
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/477472/publications.pdf Version: 2024-02-01



DHILIDDE FORT

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Aspartateâ€phobia of thermophiles as a reaction to deleterious chemical transformations. BioEssays, 2022, 44, e2100213.                                                                | 2.5  | 2         |
| 2  | Regulation of Src tumor activity by its N-terminal intrinsically disordered region. Oncogene, 2022, 41, 960-970.                                                                       | 5.9  | 8         |
| 3  | NOPCHAP1 is a PAQosome cofactor that helps loading NOP58 on RUVBL1/2 during box C/D snoRNP<br>biogenesis. Nucleic Acids Research, 2021, 49, 1094-1113.                                 | 14.5 | 14        |
| 4  | SHED-Dependent Oncogenic Signaling of the PEAK3 Pseudo-Kinase. Cancers, 2021, 13, 6344.                                                                                                | 3.7  | 6         |
| 5  | The atypical RhoU/Wrch1 Rho GTPase controls cell proliferation and apoptosis in the gut epithelium.<br>Biology of the Cell, 2019, 111, 121-141.                                        | 2.0  | 11        |
| 6  | New insights into the evolutionary conservation of the sole PIKK pseudokinase Tra1/TRRAP.<br>Biochemical Society Transactions, 2019, 47, 1597-1608.                                    | 3.4  | 25        |
| 7  | The RPAP3-Cterminal domain identifies R2TP-like quaternary chaperones. Nature Communications, 2018, 9, 2093.                                                                           | 12.8 | 59        |
| 8  | PIP30/FAM192A is a novel regulator of the nuclear proteasome activator PA28γ. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6477-E6486. | 7.1  | 29        |
| 9  | SOX9 has distinct regulatory roles in alternative splicing and transcription. Nucleic Acids Research, 2018, 46, 9106-9118.                                                             | 14.5 | 30        |
| 10 | Rho signaling: An historical and evolutionary perspective. , 2018, , 3-18.                                                                                                             |      | 2         |
| 11 | Binding site density enables paralog-specific activity of SLM2 and Sam68 proteins in <i>Neurexin2</i> AS4 splicing control. Nucleic Acids Research, 2017, 45, gkw1277.                 | 14.5 | 16        |
| 12 | The Evolutionary Landscape of Dbl-Like RhoGEF Families: Adapting Eukaryotic Cells to Environmental Signals. Genome Biology and Evolution, 2017, 9, 1471-1486.                          | 2.5  | 47        |
| 13 | A SLM2 Feedback Pathway Controls Cortical Network Activity and Mouse Behavior. Cell Reports, 2016, 17, 3269-3280.                                                                      | 6.4  | 21        |
| 14 | STARs in the CNS. Biochemical Society Transactions, 2016, 44, 1066-1072.                                                                                                               | 3.4  | 10        |
| 15 | High chlorpyrifos resistance in Culex pipiens mosquitoes: strong synergy between resistance genes.<br>Heredity, 2016, 116, 224-231.                                                    | 2.6  | 12        |
| 16 | Neural Differentiation Modulates the Vertebrate Brain Specific Splicing Program. PLoS ONE, 2015, 10, e0125998.                                                                         | 2.5  | 10        |
| 17 | Atypical RhoV and RhoU GTPases control development of the neural crest. Small GTPases, 2015, 6, 174-177.                                                                               | 1.6  | 22        |
| 18 | Evolution of Proteasome Regulators in Eukaryotes. Genome Biology and Evolution, 2015, 7, 1363-1379.                                                                                    | 2.5  | 77        |

| #  | Article                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Stable coexistence of incompatible <i>Wolbachia</i> along a narrow contact zone in mosquito field populations. Molecular Ecology, 2015, 24, 508-521.                     | 3.9  | 25        |
| 20 | PleiotRHOpic. Small GTPases, 2014, 5, e27975.                                                                                                                            | 1.6  | 14        |
| 21 | Wolbachia Divergence and the Evolution of Cytoplasmic Incompatibility in Culex pipiens. PLoS ONE, 2014, 9, e87336.                                                       | 2.5  | 48        |
| 22 | Antagonistic functions of <i> <scp>LMNA</scp> </i> isoforms in energy expenditure and lifespan.<br>EMBO Reports, 2014, 15, 529-539.                                      | 4.5  | 47        |
| 23 | MBNL1 and RBFOX2 cooperate to establish a splicing programme involved in pluripotent stem cell differentiation. Nature Communications, 2013, 4, 2480.                    | 12.8 | 120       |
| 24 | Applying ecological and evolutionary theory to cancer: a long and winding road. Evolutionary Applications, 2013, 6, 1-10.                                                | 3.1  | 70        |
| 25 | Targeting the Dbl and Dock-Family RhoGEFs. The Enzymes, 2013, 33 Pt A, 169-191.                                                                                          | 1.7  | 3         |
| 26 | The Tissue-Specific RNA Binding Protein T-STAR Controls Regional Splicing Patterns of Neurexin Pre-mRNAs in the Brain. PLoS Genetics, 2013, 9, e1003474.                 | 3.5  | 74        |
| 27 | Tissue-Specific Alternative Splicing of Tak1 Is Conserved in Deuterostomes. Molecular Biology and Evolution, 2012, 29, 261-269.                                          | 8.9  | 21        |
| 28 | Fossil Rhabdoviral Sequences Integrated into Arthropod Genomes: Ontogeny, Evolution, and<br>Potential Functionality. Molecular Biology and Evolution, 2012, 29, 381-390. | 8.9  | 100       |
| 29 | Using a Modified Yeast Two-Hybrid System to Screen for Chemical GEF Inhibitors. Methods in<br>Molecular Biology, 2012, 928, 81-95.                                       | 0.9  | 6         |
| 30 | Novel AChE Inhibitors for Sustainable Insecticide Resistance Management. PLoS ONE, 2012, 7, e47125.                                                                      | 2.5  | 26        |
| 31 | Activity of the RhoU/Wrch1 GTPase is critical for cranial neural crest cell migration. Developmental Biology, 2011, 350, 451-463.                                        | 2.0  | 33        |
| 32 | Multiple Wolbachia determinants control the evolution of cytoplasmic incompatibilities in Culex pipiens mosquito populations. Molecular Ecology, 2011, 20, 286-298.      | 3.9  | 46        |
| 33 | MiniSOX9, a dominant-negative variant in colon cancer cells. Oncogene, 2011, 30, 2493-2503.                                                                              | 5.9  | 35        |
| 34 | Tara up-regulates E-cadherin transcription by binding to the Trio RhoGEF and inhibiting Rac signaling.<br>Journal of Cell Biology, 2011, 193, 319-332.                   | 5.2  | 63        |
| 35 | Atypical RhoV and RhoU GTPases control development of the neural crest. Small GTPases, 2011, 2, 310-313.                                                                 | 1.6  | 14        |
| 36 | TC10 controls human myofibril organization and is activated by the sarcomeric RhoGEF obscurin.<br>Journal of Cell Science, 2009, 122, 947-956.                           | 2.0  | 23        |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A Cell Active Chemical GEF Inhibitor Selectively Targets the Trio/RhoG/Rac1 Signaling Pathway.<br>Chemistry and Biology, 2009, 16, 657-666.                                                                                  | 6.0 | 91        |
| 38 | Dynamic expression patterns of <i>RhoV</i> / <i>Chp</i> and <i>RhoU</i> / <i>Wrch</i> during chicken embryonic development. Developmental Dynamics, 2008, 237, 1165-1171.                                                    | 1.8 | 15        |
| 39 | Trio Controls the Mature Organization of Neuronal Clusters in the Hindbrain. Journal of Neuroscience, 2007, 27, 10323-10332.                                                                                                 | 3.6 | 43        |
| 40 | Evolution of the Rho Family of Ras-Like GTPases in Eukaryotes. Molecular Biology and Evolution, 2007, 24, 203-216.                                                                                                           | 8.9 | 366       |
| 41 | Variability and Expression of Ankyrin Domain Genes in Wolbachia Variants Infecting the Mosquito<br>Culex pipiens. Journal of Bacteriology, 2007, 189, 4442-4448.                                                             | 2.2 | 54        |
| 42 | The small GTPase RhoV is an essential regulator of neural crest induction in Xenopus. Developmental<br>Biology, 2007, 310, 113-128.                                                                                          | 2.0 | 46        |
| 43 | Influence of aging on cytoplasmic incompatibility, sperm modification and Wolbachia density in Culex pipiens mosquitoes. Heredity, 2007, 98, 368-374.                                                                        | 2.6 | 49        |
| 44 | Expression of RhoB in the developing Xenopus laevis embryo. Gene Expression Patterns, 2007, 7,<br>282-288.                                                                                                                   | 0.8 | 13        |
| 45 | Fertilization regulates apoptosis of Ciona intestinalis extra-embryonic cells through thyroxine<br>(T4)-dependent NF-κB pathway activation during early embryonic development. Developmental Biology,<br>2006, 289, 152-165. | 2.0 | 17        |
| 46 | Expression Profile of RhoGTPases and RhoGEFs During RANKL-Stimulated Osteoclastogenesis:<br>Identification of Essential Genes in Osteoclasts. Journal of Bone and Mineral Research, 2006, 21,<br>1387-1398.                  | 2.8 | 83        |
| 47 | Identification of TRIO-GEFD1 chemical inhibitors using the yeast exchange assay. Biology of the Cell, 2006, 98, 511-522.                                                                                                     | 2.0 | 41        |
| 48 | Identification of Rho GTPases implicated in terminal differentiation of muscle cells in ascidia. Biology of the Cell, 2006, 98, 577-588.                                                                                     | 2.0 | 8         |
| 49 | Hypervariable prophage WO sequences describe an unexpected high number of Wolbachia variants in<br>the mosquito Culex pipiens. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 495-502.                  | 2.6 | 49        |
| 50 | Transposable element polymorphism of Wolbachia in the mosquito Culex pipiens: evidence of genetic diversity, superinfection and recombination. Molecular Ecology, 2005, 14, 1561-1573.                                       | 3.9 | 72        |
| 51 | The caspase family in urochordates: distinct evolutionary fates in ascidians and larvaceans. Biology of the Cell, 2005, 97, 857-866.                                                                                         | 2.0 | 26        |
| 52 | Distinct roles of Rac1/Cdc42 and Rho/Rock for axon outgrowth and nucleokinesis of precerebellar neurons toward netrin 1. Development (Cambridge), 2004, 131, 2841-2852.                                                      | 2.5 | 83        |
| 53 | Insecticide resistance: a silent base prediction. Current Biology, 2004, 14, R552-R553.                                                                                                                                      | 3.9 | 76        |
| 54 | Ascidians as a vertebrateâ€like model organism for physiological studies of Rho GTPase signaling.<br>Biology of the Cell, 2003, 95, 295-302.                                                                                 | 2.0 | 22        |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | RhoG regulates gene expression and the actin cytoskeleton in lymphocytes. Oncogene, 2003, 22, 330-342.                                                                                                               | 5.9  | 46        |
| 56 | Insecticide resistance in mosquito vectors. Nature, 2003, 423, 136-137.                                                                                                                                              | 27.8 | 546       |
| 57 | The GTP/GDP Cycling of Rho GTPase TCL Is an Essential Regulator of the Early Endocytic Pathway.<br>Molecular Biology of the Cell, 2003, 14, 4846-4856.                                                               | 2.1  | 61        |
| 58 | A Dual Role of the GTPase Rac in Cardiac Differentiation of Stem Cells. Molecular Biology of the Cell, 2003, 14, 2781-2792.                                                                                          | 2.1  | 58        |
| 59 | A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is<br>non–homologous to theacegeneDrosophila. Proceedings of the Royal Society B: Biological Sciences,<br>2002, 269, 2007-2016. | 2.6  | 233       |
| 60 | The Human Rho-GEF Trio and Its Target GTPase RhoG Are Involved in the NGF Pathway, Leading to Neurite Outgrowth. Current Biology, 2002, 12, 307-312.                                                                 | 3.9  | 147       |
| 61 | Participation of small GTPases Rac1 and Cdc42Hs in myoblast transformation. Oncogene, 2002, 21, 2901-2907.                                                                                                           | 5.9  | 31        |
| 62 | Activation of ERK, Controlled by Rac1 and Cdc42 via Akt, Is Required for Anoikis. Annals of the New<br>York Academy of Sciences, 2002, 973, 145-148.                                                                 | 3.8  | 32        |
| 63 | Tail regression in <i>Ciona intestinalis</i> (Prochordate) involves a Caspase-dependent apoptosis event associated with ERK activation. Development (Cambridge), 2002, 129, 3105-3114.                               | 2.5  | 109       |
| 64 | Tail regression in Ciona intestinalis (Prochordate) involves a Caspase-dependent apoptosis event associated with ERK activation. Development (Cambridge), 2002, 129, 3105-14.                                        | 2.5  | 35        |
| 65 | The gene for a new brain specific RhoA exchange factor maps to the highly unstable chromosomal region 1p36.2–1p36.3 Oncogene, 2001, 20, 7307-7317.                                                                   | 5.9  | 60        |
| 66 | Kinectin Is a Key Effector of RhoG Microtubule-Dependent Cellular Activity. Molecular and Cellular<br>Biology, 2001, 21, 8022-8034.                                                                                  | 2.3  | 73        |
| 67 | Raf-MEK-Erk Cascade in Anoikis Is Controlled by Rac1 and Cdc42 via Akt. Molecular and Cellular Biology, 2001, 21, 6706-6717.                                                                                         | 2.3  | 108       |
| 68 | Extinction of Rac1 and Cdc42Hs signalling defines a novel p53-dependent apoptotic pathway. Oncogene, 2000, 19, 2377-2385.                                                                                            | 5.9  | 34        |
| 69 | Critical Activities of Rac1 and Cdc42Hs in Skeletal Myogenesis: Antagonistic Effects of JNK and p38<br>Pathways. Molecular Biology of the Cell, 2000, 11, 2513-2528.                                                 | 2.1  | 101       |
| 70 | Characterization of TCL, a New GTPase of the Rho Family related to TC10 and Cdc42. Journal of<br>Biological Chemistry, 2000, 275, 36457-36464.                                                                       | 3.4  | 110       |
| 71 | Cdc42Hs and Rac1 GTPases Induce the Collapse of the Vimentin Intermediate Filament Network. Journal of Biological Chemistry, 2000, 275, 33046-33052.                                                                 | 3.4  | 57        |
| 72 | A fluorescent reporter gene as a marker for ventricular specification in ES-derived cardiac cells. FEBS<br>Letters, 2000, 478, 151-158.                                                                              | 2.8  | 106       |

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | The yeast exchange assay, a new complementary method to screen for Dbl-like protein specificity:<br>identification of a novel RhoA exchange factor. FEBS Letters, 2000, 480, 287-292.                   | 2.8  | 19        |
| 74 | Signalling pathways controlled by the GTPase RhoG. Biology of the Cell, 1999, 91, 551-552.                                                                                                              | 2.0  | 0         |
| 75 | Small GTPases of the Rho Family and Cell Transformation. Progress in Molecular and Subcellular<br>Biology, 1999, 22, 159-181.                                                                           | 1.6  | 16        |
| 76 | A Presumptive Developmental Role for a Sea Urchin Cyclin B Splice Variant. Journal of Cell Biology, 1998, 140, 283-293.                                                                                 | 5.2  | 30        |
| 77 | RhoG GTPase Controls a Pathway That Independently Activates Rac1 and Cdc42Hs. Molecular Biology of the Cell, 1998, 9, 1379-1394.                                                                        | 2.1  | 152       |
| 78 | A Simple Luciferase Assay for Signal Transduction Activity Detection of Epidermal Growth Factor<br>Displayed on Phage. Nucleic Acids Research, 1997, 25, 1585-1590.                                     | 14.5 | 31        |
| 79 | Expression and Human Chromosomal Localization to 17q25 of the Growth-Regulated Gene Encoding the Mitochondrial Ribosomal Protein MRPL12. Genomics, 1997, 41, 453-457.                                   | 2.9  | 17        |
| 80 | Structure of the Human ARHG Locus Encoding the Rho/Rac-like RhoG GTPase. Genomics, 1997, 42, 157-160.                                                                                                   | 2.9  | 22        |
| 81 | Structure and Chromosomal Assignment to 22q12 and 17qter of the ras-Related Rac2 and Rac3 Human<br>Genes. Genomics, 1997, 44, 242-246.                                                                  | 2.9  | 23        |
| 82 | The small GTPases Cdc42Hs, Rac1 and RhoG delineate Raf-independent pathways that cooperate to transform NIH3T3 cells. Current Biology, 1997, 7, 629-637.                                                | 3.9  | 100       |
| 83 | A Delayed-early Response Nuclear Gene Encoding MRPL12, the Mitochondrial Homologue to the<br>Bacterial Translational Regulator L7/L12 Protein. Journal of Biological Chemistry, 1996, 271, 11468-11476. | 3.4  | 30        |
| 84 | [18] Serum induction of RhoG expression. Methods in Enzymology, 1995, 256, 151-162.                                                                                                                     | 1.0  | 0         |
| 85 | Growth-Regulated Expression of FKBP-59 Immunophilin in Normal and Transformed Fibroblastic Cells.<br>Experimental Cell Research, 1995, 220, 152-160.                                                    | 2.6  | 10        |
| 86 | Concerted evolution in the GAPDH family of retrotransposed pseudogenes. Mammalian Genome, 1993,<br>4, 695-703.                                                                                          | 2.2  | 32        |
| 87 | Localization of ARHG, a Member of the RAS Homolog Gene Family, to 11p15.5-11p15.4 by Fluorescence in<br>Situ Hybridization. Genomics, 1993, 16, 788-790.                                                | 2.9  | 4         |
| 88 | S26 ribosomal protein RNA: an invariant control for gene regulation experiments in eucaryotic cells and tissues. Nucleic Acids Research, 1993, 21, 1498-1498.                                           | 14.5 | 184       |
| 89 | Transduction du signal mitogène, cytosquelette et petites protéines G : vers un réseau de protéines<br>GAP ?. Medecine/Sciences, 1993, 9, 59.                                                           | 0.2  | 0         |
| 90 | Worldwide migration of amplified insecticide resistance genes in mosquitoes. Nature, 1991, 350, 151-153.                                                                                                | 27.8 | 283       |

| #   | Article                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Nucleotide sequence of hamster glyceraldehyde-3-phosphate dehydrogenase mRNA. Nucleic Acids<br>Research, 1990, 18, 3054-3054.                                                                        | 14.5 | 15        |
| 92  | Versatile vectors for pulsed expression in eukaryotic cells. Nucleic Acids Research, 1989, 17, 2874-2874.                                                                                            | 14.5 | 7         |
| 93  | Requirements for c-fos mRNA down regulation in growth stimulated murine cells. Oncogene, 1989, 4, 881-8.                                                                                             | 5.9  | 28        |
| 94  | Cloning and regulation of a mRNA specifically expressed in the preadipose state. Journal of Biological Chemistry, 1989, 264, 10119-25.                                                               | 3.4  | 52        |
| 95  | Role of RNA structures m c-myc and c-fos gene regulations. Gene, 1988, 72, 287-295.                                                                                                                  | 2.2  | 14        |
| 96  | The regulatory strategies of c-myc and c-fos proto-oncogenes share some common mechanisms.<br>Biochimie, 1988, 70, 877-884.                                                                          | 2.6  | 18        |
| 97  | Complete Sequence of Cytochrome P450 3c cDNA and Presence of Two mRNA Species with 3′<br>Untranslated Regions of Different Lengths. DNA and Cell Biology, 1988, 7, 39-46.                            | 5.2  | 34        |
| 98  | Sequence determinants of c-myc mRNA turn-over: influence of 3' and 5' non-coding regions. Oncogene Research, 1988, 3, 155-66.                                                                        | 1.2  | 20        |
| 99  | Regulation of c-fosgene expression in hamster fibroblasts: initiation and elongation of transcription and mRNA degradation. Nucleic Acids Research, 1987, 15, 5657-5667.                             | 14.5 | 241       |
| 100 | Sequence of a human immunoglobulin gamma 3 heavy chain constant region gene: comparison with<br>the other human Cl̂3genes. Nucleic Acids Research, 1986, 14, 1779-1789.                              | 14.5 | 153       |
| 101 | Various rat adult tissues express only one major mRNA species from the<br>glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Research, 1985, 13,<br>1431-1442.                | 14.5 | 2,147     |
| 102 | Nucleotide Sequence and Complementation Analysis of a Polycistronic Sporulation Operon, spoVA, in<br>Bacillus subtilis. Microbiology (United Kingdom), 1985, 131, 1091-1105.                         | 1.8  | 78        |
| 103 | Effects of Transition Mutations in the Regulatory Locus spollA on the Incidence of Sporulation in Bacillus subtilis. Microbiology (United Kingdom), 1985, 131, 959-962.                              | 1.8  | 8         |
| 104 | Duplicated sporulation genes in bacteria. FEBS Letters, 1985, 188, 184-188.                                                                                                                          | 2.8  | 62        |
| 105 | Post-transcriptional regulation of glyceraldehyde-3-phosphate-dehydrogenase gene expression in rat<br>tissues. Nucleic Acids Research, 1984, 12, 6951-6963.                                          | 14.5 | 486       |
| 106 | Characterization of the transcription products of glyceraldehyde 3-phosphate-dehydrogenase gene in<br>HeLa cells. FEBS Journal, 1984, 145, 299-304.                                                  | 0.2  | 79        |
| 107 | Complete nucleotide sequence of the messenger RNA coding for chicken muscle<br>glyceraldehyde-3-phosphate dehydrogenase. Biochemical and Biophysical Research Communications,<br>1984, 118, 767-773. | 2.1  | 111       |
| 108 | Selection of Seedlings of Thymus Vulgaris by Grazing Slugs. Journal of Ecology, 1983, 71, 299.                                                                                                       | 4.0  | 31        |

| #   | Article                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | A warning on the use of synthetic DNA primers for initiation of reverse transcription on RNA templates: unexpected initiation at a mismatched nucleotide. Gene, 1982, 19, 321-326. | 2.2 | 8         |