F Javier GarcÃ-a De Abajo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4775173/publications.pdf

Version: 2024-02-01

474 papers

47,363 citations

103 h-index 2033 205 g-index

487 all docs

487 docs citations

487 times ranked

30455 citing authors

#	Article	IF	CITATIONS
1	Graphene Plasmonics: A Platform for Strong Light–Matter Interactions. Nano Letters, 2011, 11, 3370-3377.	9.1	2,393
2	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	14.6	2,153
3	Optical nano-imaging of gate-tunable graphene plasmons. Nature, 2012, 487, 77-81.	27.8	1,820
4	Mid-infrared plasmonic biosensing with graphene. Science, 2015, 349, 165-168.	12.6	1,167
5	Optical excitations in electron microscopy. Reviews of Modern Physics, 2010, 82, 209-275.	45. 6	1,165
6	<i>Colloquium</i> : Light scattering by particle and hole arrays. Reviews of Modern Physics, 2007, 79, 1267-1290.	45.6	1,115
7	Complete Optical Absorption in Periodically Patterned Graphene. Physical Review Letters, 2012, 108, 047401.	7.8	1,087
8	Modelling the optical response of gold nanoparticles. Chemical Society Reviews, 2008, 37, 1792.	38.1	1,072
9	Graphene Plasmonics: Challenges and Opportunities. ACS Photonics, 2014, 1, 135-152.	6.6	1,000
10	Optical Properties of Gold Nanorings. Physical Review Letters, 2003, 90, 057401.	7.8	969
11			
11	Mapping surface plasmons on a single metallic nanoparticle. Nature Physics, 2007, 3, 348-353.	16.7	908
12	Mapping surface plasmons on a single metallic nanoparticle. Nature Physics, 2007, 3, 348-353. Polaritons in van der Waals materials. Science, 2016, 354, .	16.7 12.6	908 799
12	Polaritons in van der Waals materials. Science, 2016, 354, . Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching	12.6	799
12	Polaritons in van der Waals materials. Science, 2016, 354, . Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Optics Express, 2006, 14, 9988. Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons. ACS Nano,	12.6 3.4	799 731
12 13	Polaritons in van der Waals materials. Science, 2016, 354, . Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Optics Express, 2006, 14, 9988. Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons. ACS Nano, 2012, 6, 431-440. Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene. ACS Nano,	12.6 3.4 14.6	799 731 646
12 13 14	Polaritons in van der Waals materials. Science, 2016, 354, . Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Optics Express, 2006, 14, 9988. Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons. ACS Nano, 2012, 6, 431-440. Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene. ACS Nano, 2013, 7, 2388-2395.	12.6 3.4 14.6	799 731 646 622

#	Article	IF	Citations
19	Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays. Nano Letters, 2014, 14, 299-304.	9.1	565
20	Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Physical Review B, 2005, 71, .	3.2	534
21	Zeptomol Detection Through Controlled Ultrasensitive Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 2009, 131, 4616-4618.	13.7	520
22	Adaptive subwavelength control of nano-optical fields. Nature, 2007, 446, 301-304.	27.8	508
23	Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides. Journal of Physical Chemistry C, 2008, 112, 17983-17987.	3.1	500
24	Omnidirectional absorption in nanostructured metal surfaces. Nature Photonics, 2008, 2, 299-301.	31.4	430
25	Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle. Nano Letters, 2013, 13, 1736-1742.	9.1	394
26	Synthesis and Optical Properties of Gold Nanodecahedra with Size Control. Advanced Materials, 2006, 18, 2529-2534.	21.0	365
27	Mapping the Plasmon Resonances of Metallic Nanoantennas. Nano Letters, 2008, 8, 631-636.	9.1	354
28	Quantum Plexcitonics: Strongly Interacting Plasmons and Excitons. Nano Letters, 2011, 11, 2318-2323.	9.1	354
29	Seeded Growth of Submicron Au Colloids with Quadrupole Plasmon Resonance Modes. Langmuir, 2006, 22, 7007-7010.	3.5	349
30	Nano-optical Trapping of Rayleigh Particles and <i>Escherichia coli</i> Bacteria with Resonant Optical Antennas. Nano Letters, 2009, 9, 3387-3391.	9.1	326
31	Probing Bright and Dark Surface-Plasmon Modes in Individual and Coupled Noble Metal Nanoparticles Using an Electron Beam. Nano Letters, 2009, 9, 399-404.	9.1	321
32	Probing the Photonic Local Density of States with Electron Energy Loss Spectroscopy. Physical Review Letters, 2008, 100, 106804.	7.8	300
33	Light Concentration at the Nanometer Scale. Journal of Physical Chemistry Letters, 2010, 1, 2428-2434.	4. 6	290
34	Relativistic Electron Energy Loss and Electron-Induced Photon Emission in Inhomogeneous Dielectrics. Physical Review Letters, 1998, 80, 5180-5183.	7.8	284
35	Quantum Finite-Size Effects in Graphene Plasmons. ACS Nano, 2012, 6, 1766-1775.	14.6	280
36	Spatial Nonlocality in the Optical Response of Metal Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 19470-19475.	3.1	264

#	Article	IF	CITATIONS
37	Three-Dimensional Plasmonic Chiral Tetramers Assembled by DNA Origami. Nano Letters, 2013, 13, 2128-2133.	9.1	254
38	Anisotropic Metamaterials for Full Control of Acoustic Waves. Physical Review Letters, 2012, 108, 124301.	7.8	230
39	Surface Enhanced Raman Scattering Using Star-Shaped Gold Colloidal Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 7336-7340.	3.1	224
40	Electromagnetic Surface Modes in Structured Perfect-Conductor Surfaces. Physical Review Letters, 2005, 95, 233901.	7.8	205
41	Universal Distance-Scaling of Nonradiative Energy Transfer to Graphene. Nano Letters, 2013, 13, 2030-2035.	9.1	197
42	Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate. Physical Review B, 2010, 82, .	3.2	193
43	Electron-beam spectroscopy for nanophotonics. Nature Materials, 2019, 18, 1158-1171.	27.5	193
44	Ultrasmall Mode Volume Plasmonic Nanodisk Resonators. Nano Letters, 2010, 10, 1537-1541.	9.1	190
45	Multiphoton Absorption and Emission by Interaction of Swift Electrons with Evanescent Light Fields. Nano Letters, 2010, 10, 1859-1863.	9.1	184
46	Understanding Plasmons in Nanoscale Voids. Nano Letters, 2007, 7, 2094-2100.	9.1	182
47	Tunable plasmons in ultrathin metal films. Nature Photonics, 2019, 13, 328-333.	31.4	181
48	Semimetals for high-performance photodetection. Nature Materials, 2020, 19, 830-837.	27.5	181
49	Photon emission from silver particles induced by a high-energy electron beam. Physical Review B, 2001, 64, .	3.2	180
50	Focusing of light by a nanohole array. Applied Physics Letters, 2007, 90, 091119.	3.3	176
51	Single-Photon Nonlinear Optics with Graphene Plasmons. Physical Review Letters, 2013, 111, 247401.	7.8	172
52	Multiple scattering of electrons in solids and molecules: A cluster-model approach. Physical Review B, 2001, 63, .	3.2	159
53	Organized Plasmonic Clusters with High Coordination Number and Extraordinary Enhancement in Surfaceâ€Enhanced Raman Scattering (SERS). Angewandte Chemie - International Edition, 2012, 51, 12688-12693.	13.8	154
54	Gas identification with graphene plasmons. Nature Communications, 2019, 10, 1131.	12.8	154

#	Article	IF	CITATIONS
55	Light transmission through a single cylindrical hole in a metallic film. Optics Express, 2002, 10, 1475.	3.4	152
56	Nanohole Plasmons in Optically Thin Gold Films. Journal of Physical Chemistry C, 2007, 111, 1207-1212.	3.1	151
57	Light Well: A Tunable Free-Electron Light Source on a Chip. Physical Review Letters, 2009, 103, 113901.	7.8	151
58	Pronounced Linewidth Narrowing of an Aluminum Nanoparticle Plasmon Resonance by Interaction with an Aluminum Metallic Film. Nano Letters, 2015, 15, 6946-6951.	9.1	149
59	Electrically tunable nonlinear plasmonics in graphene nanoislands. Nature Communications, 2014, 5, 5725.	12.8	143
60	Unveiling Nanometer Scale Extinction and Scattering Phenomena through Combined Electron Energy Loss Spectroscopy and Cathodoluminescence Measurements. Nano Letters, 2015, 15, 1229-1237.	9.1	143
61	Double-layer graphene for enhanced tunable infrared plasmonics. Light: Science and Applications, 2017, 6, e16277-e16277.	16.6	143
62	Plasmon-Based Nanolenses Assembled on a Well-Defined DNA Template. Journal of the American Chemical Society, 2008, 130, 2750-2751.	13.7	139
63	Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study. Nano Letters, 2012, 12, 4172-4180.	9.1	139
64	Universal analytical modeling of plasmonic nanoparticles. Chemical Society Reviews, 2017, 46, 6710-6724.	38.1	137
65	Multiple scattering of radiation in clusters of dielectrics. Physical Review B, 1999, 60, 6086-6102.	3.2	136
66	Attosecond coherent control of free-electron wave functions using semi-infinite light fields. Nature Communications, 2018, 9, 2694.	12.8	136
67	Optimization of Nanoparticle-Based SERS Substrates through Large-Scale Realistic Simulations. ACS Photonics, 2017, 4, 329-337.	6.6	135
68	Full transmission through perfect-conductor subwavelength hole arrays. Physical Review E, 2005, 72, 016608.	2.1	134
69	Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence. Physical Review B, 2009, 79, .	3.2	132
70	Toward Ultimate Nanoplasmonics Modeling. ACS Nano, 2014, 8, 7559-7570.	14.6	132
71	Numerical simulation of electron energy loss near inhomogeneous dielectrics. Physical Review B, 1997, 56, 15873-15884.	3.2	130
72	Graphene Nanophotonics. Science, 2013, 339, 917-918.	12.6	129

#	Article	IF	CITATIONS
73	Hot-Electron Dynamics and Thermalization in Small Metallic Nanoparticles. ACS Photonics, 2016, 3, 1637-1646.	6.6	129
74	Plasmon-assisted high-harmonic generation in graphene. Nature Communications, 2017, 8, 14380.	12.8	128
75	Theory of graphene saturable absorption. Physical Review B, 2017, 95, .	3 . 2	128
76	Three-dimensional optical manipulation of a single electron spin. Nature Nanotechnology, 2013, 8, 175-179.	31.5	127
77	Tunable plasmons in atomically thin gold nanodisks. Nature Communications, 2014, 5, 3548.	12.8	127
78	Circular Dichroism inK-Shell Ionization from Fixed-in-Space CO and N2Molecules. Physical Review Letters, 2002, 88, 073002.	7.8	126
79	Gap and Mie Plasmons in Individual Silver Nanospheres near a Silver Surface. Nano Letters, 2011, 11, 91-95.	9.1	126
80	Relativistic energy loss and induced photon emission in the interaction of a dielectric sphere with an external electron beam. Physical Review B, 1999, 59, 3095-3107.	3.2	125
81	Extraordinary Sound Screening in Perforated Plates. Physical Review Letters, 2008, 101, 084302.	7.8	125
82	Nanomaterialâ€Based Plasmonâ€Enhanced Infrared Spectroscopy. Advanced Materials, 2018, 30, e1704896.	21.0	124
83	Wake potential in the vicinity of a surface. Physical Review B, 1992, 46, 2663-2675.	3. 2	122
84	Controlled Living Nanowire Growth: Precise Control over the Morphology and Optical Properties of AgAuAg Bimetallic Nanowires. Nano Letters, 2015, 15, 5427-5437.	9.1	122
85	Optical Properties of Platinum-Coated Gold Nanorods. Journal of Physical Chemistry C, 2007, 111, 6183-6188.	3.1	121
86	The magnetic response of graphene split-ring metamaterials. Light: Science and Applications, 2013, 2, e78-e78.	16.6	121
87	Strong Plasmon Reflection at Nanometer-Size Gaps in Monolayer Graphene on SiC. Nano Letters, 2013, 13, 6210-6215.	9.1	121
88	Nanoscopic Ultrafast Space-Time-Resolved Spectroscopy. Physical Review Letters, 2005, 95, 093901.	7.8	120
89	Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields. Nature Materials, 2019, 18, 573-579.	27.5	120
90	Efficient electrical detection of mid-infrared graphene plasmons at room temperature. Nature Materials, 2018, 17, 986-992.	27.5	119

#	Article	IF	CITATIONS
91	Optical super-resolution through super-oscillations. Journal of Optics, 2007, 9, S285-S288.	1.5	116
92	Modeling the Optical Response of Highly Faceted Metal Nanoparticles with a Fully 3D Boundary Element Method. Advanced Materials, 2008, 20, 4288-4293.	21.0	116
93	Electron Confinement in Surface States on a Stepped Gold Surface Revealed by Angle-Resolved Photoemission. Physical Review Letters, 2001, 87, 107601.	7.8	115
94	Spontaneous light emission in complex nanostructures. Physical Review B, 2004, 69, .	3.2	115
95	The plasmon Talbot effect. Optics Express, 2007, 15, 9692.	3.4	115
96	Convergence and reliability of the Rehr-Albers formalism in multiple-scattering calculations of photoelectron diffraction. Physical Review B, 1998, 58, 13121-13131.	3.2	114
97	Electron energy-gain spectroscopy. New Journal of Physics, 2008, 10, 073035.	2.9	112
98	Rotational Quantum Friction. Physical Review Letters, 2012, 109, 123604.	7.8	112
99	K-shell photoionization of CO and N2: is there a link between the photoelectron angular distribution and the molecular decay dynamics?. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, 3669-3678.	1.5	111
100	Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy. Science Advances, 2019, 5, eaav8965.	10.3	111
101	Multi-Atom Resonant Photoemission: A Method for Determining Near-Neighbor Atomic Identities and Bonding., 1998, 281, 679-683.		110
102	Ultrafast nonlinear optical response of Dirac fermions in graphene. Nature Communications, 2018, 9, 1018.	12.8	110
103	Ultrafast radiative heat transfer. Nature Communications, 2017, 8, 2.	12.8	108
104	Tunneling Mechanism of Light Transmission through Metallic Films. Physical Review Letters, 2005, 95, 067403.	7.8	107
105	Environmental Optical Sensitivity of Gold Nanodecahedra. Advanced Functional Materials, 2007, 17, 1443-1450.	14.9	106
106	Influence of the tip in near-field imaging of nanoparticle plasmonic modes: Weak and strong coupling regimes. Physical Review B, 2009, 79, .	3.2	104
107	Substrate-enhanced infrared near-field spectroscopy. Optics Express, 2008, 16, 1529.	3.4	103
108	Robust Plasmon Waveguides in Strongly Interacting Nanowire Arrays. Nano Letters, 2009, 9, 1285-1289.	9.1	103

#	Article	IF	Citations
109	Two-Dimensional Quasistatic Stationary Short Range Surface Plasmons in Flat Nanoprisms. Nano Letters, 2010, 10, 902-907.	9.1	103
110	Tunable Molecular Plasmons in Polycyclic Aromatic Hydrocarbons. ACS Nano, 2013, 7, 3635-3643.	14.6	101
111	Mapping plasmons in nanoantennas via cathodoluminescence. New Journal of Physics, 2008, 10, 105009.	2.9	100
112	Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling. Applied Physics Letters, 2008, 92, .	3.3	99
113	Electrical control of optical emitter relaxation pathways enabled by graphene. Nature Physics, 2015, 11, 281-287.	16.7	99
114	3D plasmonic chiral colloids. Nanoscale, 2014, 6, 2077.	5.6	98
115	The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres. Journal of Physical Chemistry C, 2007, 111, 13361-13366.	3.1	96
116	Molecular Sensing with Tunable Graphene Plasmons. ACS Photonics, 2015, 2, 876-882.	6.6	96
117	Vacuum Friction in Rotating Particles. Physical Review Letters, 2010, 105, 113601.	7.8	93
118	Interaction of Radiation and Fast Electrons with Clusters of Dielectrics: A Multiple Scattering Approach. Physical Review Letters, 1999, 82, 2776-2779.	7.8	92
119	Chemical speciation of heavy metals by surface-enhanced Raman scattering spectroscopy: identification and quantification of inorganic- and methyl-mercury in water. Nanoscale, 2014, 6, 8368-8375.	5.6	92
120	Optical harmonic generation in monolayer group-VI transition metal dichalcogenides. Physical Review B, 2018, 98, .	3.2	92
121	Multiple Excitation of Confined Graphene Plasmons by Single Free Electrons. ACS Nano, 2013, 7, 11409-11419.	14.6	91
122	Surface Plasmon Dependence on the Electron Density Profile at Metal Surfaces. ACS Nano, 2014, 8, 9558-9566.	14.6	90
123	Probing quantum optical excitations with fast electrons. Optica, 2019, 6, 1524.	9.3	89
124	Quantum Effects in the Nonlinear Response of Graphene Plasmons. ACS Nano, 2016, 10, 1995-2003.	14.6	88
125	Back to Normal: An Old Physics Route to Reduce SARS-CoV-2 Transmission in Indoor Spaces. ACS Nano, 2020, 14, 7704-7713.	14.6	88
126	Optical Field Enhancement by Strong Plasmon Interaction in Graphene Nanostructures. Physical Review Letters, 2013, 110, 187401.	7.8	86

#	Article	IF	Citations
127	Plasmonics in Atomically Thin Crystalline Silver Films. ACS Nano, 2019, 13, 7771-7779.	14.6	86
128	Optical Excitations with Electron Beams: ChallengesÂandÂOpportunities. ACS Photonics, 2021, 8, 945-974.	6.6	85
129	Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering. Physical Review B, 2007, 76, .	3.2	84
130	Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nature Materials, 2021, 20, 43-48.	27.5	84
131	Radiative decay of plasmons in a metallic nanoshell. Physical Review B, 2004, 69, .	3.2	83
132	Site and lattice resonances in metallic hole arrays. Optics Express, 2006, 14, 7.	3.4	83
133	Void plasmons and total absorption of light in nanoporous metallic films. Physical Review B, 2005, 71, .	3.2	82
134	Modal Decomposition of Surfaceâ^'Plasmon Whispering Gallery Resonators. Nano Letters, 2009, 9, 3147-3150.	9.1	80
135	Molecular Plasmonics. Nano Letters, 2015, 15, 6208-6214.	9.1	80
136	Spectral Imaging of Individual Split-Ring Resonators. Physical Review Letters, 2010, 105, 255501.	7.8	79
137	Dichroism in the Interaction between Vortex Electron Beams, Plasmons, and Molecules. Physical Review Letters, 2014, 113, 066102.	7.8	79
138	Lateral quantum wells at vicinal $Au(111)$ studied with angle-resolved photoemission. Physical Review B, 2002, 66, .	3.2	78
139	Dichotomous Array of Chiral Quantum Corrals by a Self-Assembled Nanoporous Kagomé Network. Nano Letters, 2009, 9, 3509-3514.	9.1	78
140	Direct evidence for ferroelectric polar distortion in ultrathin lead titanate perovskite films. Physical Review B, 2006, 73, .	3.2	75
141	Angle-Dependent Ultrasonic Transmission through Plates with Subwavelength Hole Arrays. Physical Review Letters, 2009, 102, 144301.	7.8	74
142	Broadband Purcell enhancement in plasmonic ring cavities. Physical Review B, 2010, 82, .	3.2	74
143	Dynamic screening of ions in solids. Nuclear Instruments & Methods in Physics Research B, 1995, 96, 583-603.	1.4	72
144	Alternating Plasmonic Nanoparticle Heterochains Made by Polymerase Chain Reaction and Their Optical Properties. Journal of Physical Chemistry Letters, 2013, 4, 641-647.	4.6	72

#	Article	IF	CITATIONS
145	Plasmon–Phonon Interactions in Topological Insulator Microrings. Advanced Optical Materials, 2015, 3, 1257-1263.	7.3	72
146	How To Identify Plasmons from the Optical Response of Nanostructures. ACS Nano, 2017, 11, 7321-7335.	14.6	72
147	Cherenkov Effect as a Probe of Photonic Nanostructures. Physical Review Letters, 2003, 91, 143902.	7.8	71
148	Spectroscopy, Imaging, and Modeling of Individual Gold Decahedra. Journal of Physical Chemistry C, 2009, 113, 18623-18631.	3.1	71
149	Tunable Quantum Dot Arrays Formed from Self-Assembled Metal-Organic Networks. Physical Review Letters, 2011, 106, 026802.	7.8	71
150	Resonant Visible Light Modulation with Graphene. ACS Photonics, 2015, 2, 550-558.	6.6	71
151	Plasmons in electrostatically doped graphene. Applied Physics Letters, 2012, 100, .	3.3	70
152	meV Resolution in Laser-Assisted Energy-Filtered Transmission Electron Microscopy. ACS Photonics, 2018, 5, 759-764.	6.6	70
153	Microphotonic parabolic light directors fabricated by two-photon lithography. Applied Physics Letters, 2011, 99, .	3.3	69
154	Plasmon Scattering from Single Subwavelength Holes. Physical Review Letters, 2012, 108, 127402.	7.8	69
155	Lateral Casimir Force on a Rotating Particle near a Planar Surface. Physical Review Letters, 2017, 118, 133605.	7.8	69
156	Efficient Generation of Propagating Plasmons by Electron Beams. Nano Letters, 2009, 9, 1176-1181.	9.1	68
157	Plasmonic Modes of Annular Nanoresonators Imaged by Spectrally Resolved Cathodoluminescence. Nano Letters, 2007, 7, 3612-3617.	9.1	67
158	Ultrafast and Broadband Tuning of Resonant Optical Nanostructures Using Phaseâ€Change Materials. Advanced Optical Materials, 2016, 4, 1060-1066.	7.3	67
159	Structural Coloring of Glass Using Dewetted Nanoparticles and Ultrathin Films of Metals. ACS Photonics, 2016, 3, 1194-1201.	6.6	67
160	Analytic coherent control of plasmon propagation in nanostructures. Optics Express, 2009, 17, 14235.	3.4	66
161	Topologically protected Dirac plasmons in a graphene superlattice. Nature Communications, 2017, 8, 1243.	12.8	66
162	Multiatom resonant photoemission. Physical Review B, 2001, 63, .	3.2	64

#	Article	IF	CITATIONS
163	Phonon-Mediated Mid-Infrared Photoresponse of Graphene. Nano Letters, 2014, 14, 6374-6381.	9.1	64
164	Plasmon-Enhanced Nonlinear Wave Mixing in Nanostructured Graphene. ACS Photonics, 2015, 2, 306-312.	6.6	64
165	Radiative heat transfer between neighboring particles. Physical Review B, 2012, 86, .	3.2	60
166	Plasmon Blockade in Nanostructured Graphene. ACS Nano, 2012, 6, 1724-1731.	14.6	60
167	Nonlinear Plasmonic Sensing with Nanographene. Physical Review Letters, 2016, 117, 123904.	7.8	60
168	Ultrasensitive multiplex optical quantification of bacteria in large samples of biofluids. Scientific Reports, 2016, 6, 29014.	3.3	59
169	Imaging and controlling plasmonic interference fields at buried interfaces. Nature Communications, 2016, 7, 13156.	12.8	58
170	Holographic imaging of electromagnetic fields via electron-light quantum interference. Science Advances, 2019, 5, eaav8358.	10.3	58
171	How grooves reflect and confine surface†plasmon polaritons. Optics Express, 2009, 17, 10385.	3.4	54
172	Analytical Modeling of Graphene Plasmons. ACS Photonics, 2017, 4, 3106-3114.	6.6	54
173	Plasmon-Enhanced Optical Chirality through Hotspot Formation in Surfactant-Directed Self-Assembly of Gold Nanorods. ACS Nano, 2020, 14, 16712-16722.	14.6	53
174	Electrically driven photon emission from individual atomic defects in monolayer WS ₂ . Science Advances, 2020, 6, .	10.3	53
175	From Nano to Micro: Synthesis and Optical Properties of Homogeneous Spheroidal Gold Particles and Their Superlattices. Langmuir, 2012, 28, 8909-8914.	3.5	52
176	Nonlinear Graphene Nanoplasmonics. Accounts of Chemical Research, 2019, 52, 2536-2547.	15.6	52
177	Quantum computing with graphene plasmons. Npj Quantum Information, 2019, 5, .	6.7	51
178	Optical coherence transfer mediated by free electrons. Science Advances, 2021, 7, .	10.3	51
179	Surface wake in the random-phase approximation. Physical Review B, 1993, 48, 13399-13407.	3.2	50
180	Ultrafast adaptive optical near-field control. Physical Review B, 2006, 73, .	3.2	50

#	Article	IF	CITATIONS
181	Extraordinary Absorption of Decorated Undoped Graphene. Physical Review Letters, 2014, 112, 077401.	7.8	50
182	Extraordinary absorption of sound in porous lamella-crystals. Scientific Reports, 2015, 4, 4674.	3.3	50
183	Plasmon tunability in metallodielectric metamaterials. Physical Review B, 2005, 71, .	3.2	49
184	Deterministic Optical-Near-Field-Assisted Positioning of Nitrogen-Vacancy Centers. Nano Letters, 2014, 14, 1520-1525.	9.1	49
185	High-energy photoelectron diffraction: model calculations and future possibilities. New Journal of Physics, 2008, 10, 113002.	2.9	48
186	Thermal and vacuum friction acting on rotating particles. Physical Review A, 2010, 82, .	2.5	48
187	Quantum nonlocal effects in individual and interacting graphene nanoribbons. Light: Science and Applications, 2015, 4, e241-e241.	16.6	48
188	Tunable free-electron X-ray radiation from van der Waals materials. Nature Photonics, 2020, 14, 686-692.	31.4	48
189	Boundary effects in Cherenkov radiation. Physical Review B, 2004, 69, .	3.2	47
190	An optical fiber network oracle for NP-complete problems. Light: Science and Applications, 2014, 3, e147-e147.	16.6	47
191	Ultraefficient Coupling of a Quantum Emitter to the Tunable Guided Plasmons of a Carbon Nanotube. Physical Review Letters, 2015, 115, 173601.	7.8	47
192	Second-order quantum nonlinear optical processes in single graphene nanostructures and arrays. New Journal of Physics, 2015, 17, 083031.	2.9	47
193	Giant enhancement of third-harmonic generation in graphene–metal heterostructures. Nature Nanotechnology, 2021, 16, 318-324.	31.5	47
194	Nanoring formation by direct-write inorganic electron-beam lithography. Applied Physics Letters, 2003, 83, 551-553.	3.3	46
195	Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons. Optics Express, 2006, 14, 1965.	3.4	45
196	Electron diffraction by plasmon waves. Physical Review B, 2016, 94, .	3.2	45
197	Multiatom Resonant Photoemission: Theory and Systematics. Physical Review Letters, 1999, 82, 4126-4129.	7.8	43
198	Plasmon electron energy-gain spectroscopy. New Journal of Physics, 2013, 15, 103021.	2.9	43

#	Article	IF	CITATIONS
199	Can Copper Nanostructures Sustain High-Quality Plasmons?. Nano Letters, 2021, 21, 2444-2452.	9.1	43
200	Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials. Physical Review B, 2005, 71, .	3.2	42
201	Self-organization approach for THz polaritonic metamaterials. Optics Express, 2012, 20, 14663.	3.4	42
202	Controlled Interaction of Surface Quantum-Well Electronic States. Nano Letters, 2013, 13, 6130-6135.	9.1	42
203	Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas. Scientific Reports, 2016, 6, 32144.	3.3	42
204	Intrinsic Plasmon–Phonon Interactions in Highly Doped Graphene: AÂNear-Field Imaging Study. Nano Letters, 2017, 17, 5908-5913.	9.1	42
205	Plasmons driven by single electrons in graphene nanoislands. Nanophotonics, 2013, 2, 139-151.	6.0	41
206	Graphene-Based Active Random Metamaterials for Cavity-Free Lasing. Physical Review Letters, 2016, 116, 217401.	7.8	41
207	Plasmon Generation through Electron Tunneling in Graphene. ACS Photonics, 2017, 4, 2367-2375.	6.6	41
208	Imaging the Renner–Teller effect using laser-induced electron diffraction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8173-8177.	7.1	41
209	Room Temperature Graphene Mid-Infrared Bolometer with a Broad Operational Wavelength Range. ACS Photonics, 2020, 7, 1206-1215.	6.6	41
210	Optically Tunable Surfaces with Trapped Particles in Microcavities. Physical Review Letters, 2008, 101, 136802.	7.8	40
211	Enhancing the Radiative Rate in Illâ°'V Semiconductor Plasmonic Coreâ°Shell Nanowire Resonators. Nano Letters, 2011, 11, 372-376.	9.1	40
212	Spontaneous and stimulated electron–photon interactions in nanoscale plasmonic near fields. Light: Science and Applications, 2021, 10, 82.	16.6	40
213	Dispersion of metal-insulator-metal plasmon polaritons probed by cathodoluminescence imaging spectroscopy. Physical Review B, 2009, 80, .	3.2	39
214	Enhanced microwave transmission through quasicrystal hole arrays. Applied Physics Letters, 2007, 91, 081503.	3.3	38
215	Plasmon guided modes in nanoparticle metamaterials. Optics Express, 2008, 16, 4499.	3.4	38
216	Transmitting Hertzian Optical Nanoantenna with Free-Electron Feed. Nano Letters, 2010, 10, 3250-3252.	9.1	38

#	Article	IF	CITATIONS
217	Plasmonics in atomically thin materials. Faraday Discussions, 2015, 178, 87-107.	3.2	38
218	Energy loss of MeV protons specularly reflected from metal surfaces. Physical Review B, 1996, 53, 13839-13850.	3.2	37
219	Inelastic scattering of fast electrons in nanowires: A dielectric formalism approach. Physical Review B, 2001, 64, .	3.2	37
220	Plasmons go quantum. Nature, 2012, 483, 417-418.	27.8	37
221	Continuous-wave multiphoton photoemission from plasmonic nanostars. Communications Physics, 2018, 1, .	5.3	37
222	Single-Photon Generation by Electron Beams. Nano Letters, 2011, 11, 5099-5103.	9.1	36
223	Amplification of the Evanescent Field of Free Electrons. ACS Photonics, 2015, 2, 1236-1240.	6.6	36
224	Stimulated electron energy loss and gain in an electron microscope without a pulsed electron gun. Ultramicroscopy, 2019, 203, 44-51.	1.9	36
225	Tailored Nanoscale Plasmon-Enhanced Vibrational Electron Spectroscopy. Nano Letters, 2020, 20, 2973-2979.	9.1	36
226	Resonant Coherent Excitation of Fast Hydrogen Atoms in Front of a LiF(001) Surface. Physical Review Letters, 1997, 79, 4477-4480.	7.8	35
227	Low-loss terahertz superconducting plasmonics. New Journal of Physics, 2012, 14, 115006.	2.9	35
228	Efficient orbital angular momentum transfer between plasmons and free electrons. Physical Review B, 2018, 98, .	3.2	35
229	Thermal manipulation of plasmons in atomically thin films. Light: Science and Applications, 2020, 9, 87.	16.6	35
230	Quantum effects in the acoustic plasmons of atomically thin heterostructures. Optica, 2019, 6, 630.	9.3	35
231	Imprinting the Optical Near Field of Microstructures with Nanometer Resolution. Small, 2009, 5, 1825-1829.	10.0	34
232	Spatially resolved measurements of plasmonic eigenstates in complex-shaped, asymmetric nanoparticles: gold nanostars. EPJ Applied Physics, 2011, 54, 33512.	0.7	34
233	Dynamic screening of fast ions moving in solids. Physical Review B, 1998, 57, 9329-9335.	3.2	33
234	Electron promotion in collisions of protons with a LiF surface. Physical Review B, 1999, 59, 10950-10958.	3.2	33

#	Article	IF	CITATIONS
235	Influence of lattice symmetry on ultrasound transmission through plates with subwavelength aperture arrays. Applied Physics Letters, 2009, 95, .	3.3	33
236	Symmetry breaking and gap opening in two-dimensional hexagonal lattices. New Journal of Physics, 2011, 13, 013026.	2.9	33
237	The Planar Parabolic Optical Antenna. Nano Letters, 2013, 13, 188-193.	9.1	33
238	Valence-electron energy loss near edges, truncated slabs, and junctions. Physical Review B, 1999, 60, 11149-11162.	3.2	32
239	Kinetics and atomic structure of O adsorption on W(110) from time- and state-resolved photoelectron spectroscopy and full-solid-angle photoelectron diffraction. Surface Science, 2000, 459, 69-92.	1.9	32
240	Smith-Purcell radiation emission in aligned nanoparticles. Physical Review E, 2000, 61, 5743-5752.	2.1	32
241	Light scattering in gold nanorings. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 89, 11-16.	2.3	32
242	Surface Plasmon Mapping of Dumbbell-Shaped Gold Nanorods: The Effect of Silver Coating. Langmuir, 2012, 28, 9063-9070.	3.5	32
243	Magnetic and electric response of single subwavelength holes. Physical Review B, 2013, 88, .	3.2	32
244	Plasmonic Nano-Oven by Concatenation of Multishell Photothermal Enhancement. ACS Nano, 2017, 11, 7915-7924.	14.6	32
245	Electron Beam Aberration Correction Using Optical Near Fields. Physical Review Letters, 2020, 125, 030801.	7.8	32
246	Optical Modulation of Electron Beams in Free Space. Physical Review Letters, 2021, 126, 123901.	7.8	32
247	Free-electron shaping using quantum light. Optica, 2020, 7, 1820.	9.3	32
248	Tunable Planar Focusing Based on Hyperbolic Phonon Polaritons in αâ€MoO ₃ . Advanced Materials, 2022, 34, e2105590.	21.0	32
249	Momentum transfer to small particles by passing electron beams. Physical Review B, 2004, 70, .	3.2	31
250	Fast optical modulation of the fluorescence from a single nitrogen–vacancy centre. Nature Physics, 2013, 9, 785-789.	16.7	31
251	Active control of micrometer plasmon propagation in suspended graphene. Nature Communications, 2022, 13, 1465.	12.8	31
252	Measurement of electron wave functions and confining potentials via photoemission. Physical Review B, 2003, 67, .	3.2	30

#	Article	IF	CITATIONS
253	Extraordinary All-Dielectric Light Enhancement over Large Volumes. Nano Letters, 2010, 10, 4450-4455.	9.1	30
254	Hybrid plasmonic nanoresonators as efficient solar heat shields. Nano Energy, 2017, 37, 118-125.	16.0	30
255	Influence of the hole filling fraction on the ultrasonic transmission through plates with subwavelength aperture arrays. Applied Physics Letters, 2008, 93, .	3.3	29
256	Interference of surface plasmons and Smith-Purcell emission probed by angle-resolved cathodoluminescence spectroscopy. Physical Review B, 2015, 91, .	3.2	29
257	Chiral Light Emission from a Sphere Revealed by Nanoscale Relative-Phase Mapping. ACS Nano, 2021, 15, 2219-2228.	14.6	29
258	Efficient generation of extreme terahertz harmonics in three-dimensional Dirac semimetals. Physical Review Research, 2020, 2, .	3.6	29
259	Confined collective excitations of self-standing and supported planar periodic particle arrays. Optics Express, 2009, 17, 18826.	3.4	28
260	Sound transmission through perforated plates with subwavelength hole arrays: A rigid-solid model. Wave Motion, 2011, 48, 235-242.	2.0	28
261	Engineering surface waves in flat phononic plates. Physical Review B, 2012, 85, .	3.2	28
262	Cathodoluminescence Phase Extraction of the Coupling between Nanoparticles and Surface Plasmon Polaritons. Nano Letters, 2020, 20, 592-598.	9.1	28
263	Modulation of Cathodoluminescence Emission by Interference with External Light. ACS Nano, 2021, 15, 7290-7304.	14.6	28
264	Optical response of noble metal nanostructures: quantum surface effects in crystallographic facets. Optica, 2021, 8, 710.	9.3	28
265	Diacritical study of light, electrons and sound scattering by particles and holes. New Journal of Physics, 2009, 11, 093013.	2.9	27
266	Lateral engineering of surface states – towards surface-state nanoelectronics. Nanoscale, 2010, 2, 717.	5.6	27
267	Manipulating chemistry through nanoparticle morphology. Nanoscale Horizons, 2020, 5, 102-108.	8.0	27
268	Electron emission induced by resonant coherent ion-surface interaction at grazing incidence. Physical Review Letters, 1992, 69, 2364-2367.	7.8	26
269	Photoelectron diffraction study of theSi-rich3Câ^'SiC(001)â€"(3×2)structure. Physical Review B, 2004, 70,	3.2	26
270	Spontaneous emission enhancement near nanoparticles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 89, 37-42.	2.3	26

#	Article	IF	CITATIONS
271	Size effects in angle-resolved photoelectron spectroscopy of free rare-gas clusters. Physical Review A, 2007, 75, .	2.5	26
272	Interacting plasmon and phonon polaritons in aligned nano- and microwires. Optics Express, 2012, 20, 10879.	3.4	26
273	Effect of Ag nanoparticles integrated within antireflection coatings for solar cells. Journal of Renewable and Sustainable Energy, 2013, 5, 033116.	2.0	26
274	Electromagnetic forces and torques in nanoparticles irradiated by plane waves. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 89, 3-9.	2.3	25
275	Coupling of gap plasmons in multi-wire waveguides. Optics Express, 2009, 17, 19401.	3.4	25
276	Anisotropy and particle-size effects in nanostructured plasmonic metamaterials. Optics Express, 2009, 17, 22012.	3.4	25
277	Plasmonic energy transfer in periodically doped graphene. New Journal of Physics, 2013, 15, 033042.	2.9	25
278	Ultimate Limit of Light Extinction by Nanophotonic Structures. Nano Letters, 2015, 15, 7633-7638.	9.1	25
279	Electron energy loss and induced photon emission in photonic crystals. Physical Review B, 2003, 67, .	3.2	23
280	Imaging optical near fields at metallic nanoscale voids. Physical Review B, 2008, 78, .	3.2	23
281	Surface exciton polaritons in individual Au nanoparticles in the far-ultraviolet spectral regime. Physical Review B, 2008, 77, .	3.2	23
282	Temporal quantum control with graphene. New Journal of Physics, 2012, 14, 123020.	2.9	23
283	Plasmon wave function of graphene nanoribbons. New Journal of Physics, 2015, 17, 083013.	2.9	23
284	Fundamental Limits to the Coupling between Light and 2D Polaritons by Small Scatterers. ACS Nano, 2019, 13, 5184-5197.	14.6	23
285	Probing Chirality with Inelastic Electron-Light Scattering. Nano Letters, 2020, 20, 4377-4383.	9.1	23
286	Contribution of charge-transfer processes to ion-induced electron emission. Physical Review B, 1996, 54, 17158-17165.	3.2	22
287	Electron emission in slow collisions of protons with a LiF-surface. Nuclear Instruments & Methods in Physics Research B, 1997, 125, 67-70.	1.4	22
288	Mie plasmon enhanced diffraction of light from nanoporous metal surfaces. Optics Express, 2006, 14, 11964.	3.4	22

#	Article	IF	CITATIONS
289	Strong terahertz absorption bands in a scaled plasmonic crystal. Applied Physics Letters, 2007, 90, 251910.	3.3	22
290	Nonlocal plasmonic response of doped and optically pumped graphene, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2<td>l:ma.≥<td>ml:เช2ub></td></td></mml:mn></mml:msub></mml:math>	l:m a. ≥ <td>ml:เช2ub></td>	ml:เ ช 2ub>
291	Unveiling and Imaging Degenerate States in Plasmonic Nanoparticles with Nanometer Resolution. ACS Nano, 2018, 12, 8436-8446.	14.6	22
292	Photothermal Engineering of Graphene Plasmons. Physical Review Letters, 2018, 121, 057404.	7.8	22
293	Ultrafast electron energy-loss spectroscopy in transmission electron microscopy. MRS Bulletin, 2018, 43, 497-503.	3.5	22
294	Single-Plasmon Thermo-Optical Switching in Graphene. Nano Letters, 2019, 19, 3743-3750.	9.1	22
295	Resonant-Coherent Excitation of Channeled Ions. Physical Review Letters, 1996, 76, 1856-1859.	7.8	21
296	Self-organization of frozen light in near-zero-index media with cubic nonlinearity. Scientific Reports, 2016, 6, 20088.	3.3	21
297	Smith-Purcell radiation emission in aperiodic arrays. Physical Review B, 2016, 94, .	3.2	21
298	Analytical description of the nonlinear plasmonic response in nanographene. Physical Review B, 2017, 96, .	3.2	21
299	Gain-Assisted Plasmon Resonance Narrowing and Its Application in Sensing. Physical Review Applied, $2019, 11, \ldots$	3.8	21
300	Ion-induced electron emission in grazing ion-surface collisions. Nuclear Instruments & Methods in Physics Research B, 1993, 79, 15-20.	1.4	20
301	Circular dichroism in core photoelectron emission from $(1\tilde{A}-1)$ oxygen on $W(110)$: experiment and multiple-scattering theory. Journal of Electron Spectroscopy and Related Phenomena, 2000, 106, 7-28.	1.7	20
302	Electron energy loss in carbon nanostructures. Physical Review B, 2003, 67, .	3.2	20
303	Adaptive ultrafast nano-optics in a tight focus. Applied Physics B: Lasers and Optics, 2006, 84, 89-95.	2.2	20
304	Acoustic field enhancement and subwavelength imaging by coupling to slab waveguide modes. Applied Physics Letters, 2010, 97, 164103.	3.3	20
305	Tuneable electron-beam-driven nanoscale light source. Journal of Optics (United Kingdom), 2010, 12, 024012.	2.2	20
306	Optical generation of intense ultrashort magnetic pulses at the nanoscale. New Journal of Physics, 2013, 15, 113035.	2.9	20

#	Article	IF	Citations
307	Molecular Plasmon–Phonon Coupling. Nano Letters, 2016, 16, 6390-6395.	9.1	20
308	Nonlinear Atom-Plasmon Interactions Enabled by Nanostructured Graphene. Physical Review Letters, 2018, 121, 257403.	7.8	20
309	Lasing and Amplification from Two-Dimensional Atom Arrays. Physical Review Letters, 2018, 121, 163602.	7.8	20
310	Wake-potential formation in a thin foil. Physical Review B, 1992, 45, 8771-8774.	3.2	19
311	Electron energy loss spectroscopy as a probe of two-dimensional photonic crystals. Physical Review B, 2003, 68, .	3.2	19
312	Ultraviolet optical near-fields of microspheres imprinted in phase change films. Applied Physics Letters, 2010, 96, 193108.	3.3	19
313	Contribution of the excitation of conduction band electrons to the kinetic electron emission induced by slow ions in metals. Physical Review B, 1998, 58, 15838-15846.	3.2	18
314	SERS Platforms of Plasmonic Hydrophobic Surfaces for Analyte Concentration: Hierarchically Assembled Gold Nanorods on Anodized Aluminum. Particle and Particle Systems Characterization, 2014, 31, 1134-1140.	2.3	18
315	Plasmons in inhomogeneously doped neutral and charged graphene nanodisks. Applied Physics Letters, 2014, 104, 131103.	3.3	18
316	Nanoscale Nonlinear Spectroscopy with Electron Beams. ACS Photonics, 2020, 7, 1290-1296.	6.6	18
317	Total light absorption in plasmonic nanostructures. Journal of Optics, 2007, 9, S458-S462.	1.5	17
318	Photonic Binding in Silicon-Colloid Microcavities. Physical Review Letters, 2009, 103, 103902.	7.8	17
319	Nanoscale mapping of plasmons, photons, and excitons. MRS Bulletin, 2012, 37, 39-46.	3. 5	17
320	Negative refraction and backward waves in layered acoustic metamaterials. Physical Review B, 2012, 86,	3.2	17
321	Electrical Detection of Single Graphene Plasmons. ACS Nano, 2016, 10, 8045-8053.	14.6	17
322	Multiple scattering theory for non-spherical potentials: application to photoelectron angular distributions from oriented diatomic molecules and the study of shape resonances. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 99-105.	1.7	16
323	Femtosecond shaping of transverse and longitudinal light polarization. Optics Letters, 2004, 29, 2187.	3.3	16
324	Controllable excitation of gap plasmons by electron beams in metallic nanowire pairs. Physical Review B, $2010, 82, .$	3.2	16

#	Article	IF	CITATIONS
325	Looking through the mirror: Optical microcavity-mirror image photonic interaction. Optics Express, 2012, 20, 11247.	3.4	16
326	Theory of random nanoparticle layers in photovoltaic devices applied to self-aggregated metal samples. Solar Energy Materials and Solar Cells, 2013, 109, 294-299.	6.2	16
327	Graphene optical-to-thermal converter. Applied Physics Letters, 2014, 105, .	3.3	16
328	Ultrafast Topological Engineering in Metamaterials. Physical Review Letters, 2020, 125, 037403.	7.8	16
329	Dependence of the stopping power on the surface response function. Nuclear Instruments & Methods in Physics Research B, 1997, 125, 106-109.	1.4	15
330	Near-Field Optical Phase Antennas for Long-Range Plasmon Coupling. Nano Letters, 2008, 8, 2479-2484.	9.1	15
331	Towards Femtojoule Nanoparticle Phase-Change Memory. Japanese Journal of Applied Physics, 2009, 48, 03A065.	1.5	15
332	Lifshitz Transition across the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Ag</mml:mi><mml:mo></mml:mo><mml:mi>Cu</mml:mi><mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mo><mml:mn>111</mml:mn><mml:mo) 0="" 10="" 457="" 50="" etqq0="" overlock="" rgbt="" td="" td<="" tf="" tj=""><td>(stretchy=</td><td>="false">)</td></mml:mo)></mml:mo></mml:mo></mml:math>	(st r etchy=	="f als e">)
333	Review Letters, 2011, 107, 066803. Unveiling the Coupling of Single Metallic Nanoparticles to Whispering-Gallery Microcavities. Nano Letters, 2022, 22, 319-327.	9.1	15
334	The role of surface plasmons in ion-induced kinetic electron emission. Nuclear Instruments & Methods in Physics Research B, 1995, 98, 445-449.	1.4	14
335	Relativistic description of valence energy losses in the interaction of fast electrons with clusters of dielectrics: Multiple-scattering approach. Physical Review B, 1999, 60, 6103-6112.	3.2	14
336	Multi-atom resonant photoemission. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 1179-1189.	1.7	14
337	Angular distributions of electrons photoemitted from core levels of oriented diatomic molecules: multiple scattering theory in non-spherical potentials. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, L359-L365.	1.5	14
338	Total Resonant Absorption of Light by Plasmons on the Nanoporous Surface of a Metal. Physics of the Solid State, 2005, 47, 178.	0.6	14
339	Quantum junction plasmons in graphene dimers. Laser and Photonics Reviews, 2013, 7, 297-302.	8.7	14
340	Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle. Beilstein Journal of Nanotechnology, 2013, 4, 501-509.	2.8	14
341	Femtosecond plasmon and photon wave packets excited by a high-energy electron on a metal or dielectric surface. Physical Review B, 2016, 94, .	3.2	14
342	Transient nonlinear plasmonics in nanostructured graphene. Optica, 2018, 5, 429.	9.3	14

#	Article	IF	CITATIONS
343	Magnetically activated rotational vacuum friction. Physical Review A, 2019, 99, .	2.5	14
344	Revealing Nanoscale Confinement Effects on Hyperbolic Phonon Polaritons with an Electron Beam. Small, 2021, 17, e2103404.	10.0	14
345	Strong-field-driven dynamics and high-harmonic generation in interacting one dimensional systems. Physical Review Research, 2020, 2, .	3.6	14
346	Auger intra-atomic transitions in grazing atom-surface collisions. Physical Review B, 1994, 49, 14589-14598.	3.2	13
347	Quantitative imaging of the optical near field. Optics Express, 2012, 20, 22063.	3.4	13
348	Magnetic polarization in the optical absorption of metallic nanoparticles. Optics Express, 2012, 20, 28142.	3.4	13
349	Surface effects in the energy loss of ions passing through a thin foil. Physical Review A, 1997, 56, 2032-2040.	2.5	12
350	Relativistic effects in EELS of nanoporous alumina membranes. Physical Review B, 2003, 68, .	3.2	12
351	X-ray photoelectron diffraction study of ultrathin PbTiO3 films. European Physical Journal B, 2006, 49, 141-146.	1.5	12
352	X-ray photoelectron diffraction study of $Cu(111)$: Multiple scattering investigation. Surface Science, 2006, 600, 380-385.	1.9	12
353	Near-field focusing with optical phase antennas. Optics Express, 2009, 17, 17801.	3.4	12
354	Excitation of confined modes on particle arrays. Optics Express, 2013, 21, 5636.	3.4	12
355	Near-field nanoimprinting using colloidal monolayers. Optics Express, 2014, 22, 8226.	3.4	12
356	Plasmonics simulations including nonlocal effects using a boundary element method approach. International Journal of Modern Physics B, 2017, 31, 1740007.	2.0	12
357	Enhancement of Nonlinear Optical Phenomena by Localized Resonances. ACS Photonics, 2018, 5, 1521-1527.	6.6	12
358	Circular Dichroism in Rotating Particles. Physical Review Letters, 2019, 123, 066803.	7.8	12
359	Multiple atom resonant photoemission: a new technique for studying near-neighbor atomic identities and bonding. Journal of Electron Spectroscopy and Related Phenomena, 1999, 101-103, 647-652.	1.7	11
360	Development of the scattering theory of X-ray absorption and core level photoemission. Journal of Electron Spectroscopy and Related Phenomena, 2002, 126, 67-76.	1.7	11

#	Article	lF	Citations
361	Resonant-Coherent Excitation of Channeled Ions. Advances in Quantum Chemistry, 2004, , 65-89.	0.8	11
362	Observation and resonant x-ray optical interpretation of multi-atom resonant photoemission effects in O1semission from NiO. Physical Review B, 2006, 74, .	3.2	11
363	Nanoscale force manipulation in the vicinity of a metal nanostructure. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, S249-S258.	1.5	11
364	Collective oscillations in optical matter. Optics Express, 2007, 15, 11082.	3.4	11
365	Nonlinear Interactions between Free Electrons and Nanographenes. Nano Letters, 2020, 20, 4792-4800.	9.1	11
366	Giant All-Optical Modulation of Second-Harmonic Generation Mediated by Dark Excitons. ACS Photonics, 2021, 8, 2320-2328.	6.6	11
367	Electron diffraction by vacuum fluctuations. New Journal of Physics, 2020, 22, 103057.	2.9	11
368	Photoelectron diffraction at the surface of amorphous carbon nitride. Applied Physics Letters, 2000, 77, 3394-3396.	3.3	10
369	Control of spontaneous emission by complex nanostructures. Optics Letters, 2004, 29, 1494.	3.3	10
370	Mapping Surface Plasmons on a Single Mmetallic Nanoparticle using Sub-nm Resolved EELS Spectrum-Imaging. Microscopy and Microanalysis, 2007, 13, .	0.4	10
371	Slow plasmonic slab waveguide as a superlens for visible light. Physical Review B, 2010, 82, .	3.2	10
372	Efficient modal-expansion discrete-dipole approximation: Application to the simulation of optical extinction and electron energy-loss spectroscopies. Physical Review B, 2013, 88, .	3.2	10
373	Phonon excitation by electron beams in nanographenes. Physical Review B, 2015, 92, .	3.2	10
374	Probing Electronic States in Monolayer Semiconductors through Static and Transient Thirdâ€Harmonic Spectroscopies. Advanced Materials, 2022, 34, e2107104.	21.0	10
375	Sub-nanometer mapping of strain-induced band structure variations in planar nanowire core-shell heterostructures. Nature Communications, 2022, 13, .	12.8	10
376	Energy loss in grazing proton-surface collisions. Nuclear Instruments & Methods in Physics Research B, 1994, 90, 252-256.	1.4	9
377	Coherent electron emission from high-energy ions in crystals. Nuclear Instruments & Methods in Physics Research B, 1997, 125, 1-6.	1.4	9
378	Interface and bulk effects in the attenuation of low-energy electrons through CaF2 thin films. Physical Review B, 1998, 58, 2233-2239.	3.2	9

#	Article	IF	CITATIONS
379	Plasmon molecules in overlapping nanovoids. Physical Review B, 2008, 77, .	3.2	9
380	Photons and electrons team up. Nature, 2009, 462, 861-861.	27.8	9
381	Strong Plasmon-Phonon Splitting and Hybridization in 2D Materials Revealed through a Self-Energy Approach. ACS Photonics, 2017, 4, 2908-2915.	6.6	9
382	Special Issue "2D Materials for Nanophotonics― ACS Photonics, 2017, 4, 2959-2961.	6.6	9
383	Graphene: Free electron scattering within an inverted honeycomb lattice. Physical Review B, 2019, 99, .	3.2	9
384	Theory of Atomic-Scale Vibrational Mapping and Isotope Identification with Electron Beams. ACS Nano, 2021, 15, 9890-9899.	14.6	9
385	Atomicallyâ€Precise Texturing of Hexagonal Boron Nitride Nanostripes. Advanced Science, 2021, 8, e2101455.	11.2	9
386	Electron emission induced by resonant coherent interaction in ion-surface scattering at grazing incidence. Physical Review B, 1994, 49, 2832-2845.	3.2	8
387	Nonlinear effects in the kinetic electron emission induced by slow ions in metals. Nuclear Instruments & Methods in Physics Research B, 1998, 135, 487-491.	1.4	8
388	Giant light absorption by plasmons in a nanoporous metal film. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 362-366.	1.8	8
389	Luminescence readout of nanoparticle phase state. Applied Physics Letters, 2008, 92, .	3.3	8
390	Plasmons in doped finite carbon nanotubes and their interactions with fast electrons and quantum emitters. Physical Review B, 2016, 94, .	3.2	8
391	Rotational Doppler cooling and heating. Science Advances, 2021, 7, .	10.3	8
392	Inelastic Mach-Zehnder Interferometry with Free Electrons. Physical Review Letters, 2022, 128, 147401.	7.8	8
393	Impact-parameter dependence of resonant-coherent excitation of channeled ions. Nuclear Instruments & Methods in Physics Research B, 1996, 115, 299-305.	1.4	7
394	Optical Emission from the Interaction of Fast Electrons with Metallic Films Containing a Circular Aperture: A Study of Radiative Decoherence of Fast Electrons. Physical Review Letters, 2009, 102, 237401.	7.8	7
395	Accurate band mapping via photoemission from thin films. Physical Review B, 2004, 69, .	3.2	6
396	Tuneable coupling of surface plasmon-polaritons and Mie plasmons on a planar surface of nanoporous metal. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3912-3915.	0.8	6

#	Article	IF	CITATIONS
397	Stimulated Light Emission and Inelastic Scattering by a Classical Linear System of Rotating Particles. Physical Review Letters, 2011, 106, 213601.	7.8	6
398	Propagation and localization of quantum dot emission along a gap-plasmonic transmission line. Optics Express, 2015, 23, 29296.	3.4	6
399	Anisotropic second-harmonic generation from monocrystalline gold flakes. Optics Letters, 2021, 46, 833.	3.3	6
400	Generation, characterization, and manipulation of quantum correlations in electron beams. Npj Quantum Information, 2021, 7, .	6.7	6
401	Complete coupling of focused light to surface polaritons. Optica, 2021, 8, 520.	9.3	6
402	Theory of electron energy-loss spectroscopy in atomically thin metallic films. Physical Review Research, 2020, 2, .	3.6	6
403	Highâ∈Harmonic Generation Enhancement with Graphene Heterostructures. Advanced Optical Materials, 2022, 10, .	7.3	6
404	Resonant coherent ionization in grazing ion/atom-surface collisions at high velocities. Nuclear Instruments & Methods in Physics Research B, 1994, 90, 222-226.	1.4	5
405	MULTIPLE SCATTERING THEORY OF PHOTOELECTRON ANGULAR DISTRIBUTIONS FROM ORIENTED DIATOMIC MOLECULES. Surface Review and Letters, 2002, 09, 1213-1217.	1.1	5
406	Interplay between electronic states and structure during Au faceting. New Journal of Physics, 2008, 10, 113017.	2.9	5
407	Nonlinear Tunable Vibrational Response in Hexagonal Boron Nitride. ACS Nano, 2021, 15, 13415-13426.	14.6	5
408	Comment on "Free-Electron–Bound-Electron Resonant Interaction― Physical Review Letters, 2021, 126, 019501.	7.8	5
409	Atomic Floquet physics revealed by free electrons. Physical Review Research, 2022, 4, .	3.6	5
410	Wake potential and wake binding energy for protons and antiprotons. Nuclear Instruments & Methods in Physics Research B, 1990, 48, 25-28.	1.4	4
411	Nonlinear corrections to the image potential of charged particles moving parallel to a metal surface. Nuclear Instruments & Methods in Physics Research B, 1998, 135, 97-102.	1.4	4
412	Localized valence spectroscopy of complex nanostructures. Journal of Electron Microscopy, 1999, 48, 673-679.	0.9	4
413	Elastic scattering of low-energy electrons by randomly oriented and aligned molecules. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 107-113.	1.7	4
414	Simulating electromagnetic response in coupled metallic nanoparticles for nanoscale optical microscopy and spectroscopy: nanorod-end effects. , 2006, , .		4

#	Article	IF	CITATIONS
415	Nonlocal Effects in the Optical Response of Metal Nanoparticles. , 2010, , .		4
416	Plasmon generation through electron tunneling in twisted double-layer graphene and metal-insulator-graphene systems. Physical Review B, 2019, 99, .	3.2	4
417	Anomalous Thermodiffusion of Electrons in Graphene. Physical Review Letters, 2020, 125, 176802.	7.8	4
418	Ultrafast Momentum-Resolved Free-Electron Probing of Optically Pumped Plasmon Thermal Dynamics. ACS Photonics, 2021, 8, 614-624.	6.6	4
419	Electron refraction at lateral atomic interfaces. Journal of Applied Physics, 2017, 122, .	2.5	4
420	Nonlinear plasmonic response in atomically thin metal films. Nanophotonics, 2021, 10, 4149-4159.	6.0	4
421	lon-induced electron emission from simple metals: Charge state effects. Nuclear Instruments & Methods in Physics Research B, 1997, 125, 23-26.	1.4	3
422	Coulomb explosion of H2+ in surface scattering. Nuclear Instruments & Methods in Physics Research B, 1998, 142, 473-485.	1.4	3
423	Collective excitations in an infinite set of aligned spheres. Surface Science, 1998, 402-404, 418-423.	1.9	3
424	Cherenkov radiation effects in EELS for nanoporous alumina membranes. Surface Science, 2003, 532-535, 461-467.	1.9	3
425	Self-assembly works for superlattices. Nature Nanotechnology, 2007, 2, 601-602.	31.5	3
426	Plasmon excitations at diffuse interfaces. Journal of Physics Condensed Matter, 2008, 20, 304205.	1.8	3
427	Plasmonics in buried structures. Optics Express, 2009, 17, 18866.	3.4	3
428	Power transfer between neighboring planar waveguides. Optics Express, 2012, 20, 3152.	3.4	3
429	Quantum effects in the acoustic plasmons of atomically thin heterostructures: publisher's note. Optica, 2019, 6, 798.	9.3	3
430	Direct generation of entangled photon pairs in nonlinear optical waveguides. Nanophotonics, 2022, .	6.0	3
431	Lowâ€Loss Tunable Infrared Plasmons in the Highâ€Mobility Perovskite (Ba,La)SnO ₃ . Small, 2022, 18, e2106897.	10.0	3
432	Mapping Surface Plasmons on a Single Metallic Nanoparticle. , 2008, , .		2

#	Article	IF	CITATIONS
433	Reduced radiation losses in electron beam excited propagating plasmons. Optics Express, 2011, 19, 18713.	3.4	2
434	Nonperturbative theory of graphene saturable absorption., 2017,,.		2
435	Enhanced graphene nonlinear response through geometrical plasmon focusing. Applied Physics Letters, 2018, 112, 061107.	3.3	2
436	Chemical identification through two-dimensional electron energy-loss spectroscopy. Science Advances, 2020, 6, eabb4713.	10.3	2
437	Exploring electronic coupling of optical and phonon excitations at the nanoscale. Microscopy and Microanalysis, 2021, 27, 1202-1203.	0.4	2
438	2-Grating Inelastic Free Electron Interferometry. Microscopy and Microanalysis, 2021, 27, 1474-1477.	0.4	2
439	Charge Dynamics Electron Microscopy. , 2021, , .		2
440	Inelastic Scattering of Electron Beams by Nonreciprocal Nanotructures. Physical Review Letters, 2021, 127, 157404.	7.8	2
441	Modulation of cathodoluminescence emission by interference with external light., 2021,,.		2
442	Resonant coherent excitation to the continuum in grazing ion-surface collisions. Journal of Physics Condensed Matter, 1993, 5, A267-A268.	1.8	1
443	Amplification of the Evanescent Field of Free Electrons. , 2012, , .		1
444	Visible Optical Resonances in Electrically Doped DNA. ACS Photonics, 2019, 6, 932-938.	6.6	1
445	Optical Coherence Transfer Mediated by Free Electrons. , 2021, , .		1
446	Free-Electron Interactions with Designed van der Waals Materials: Novel Source of Lensed X-ray Radiation., 2021,,.		1
447	Adaptive Sub-Wavelength Control of Nano-Optical Fields. , 2007, , LWD2.		O
448	Photonic absorption bands in the spectra of nanoporous metallic films. Physics of the Solid State, 2007, 49, 1264-1267.	0.6	0
449	Nano-optic of metamaterials by spatially resolved Electron Energy Loss Spectroscopy. , 2010, , .		O
450	SERS-Based Ultrasensitive Detection with Tips-shaped Anisotropic Particles. , 2010, , .		O

#	Article	IF	Citations
451	Ultrasound Transmission Through Periodically Perforated Plates. Springer Series in Materials Science, 2013, , 83-113.	0.6	O
452	Plasmonic scattering from single subwavelength holes: Separating the electric and magnetic contributions. , 2013, , .		0
453	Graphene opto-electronics and plasmonics for infrared frequencies. , 2015, , .		O
454	Complete optical absorption of ultrashort pulses by plasmons in nanostructured graphene (Conference Presentation)., 2016,,.		0
455	Quantum Aspects of Electron-Light-Plasmon Interactions at the Atomic Scale. Microscopy and Microanalysis, 2020, 26, 3026-3026.	0.4	O
456	Electron Beam Aberration Correction Using Optical Fields. Microscopy and Microanalysis, 2020, 26, 2974-2974.	0.4	0
457	Fundamental limits to the excitation of polaritons in thin films. , 2021, , .		O
458	Spectrometer-free electron probe of ultrafast thermal dynamics in optically excited samples., 2021,,.		0
459	Quantum Prescription of Electron Energy Loss Spectroscopy in Crystalline Films. , 2021, , .		O
460	Towards plasmonic-enhanced optical nonlinearities in graphene metal-heterostructures. , 2021, , .		0
461	Tailored nanoscale plasmon-enhanced vibrational electron spectroscopy. Microscopy and Microanalysis, 2021, 27, 320-321.	0.4	O
462	Optothermal generation and manipulation of plasmons in in atomically thin films. , 2021, , .		0
463	Adaptive control of nanoscopic photoelectron emission. , 2006, , .		O
464	Plasmon Guiding in Coupled Nanovoids., 2007,,.		0
465	Nanolocalization of Ultrashort Time-Reversed Pulses in Random Nanoparticle Assemblies. , 2010, , .		O
466	Accessing the optical properties of single nanoobjects at the nanometer scale through fast electron based spectroscopies. , 2014 , , .		0
467	Optical Sensing and Light Modulation with Atomically Thin Materials. , 2015, , .		O
468	Plasmon-Induced Nonlinear Phenomena in Atomic-Scale Structures. , 2015, , .		0

#	ARTICLE	IF	CITATIONS
469	Huge plasmon-enhanced Third Harmonic Generation with graphene nanoribbons. , 2019, , .		o
470	Optothermal Generation and Manipulation of Plasmons. , 2020, , .		0
471	Giant enhancement of high-harmonic generation in graphene-metal heterostructures. , 2020, , .		О
472	Quantum Effects in the Interaction of Optical Excitations and Fast Electrons. , 2020, , .		O
473	Combining electronic and optical spectroscopy at the nanometer scale in a STEM., 2008,, 351-352.		O
474	Longitudinal and transverse modulation of electron wave function with light, and its application to electron microscopy. , 2021, , .		0