging. Microscopy and Microanalysis, 2007, 13, .	0.4	10
349	The plasmon Talbot effect. Optics Express, 2007, 15, 9692.	3.4	115
350	Collective oscillations in optical matter. Optics Express, 2007, 15, 11082.	3.4	11
351	<i>Colloquium</i> : Light scattering by particle and hole arrays. Reviews of Modern Physics, 2007, 79, 1267-1290.	45.6	1,115
352	The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres. Journal of Physical Chemistry C, 2007, 111, 13361-13366.	3.1	96
353	Optical Properties of Platinum-Coated Gold Nanorods. Journal of Physical Chemistry C, 2007, 111, 6183-6188.	3.1	121
354	Plasmonic Modes of Annular Nanoresonators Imaged by Spectrally Resolved Cathodoluminescence. Nano Letters, 2007, 7, 3612-3617.	9.1	67
355	Focusing of light by a nanohole array. Applied Physics Letters, 2007, 90, 091119.	3.3	176
356	Optical super-resolution through super-oscillations. Journal of Optics, 2007, 9, S285-S288.	1.5	116
357	Understanding Plasmons in Nanoscale Voids. Nano Letters, 2007, 7, 2094-2100.	9.1	182
358	Nanohole Plasmons in Optically Thin Gold Films. Journal of Physical Chemistry C, 2007, 111, 1207-1212.	3.1	151
359	Environmental Optical Sensitivity of Gold Nanodecahedra. Advanced Functional Materials, 2007, 17, 1443-1450.	14.9	106
360	Self-assembly works for superlattices. Nature Nanotechnology, 2007, 2, 601-602.	31.5	3

#	Article	IF	CITATIONS
361	Mapping surface plasmons on a single metallic nanoparticle. Nature Physics, 2007, 3, 348-353.	16.7	908
362	Adaptive subwavelength control of nano-optical fields. Nature, 2007, 446, 301-304.	27.8	508
363	Photonic absorption bands in the spectra of nanoporous metallic films. Physics of the Solid State, 2007, 49, 1264-1267.	0.6	0
364	Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering. Physical Review B, 2007, 76, .	3.2	84
365	Plasmon Guiding in Coupled Nanovoids. , 2007, , .		0
366	Seeded Growth of Submicron Au Colloids with Quadrupole Plasmon Resonance Modes. Langmuir, 2006, 22, 7007-7010.	3.5	349
367	Site and lattice resonances in metallic hole arrays. Optics Express, 2006, 14, 7.	3.4	83
368	Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons. Optics Express, 2006, 14, 1965.	3.4	45
369	Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Optics Express, 2006, 14, 9988.	3.4	731
370	Mie plasmon enhanced diffraction of light from nanoporous metal surfaces. Optics Express, 2006, 14, 11964.	3.4	22
371	Observation and resonant x-ray optical interpretation of multi-atom resonant photoemission effects in O1semission from NiO. Physical Review B, 2006, 74, .	3.2	11
372	X-ray photoelectron diffraction study of ultrathin PbTiO3 films. European Physical Journal B, 2006, 49, 141-146.	1.5	12
373	Adaptive ultrafast nano-optics in a tight focus. Applied Physics B: Lasers and Optics, 2006, 84, 89-95.	2.2	20
374	X-ray photoelectron diffraction study of Cu(111): Multiple scattering investigation. Surface Science, 2006, 600, 380-385.	1.9	12
375	Synthesis and Optical Properties of Gold Nanodecahedra with Size Control. Advanced Materials, 2006, 18, 2529-2534.	21.0	365
376	Simulating electromagnetic response in coupled metallic nanoparticles for nanoscale optical microscopy and spectroscopy: nanorod-end effects. , 2006, , .		4
377	Ultrafast adaptive optical near-field control. Physical Review B, 2006, 73, .	3.2	50
378	Direct evidence for ferroelectric polar distortion in ultrathin lead titanate perovskite films. Physical Review B, 2006, 73, .	3.2	75

#	Article	IF	CITATIONS
379	Adaptive control of nanoscopic photoelectron emission. , 2006, , .		0
380	Void plasmons and total absorption of light in nanoporous metallic films. Physical Review B, 2005, 71, .	3.2	82
381	Total Resonant Absorption of Light by Plasmons on the Nanoporous Surface of a Metal. Physics of the Solid State, 2005, 47, 178.	0.6	14
382	Tuneable coupling of surface plasmon-polaritons and Mie plasmons on a planar surface of nanoporous metal. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3912-3915.	0.8	6
383	Giant light absorption by plasmons in a nanoporous metal film. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 362-366.	1.8	8
384	Full transmission through perfect-conductor subwavelength hole arrays. Physical Review E, 2005, 72, 016608.	2.1	134
385	Nanoscopic Ultrafast Space-Time-Resolved Spectroscopy. Physical Review Letters, 2005, 95, 093901.	7.8	120
386	Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Physical Review B, 2005, 71, .	3.2	534
387	Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials. Physical Review B, 2005, 71, .	3.2	42
388	Tunneling Mechanism of Light Transmission through Metallic Films. Physical Review Letters, 2005, 95, 067403.	7.8	107
389	Electromagnetic Surface Modes in Structured Perfect-Conductor Surfaces. Physical Review Letters, 2005, 95, 233901.	7.8	205
390	Plasmon tunability in metallodielectric metamaterials. Physical Review B, 2005, 71, .	3.2	49
391	Spontaneous light emission in complex nanostructures. Physical Review B, 2004, 69, .	3.2	115
392	Radiative decay of plasmons in a metallic nanoshell. Physical Review B, 2004, 69, .	3.2	83
393	Boundary effects in Cherenkov radiation. Physical Review B, 2004, 69, .	3.2	47
394	Momentum transfer to small particles by passing electron beams. Physical Review B, 2004, 70, .	3.2	31
395	Photoelectron diffraction study of theSi-rich3Câ^'SiC(001)–(3×2)structure. Physical Review B, 2004, 70,	3.2	26
396	Electromagnetic forces and torques in nanoparticles irradiated by plane waves. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 89, 3-9.	2.3	25

#	Article	IF	CITATIONS
397	Light scattering in gold nanorings. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 89, 11-16.	2.3	32
398	Spontaneous emission enhancement near nanoparticles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 89, 37-42.	2.3	26
399	Accurate band mapping via photoemission from thin films. Physical Review B, 2004, 69, .	3.2	6
400	Control of spontaneous emission by complex nanostructures. Optics Letters, 2004, 29, 1494.	3.3	10
401	Femtosecond shaping of transverse and longitudinal light polarization. Optics Letters, 2004, 29, 2187.	3.3	16
402	Resonant-Coherent Excitation of Channeled Ions. Advances in Quantum Chemistry, 2004, , 65-89.	0.8	11
403	Cherenkov radiation effects in EELS for nanoporous alumina membranes. Surface Science, 2003, 532-535, 461-467.	1.9	3
404	Optical Properties of Gold Nanorings. Physical Review Letters, 2003, 90, 057401.	7.8	969
405	Relativistic effects in EELS of nanoporous alumina membranes. Physical Review B, 2003, 68, .	3.2	12
406	Cherenkov Effect as a Probe of Photonic Nanostructures. Physical Review Letters, 2003, 91, 143902.	7.8	71
407	Electron energy loss spectroscopy as a probe of two-dimensional photonic crystals. Physical Review B, 2003, 68, .	3.2	19
408	Electron energy loss in carbon nanostructures. Physical Review B, 2003, 67, .	3.2	20
409	Measurement of electron wave functions and confining potentials via photoemission. Physical Review B, 2003, 67, .	3.2	30
410	Electron energy loss and induced photon emission in photonic crystals. Physical Review B, 2003, 67, .	3.2	23
411	Nanoring formation by direct-write inorganic electron-beam lithography. Applied Physics Letters, 2003, 83, 551-553.	3.3	46
412	Circular Dichroism inK-Shell Ionization from Fixed-in-Space CO andN2Molecules. Physical Review Letters, 2002, 88, 073002.	7.8	126
413	Lateral quantum wells at vicinal Au(111) studied with angle-resolved photoemission. Physical Review B, 2002, 66, .	3.2	78
414	MULTIPLE SCATTERING THEORY OF PHOTOELECTRON ANGULAR DISTRIBUTIONS FROM ORIENTED DIATOMIC MOLECULES. Surface Review and Letters, 2002, 09, 1213-1217.	1.1	5

#	Article	IF	CITATIONS
415	Angular distributions of electrons photoemitted from core levels of oriented diatomic molecules: multiple scattering theory in non-spherical potentials. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, L359-L365.	1.5	14
416	Light transmission through a single cylindrical hole in a metallic film. Optics Express, 2002, 10, 1475.	3.4	152
417	Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Physical Review B, 2002, 65, .	3.2	615
418	Development of the scattering theory of X-ray absorption and core level photoemission. Journal of Electron Spectroscopy and Related Phenomena, 2002, 126, 67-76.	1.7	11
419	Electron Confinement in Surface States on a Stepped Gold Surface Revealed by Angle-Resolved Photoemission. Physical Review Letters, 2001, 87, 107601.	7.8	115
420	Photon emission from silver particles induced by a high-energy electron beam. Physical Review B, 2001, 64, .	3.2	180
421	Elastic scattering of low-energy electrons by randomly oriented and aligned molecules. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 107-113.	1.7	4
422	Multiple scattering theory for non-spherical potentials: application to photoelectron angular distributions from oriented diatomic molecules and the study of shape resonances. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 99-105.	1.7	16
423	Multi-atom resonant photoemission. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 1179-1189.	1.7	14
424	K-shell photoionization of CO and N2: is there a link between the photoelectron angular distribution and the molecular decay dynamics?. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, 3669-3678.	1.5	111
425	Multiatom resonant photoemission. Physical Review B, 2001, 63, .	3.2	64
426	Multiple scattering of electrons in solids and molecules: A cluster-model approach. Physical Review B, 2001, 63, .	3.2	159
427	Inelastic scattering of fast electrons in nanowires: A dielectric formalism approach. Physical Review B, 2001, 64, .	3.2	37
428	Circular dichroism in core photoelectron emission from (1×1) oxygen on W(110): experiment and multiple-scattering theory. Journal of Electron Spectroscopy and Related Phenomena, 2000, 106, 7-28.	1.7	20
429	Photoelectron diffraction at the surface of amorphous carbon nitride. Applied Physics Letters, 2000, 77, 3394-3396.	3.3	10
430	Kinetics and atomic structure of O adsorption on W(110) from time- and state-resolved photoelectron spectroscopy and full-solid-angle photoelectron diffraction. Surface Science, 2000, 459, 69-92.	1.9	32
431	Smith-Purcell radiation emission in aligned nanoparticles. Physical Review E, 2000, 61, 5743-5752.	2.1	32
432	Multiatom Resonant Photoemission: Theory and Systematics. Physical Review Letters, 1999, 82, 4126-4129.	7.8	43

#	Article	IF	CITATIONS
433	Multiple scattering of radiation in clusters of dielectrics. Physical Review B, 1999, 60, 6086-6102.	3.2	136
434	Interaction of Radiation and Fast Electrons with Clusters of Dielectrics: A Multiple Scattering Approach. Physical Review Letters, 1999, 82, 2776-2779.	7.8	92
435	Electron promotion in collisions of protons with a LiF surface. Physical Review B, 1999, 59, 10950-10958.	3.2	33
436	Relativistic description of valence energy losses in the interaction of fast electrons with clusters of dielectrics: Multiple-scattering approach. Physical Review B, 1999, 60, 6103-6112.	3.2	14
437	Valence-electron energy loss near edges, truncated slabs, and junctions. Physical Review B, 1999, 60, 11149-11162.	3.2	32
438	Relativistic energy loss and induced photon emission in the interaction of a dielectric sphere with an external electron beam. Physical Review B, 1999, 59, 3095-3107.	3.2	125
439	Multiple atom resonant photoemission: a new technique for studying near-neighbor atomic identities and bonding. Journal of Electron Spectroscopy and Related Phenomena, 1999, 101-103, 647-652.	1.7	11
440	Localized valence spectroscopy of complex nanostructures. Journal of Electron Microscopy, 1999, 48, 673-679.	0.9	4
441	Nonlinear corrections to the image potential of charged particles moving parallel to a metal surface. Nuclear Instruments & Methods in Physics Research B, 1998, 135, 97-102.	1.4	4
442	Nonlinear effects in the kinetic electron emission induced by slow ions in metals. Nuclear Instruments & Methods in Physics Research B, 1998, 135, 487-491.	1.4	8
443	Coulomb explosion of H2+ in surface scattering. Nuclear Instruments & Methods in Physics Research B, 1998, 142, 473-485.	1.4	3
444	Collective excitations in an infinite set of aligned spheres. Surface Science, 1998, 402-404, 418-423.	1.9	3
445	Multi-Atom Resonant Photoemission: A Method for Determining Near-Neighbor Atomic Identities and Bonding. , 1998, 281, 679-683.		110
446	Relativistic Electron Energy Loss and Electron-Induced Photon Emission in Inhomogeneous Dielectrics. Physical Review Letters, 1998, 80, 5180-5183.	7.8	284
447	Interface and bulk effects in the attenuation of low-energy electrons throughCaF2thin films. Physical Review B, 1998, 58, 2233-2239.	3.2	9
448	Dynamic screening of fast ions moving in solids. Physical Review B, 1998, 57, 9329-9335.	3.2	33
449	Convergence and reliability of the Rehr-Albers formalism in multiple-scattering calculations of photoelectron diffraction. Physical Review B, 1998, 58, 13121-13131.	3.2	114
450	Contribution of the excitation of conduction band electrons to the kinetic electron emission induced by slow ions in metals. Physical Review B, 1998, 58, 15838-15846.	3.2	18

#	Article	IF	CITATIONS
451	Surface effects in the energy loss of ions passing through a thin foil. Physical Review A, 1997, 56, 2032-2040.	2.5	12
452	Resonant Coherent Excitation of Fast Hydrogen Atoms in Front of a LiF(001) Surface. Physical Review Letters, 1997, 79, 4477-4480.	7.8	35
453	Numerical simulation of electron energy loss near inhomogeneous dielectrics. Physical Review B, 1997, 56, 15873-15884.	3.2	130
454	Dependence of the stopping power on the surface response function. Nuclear Instruments & Methods in Physics Research B, 1997, 125, 106-109.	1.4	15
455	Coherent electron emission from high-energy ions in crystals. Nuclear Instruments & Methods in Physics Research B, 1997, 125, 1-6.	1.4	9
456	Electron emission in slow collisions of protons with a LiF-surface. Nuclear Instruments & Methods in Physics Research B, 1997, 125, 67-70.	1.4	22
457	Ion-induced electron emission from simple metals: Charge state effects. Nuclear Instruments & Methods in Physics Research B, 1997, 125, 23-26.	1.4	3
458	Contribution of charge-transfer processes to ion-induced electron emission. Physical Review B, 1996, 54, 17158-17165.	3.2	22
459	Impact-parameter dependence of resonant-coherent excitation of channeled ions. Nuclear Instruments & Methods in Physics Research B, 1996, 115, 299-305.	1.4	7
460	Energy loss of MeV protons specularly reflected from metal surfaces. Physical Review B, 1996, 53, 13839-13850.	3.2	37
461	Resonant-Coherent Excitation of Channeled Ions. Physical Review Letters, 1996, 76, 1856-1859.	7.8	21
462	The role of surface plasmons in ion-induced kinetic electron emission. Nuclear Instruments & Methods in Physics Research B, 1995, 98, 445-449.	1.4	14
463	Dynamic screening of ions in solids. Nuclear Instruments & Methods in Physics Research B, 1995, 96, 583-603.	1.4	72
464	Electron emission induced by resonant coherent interaction in ion-surface scattering at grazing incidence. Physical Review B, 1994, 49, 2832-2845.	3.2	8
465	Auger intra-atomic transitions in grazing atom-surface collisions. Physical Review B, 1994, 49, 14589-14598.	3.2	13
466	Resonant coherent ionization in grazing ion/atom-surface collisions at high velocities. Nuclear Instruments & Methods in Physics Research B, 1994, 90, 222-226.	1.4	5
467	Energy loss in grazing proton-surface collisions. Nuclear Instruments & Methods in Physics Research B, 1994, 90, 252-256.	1.4	9
468	Ion-induced electron emission in grazing ion-surface collisions. Nuclear Instruments & Methods in Physics Research B, 1993, 79, 15-20.	1.4	20

#	Article	IF	CITATIONS
469	Surface wake in the random-phase approximation. Physical Review B, 1993, 48, 13399-13407.	3.2	50
470	Resonant coherent excitation to the continuum in grazing ion-surface collisions. Journal of Physics Condensed Matter, 1993, 5, A267-A268.	1.8	1
471	Wake-potential formation in a thin foil. Physical Review B, 1992, 45, 8771-8774.	3.2	19
472	Wake potential in the vicinity of a surface. Physical Review B, 1992, 46, 2663-2675.	3.2	122
473	Electron emission induced by resonant coherent ion-surface interaction at grazing incidence. Physical Review Letters, 1992, 69, 2364-2367.	7.8	26
474	Wake potential and wake binding energy for protons and antiprotons. Nuclear Instruments & Methods in Physics Research B, 1990, 48, 25-28.	1.4	4