Bryan R Williams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4774509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial arginase-2 is essential for IL-10 metabolic reprogramming of inflammatory macrophages. Nature Communications, 2021, 12, 1460.	12.8	74
2	(â^')â€Epigallocatechinâ€3â€gallate and <scp>EZH</scp> 2 inhibitor <scp>GSK</scp> 343 have similar inhibitory effects and mechanisms of action on colorectal cancer cells. Clinical and Experimental Pharmacology and Physiology, 2018, 45, 58-67.	1.9	14
3	Mechanisms and consequences of constitutive activation of integrin-linked kinase in acute myeloid leukemia. Cytokine and Growth Factor Reviews, 2018, 43, 1-7.	7.2	10
4	A non anonical function of Ezh2 preserves immune homeostasis. EMBO Reports, 2017, 18, 619-631.	4.5	73
5	ATF3 Repression of BCL-XL Determines Apoptotic Sensitivity to HDAC Inhibitors across Tumor Types. Clinical Cancer Research, 2017, 23, 5573-5584.	7.0	46
6	Auto-phosphorylation Represses Protein Kinase R Activity. Scientific Reports, 2017, 7, 44340.	3.3	8
7	Topoisomerase 1 Inhibition Promotes Cyclic GMP-AMP Synthase-Dependent Antiviral Responses. MBio, 2017, 8, .	4.1	28
8	The innate immune receptor <scp>MDA</scp> 5 limits rotavirus infection but promotes cell death and pancreaticÂinflammation. EMBO Journal, 2017, 36, 2742-2757.	7.8	24
9	Integrin-Linked Kinase Expression in Myeloid Cells Promotes Inflammatory Signaling during Experimental Colitis. Journal of Immunology, 2017, 199, 2128-2139.	0.8	12
10	(â€)â€Epigallocatechinâ€3â€gallate and atorvastatin treatment downâ€regulates liver fibrosisâ€related genes in nonâ€alcoholic fatty liver disease. Clinical and Experimental Pharmacology and Physiology, 2017, 44, 1180-1191.	1.9	13
11	Activation of cGAS-dependent antiviral responses by DNA intercalating agents. Nucleic Acids Research, 2017, 45, 198-205.	14.5	36
12	An Emergence Framework of Carcinogenesis. Frontiers in Oncology, 2017, 7, 198.	2.8	18
13	Understanding immune phenotypes in human gastric disease tissues by multiplexed immunohistochemistry. Journal of Translational Medicine, 2017, 15, 206.	4.4	26
14	Identification of a histone family gene signature for predicting the prognosis of cervical cancer patients. Scientific Reports, 2017, 7, 16495.	3.3	58
15	Surgical margins in head and neck squamous cell carcinoma: Effect of heat artifact on immunohistochemistry as a future tool for assessment. Head and Neck, 2016, 38, 1401-1406.	2.0	2
16	Activating Transcription Factor 3 Expression as a Marker of Response to the Histone Deacetylase Inhibitor Pracinostat. Molecular Cancer Therapeutics, 2016, 15, 1726-1739.	4.1	10
17	The kinase activity of PKR represses inflammasome activity. Cell Research, 2016, 26, 367-379.	12.0	49
18	The protein activator of protein kinase R, <scp>PACT</scp> / <scp>RAX</scp> , negatively regulates protein kinase R during mouse anterior pituitary development. FEBS Journal, 2015, 282, 4766-4781.	4.7	11

#	Article	IF	CITATIONS
19	Transcriptional Activation of Inflammatory Genes: Mechanistic Insight into Selectivity and Diversity. Biomolecules, 2015, 5, 3087-3111.	4.0	46
20	Telomerase Deficiency Causes Alveolar Stem Cell Senescence-associated Low-grade Inflammation in Lungs. Journal of Biological Chemistry, 2015, 290, 30813-30829.	3.4	72
21	BTB-ZF transcriptional regulator PLZF modifies chromatin to restrain inflammatory signaling programs. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1535-1540.	7.1	54
22	Sequence-dependent off-target inhibition of TLR7/8 sensing by synthetic microRNA inhibitors. Nucleic Acids Research, 2015, 43, 1177-1188.	14.5	39
23	The acetyltransferase HAT1 moderates the NF-κB response by regulating the transcription factor PLZF. Nature Communications, 2015, 6, 6795.	12.8	62
24	IL-10 regulates <i>Aicda</i> expression through miR-155. Journal of Leukocyte Biology, 2015, 97, 71-78.	3.3	20
25	Protein Kinase R and the Inflammasome. Journal of Interferon and Cytokine Research, 2014, 34, 447-454.	1.2	41
26	Molecular dynamics reveal a novel kinase–substrate interface that regulates protein translation. Journal of Molecular Cell Biology, 2014, 6, 473-485.	3.3	3
27	Inosine-Mediated Modulation of RNA Sensing by Toll-Like Receptor 7 (TLR7) and TLR8. Journal of Virology, 2014, 88, 799-810.	3.4	27
28	High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nature Immunology, 2014, 15, 152-160.	14.5	337
29	Integrin-linked Kinase Modulates Lipopolysaccharide- and Helicobacter pylori-induced Nuclear Factor κB-activated Tumor Necrosis Factor-α Production via Regulation of p65 Serine 536 Phosphorylation. Journal of Biological Chemistry, 2014, 289, 27776-27793.	3.4	50
30	The Role of Ets2 Transcription Factor in the Induction of MicroRNA-155 (miR-155) by Lipopolysaccharide and Its Targeting by Interleukin-10. Journal of Biological Chemistry, 2014, 289, 4316-4325.	3.4	98
31	Activating Transcription Factor 3 Contributes to Toll-Like Receptor-Mediated Macrophage Survival via Repression of <i>Bax</i> and <i>Bak</i> . Journal of Interferon and Cytokine Research, 2013, 33, 682-693.	1.2	11
32	Fine tuning type I interferon responses. Cytokine and Growth Factor Reviews, 2013, 24, 217-225.	7.2	103
33	ATF3 Suppresses Metastasis of Bladder Cancer by Regulating Gelsolin-Mediated Remodeling of the Actin Cytoskeleton. Cancer Research, 2013, 73, 3625-3637.	0.9	114
34	The use of miRNA microarrays for the analysis of cancer samples with global miRNA decrease. Rna, 2013, 19, 876-888.	3.5	52
35	Conformational rearrangements of RIG-I receptor on formation of a multiprotein:dsRNA assembly. Nucleic Acids Research, 2013, 41, 3436-3445.	14.5	23
36	Allan S.Y. Lau (1952–2013) A Dedicated Interferon and Cytokine Biologist and Infectious Disease Physician. Journal of Interferon and Cytokine Research, 2013, 33, 403-404.	1.2	0

#	Article	IF	CITATIONS
37	The Promyelocytic Leukemia Zinc Finger Protein: Two Decades of Molecular Oncology. Frontiers in Oncology, 2012, 2, 74.	2.8	93
38	A miR-19 regulon that controls NF- $\hat{I}^{\circ}B$ signaling. Nucleic Acids Research, 2012, 40, 8048-8058.	14.5	167
39	Human Toll-Like Receptor 8 Can Be Cool Too: Implications for Foreign RNA Sensing. Journal of Interferon and Cytokine Research, 2012, 32, 350-361.	1.2	38
40	siRNAâ€induced immunostimulation through TLR7 promotes antitumoral activity against HPVâ€driven tumors in vivo. Immunology and Cell Biology, 2012, 90, 187-196.	2.3	44
41	Regulation of Double-Stranded RNA Dependent Protein Kinase Expression and Attenuation of Protein Synthesis Induced by Bacterial Toll-Like Receptors Agonists in the Absence of Interferon. Journal of Interferon and Cytokine Research, 2012, 32, 495-504.	1.2	4
42	HDACi: molecular mechanisms and therapeutic implications in the innate immune system. Immunology and Cell Biology, 2012, 90, 23-32.	2.3	38
43	Regulation of Actin Dynamics by Protein Kinase R Control of Gelsolin Enforces Basal Innate Immune Defense. Immunity, 2012, 36, 795-806.	14.3	54
44	Dynamiting Viruses with MxA. Immunity, 2011, 35, 491-493.	14.3	8
45	Interferon-Stimulated Genes and Their Protein Products: What and How?. Journal of Interferon and Cytokine Research, 2011, 31, 1-4.	1.2	50
46	Making Sense of Viral RNA Sensing. Molecular Therapy, 2011, 19, 1578-1581.	8.2	10
47	Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Research, 2011, 39, 5692-5703.	14.5	361
48	Different modes of interaction by TIAR and HuR with target RNA and DNA. Nucleic Acids Research, 2011, 39, 1117-1130.	14.5	59
49	Genetic modulation of TLR8 response following bacterial phagocytosis. Human Mutation, 2010, 31, 1069-1079.	2.5	67
50	Tumor Cell Response to Synchrotron Microbeam Radiation Therapy Differs Markedly From Cells in Normal Tissues. International Journal of Radiation Oncology Biology Physics, 2010, 77, 886-894.	0.8	136
51	Viral apoptosis is induced by IRF-3-mediated activation of Bax. EMBO Journal, 2010, 29, 1762-1773.	7.8	224
52	Rational Design of Immunostimulatory siRNAs. Molecular Therapy, 2010, 18, 785-795.	8.2	66
53	X4 and R5 HIV-1 Have Distinct Post-entry Requirements for Uracil DNA Glycosylase during Infection of Primary Cells. Journal of Biological Chemistry, 2010, 285, 18603-18614.	3.4	27
54	Role of PKR and Type I IFNs in Viral Control during Primary and Secondary Infection. PLoS Pathogens, 2010, 6, e1000966.	4.7	35

#	Article	IF	CITATIONS
55	Differentiating the interferon pathway. Cell Cycle, 2010, 9, 3400-3400.	2.6	1
56	Monitoring Innate Immune Recruitment by siRNAs in Mammalian Cells. Methods in Molecular Biology, 2010, 623, 21-33.	0.9	16
57	An Antiviral Response Directed by PKR Phosphorylation of the RNA Helicase A. PLoS Pathogens, 2009, 5, e1000311.	4.7	54
58	Modified vaccinia virus Ankara can activate NF-κB transcription factors through a double-stranded RNA-activated protein kinase (PKR)-dependent pathway during the early phase of virus replication. Virology, 2009, 391, 177-186.	2.4	19
59	Promyelocytic Leukemia Zinc Finger Protein Regulates Interferon-Mediated Innate Immunity. Immunity, 2009, 30, 802-816.	14.3	88
60	ATF3 transcription factor and its emerging roles in immunity and cancer. Journal of Molecular Medicine, 2009, 87, 1053-1060.	3.9	295
61	siRNA delivery not Toll-free. Nature Biotechnology, 2009, 27, 911-912.	17.5	14
62	Differential Expression in Clear Cell Renal Cell Carcinoma Identified by Gene Expression Profiling. Journal of Urology, 2009, 181, 849-860.	0.4	25
63	Latest advances in innate antiviral defence. F1000 Biology Reports, 2009, 1, 22.	4.0	4
64	Interferon-inducible antiviral effectors. Nature Reviews Immunology, 2008, 8, 559-568.	22.7	1,855
65	Regulation of CRABP-II expression by MycN in Wilms tumor. Experimental Cell Research, 2008, 314, 3663-3668.	2.6	26
66	TLR7 Is Involved in Sequence-Specific Sensing of Single-Stranded RNAs in Human Macrophages. Journal of Immunology, 2008, 180, 2117-2124.	0.8	145
67	Determinants of Cytokine Induction by Small Interfering RNA in Human Peripheral Blood Mononuclear Cells. Journal of Interferon and Cytokine Research, 2008, 28, 221-233.	1.2	50
68	The p59 oligoadenylate synthetase-like protein possesses antiviral activity that requires the C-terminal ubiquitin-like domain. Journal of General Virology, 2008, 89, 2767-2772.	2.9	56
69	Protein Kinase R-dependent Regulation of Interleukin-10 in Response to Double-stranded RNA. Journal of Biological Chemistry, 2008, 283, 25132-25139.	3.4	34
70	The Role of PACT in Mediating Gene Induction, PKR Activation, and Apoptosis in Response to Diverse Stimuli. Journal of Interferon and Cytokine Research, 2008, 28, 469-476.	1.2	33
71	Quercetin Ingestion Does Not Alter Cytokine Changes in Athletes Competing in the Western States Endurance Run. Journal of Interferon and Cytokine Research, 2007, 27, 1003-1012.	1.2	92
72	Salicylates Trigger Protein Synthesis Inhibition in a Protein Kinase R-like Endoplasmic Reticulum Kinase-dependent Manner. Journal of Biological Chemistry, 2007, 282, 10164-10171.	3.4	29

#	Article	IF	CITATIONS
73	Human Immunodeficiency Virus-1/Surface Glycoprotein 120 Induces Apoptosis through RNA-Activated Protein Kinase Signaling in Neurons. Journal of Neuroscience, 2007, 27, 11047-11055.	3.6	62
74	Novel interferon-β-induced gene expression in peripheral blood cells. Journal of Leukocyte Biology, 2007, 82, 1353-1360.	3.3	44
75	Negative Regulation of TLR-Signaling Pathways by Activating Transcription Factor-3. Journal of Immunology, 2007, 179, 3622-3630.	0.8	189
76	Type I Interferon Inhibits Antibody Responses Induced by a Chimpanzee Adenovirus Vector. Molecular Therapy, 2007, 15, 393-403.	8.2	76
77	Tissue-Specific and Inducer-Specific Differential Induction of ISG56 and ISG54 in Mice. Journal of Virology, 2007, 81, 8656-8665.	3.4	62
78	Reduced expression of autotaxin predicts survival in uveal melanoma. British Journal of Ophthalmology, 2007, 91, 1385-1392.	3.9	36
79	Oligoadenylate Synthetase/Protein Kinase R Pathways and αβ TCR+T Cells Are Required for Adenovirus Vector: IFN-γ Inhibition of Herpes Simplex Virus-1 in Cornea. Journal of Immunology, 2007, 178, 5166-5172.	0.8	10
80	The response of mammalian cells to double-stranded RNA. Cytokine and Growth Factor Reviews, 2007, 18, 363-371.	7.2	217
81	Distinct roles of protein kinase R and toll-like receptor 3 in the activation of astrocytes by viral stimuli. Glia, 2007, 55, 239-252.	4.9	65
82	Lysophosphatidic acid downregulates tissue inhibitor of metalloproteinases, which are negatively involved in lysophosphatidic acid-induced cell invasion. Oncogene, 2007, 26, 2894-2901.	5.9	60
83	Gene Modulatory Effects, Pharmacokinetics, and Clinical Tolerance of Interferon-α1b: A Second Member of the Interferon-α Family. Clinical Pharmacology and Therapeutics, 2007, 81, 354-361.	4.7	14
84	Fineâ€ŧuning of the innate immune response by microRNAs. Immunology and Cell Biology, 2007, 85, 458-462.	2.3	99
85	Interferons induce an antiviral state in human pancreatic islet cells. Virology, 2007, 367, 92-101.	2.4	85
86	Cystic Fibrosis and Normal Human Airway Epithelial Cell Response to Influenza A Viral Infection Journal of Interferon and Cytokine Research, 2006, 26, 609-627.	1.2	35
87	Dynamic Flexibility of Double-stranded RNA Activated PKR in Solution. Journal of Molecular Biology, 2006, 359, 610-623.	4.2	21
88	Vascular Endothelial Growth Factor (VEGF) Is Suppressed in WT1-Transfected LNCaP Cells. Gene Expression, 2006, 13, 1-14.	1.2	15
89	The lack of RNA-dependent protein kinase enhances susceptibility of mice to genital herpes simplex virus type 2 infection. Immunology, 2006, 118, 060606080407004-???.	4.4	7
90	A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nature Biotechnology, 2006, 24, 559-565.	17.5	343

#	Article	IF	CITATIONS
91	"Endogenous adjuvant―activity of the RNA components of lupus autoantigens Sm/RNP and Ro 60. Arthritis and Rheumatism, 2006, 54, 1557-1567.	6.7	82
92	ARED 3.0: the large and diverse AU-rich transcriptome. Nucleic Acids Research, 2006, 34, D111-D114.	14.5	293
93	Cellular Retinoic Acid–Binding Protein II Is a Direct Transcriptional Target of MycN in Neuroblastoma. Cancer Research, 2006, 66, 8100-8108.	0.9	43
94	Replication of Hepatitis C Virus (HCV) RNA in Mouse Embryonic Fibroblasts: Protein Kinase R (PKR)-Dependent and PKR-Independent Mechanisms for Controlling HCV RNA Replication and Mediating Interferon Activities. Journal of Virology, 2006, 80, 7364-7374.	3.4	91
95	PKR and RNase L Contribute to Protection against Lethal West Nile Virus Infection by Controlling Early Viral Spread in the Periphery and Replication in Neurons. Journal of Virology, 2006, 80, 7009-7019.	3.4	220
96	Stability of CXCLâ€8 and Related AUâ€Rich mRNAs in the Context of Hepatitis C Virus Replication In Vitro. Journal of Infectious Diseases, 2006, 193, 802-811.	4.0	19
97	OAS and PKR Are Not Required for the Antiviral Effect of Ad:IFN-γAgainst Acute HSV-1 in Primary Trigeminal Ganglia Cultures. Journal of Interferon and Cytokine Research, 2006, 26, 220-225.	1.2	8
98	Functional Annotation of IFN-α-Stimulated Gene Expression Profiles from Sensitive and Resistant Renal Cell Carcinoma Cell Lines. Journal of Interferon and Cytokine Research, 2006, 26, 534-547.	1.2	13
99	A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major role of BTG2 in suppression of Ras-induced transformation. Genes and Development, 2006, 20, 236-252.	5.9	120
100	Efficient suppression of secretory clusterin levels by polymer-siRNA nanocomplexes enhances ionizing radiation lethality in human MCF-7 breast cancer cells in vitro. International Journal of Nanomedicine, 2006, 1, 155-162.	6.7	44
101	RNA interference in biology and disease. Blood, 2005, 106, 787-794.	1.4	135
102	Expression of IFITM1 in chronic myeloid leukemia patients. Leukemia Research, 2005, 29, 283-286.	0.8	33
103	Activation of the mammalian immune system by siRNAs. Nature Biotechnology, 2005, 23, 1399-1405.	17.5	321
104	Transcript profiling of Wilms tumors reveals connections to kidney morphogenesis and expression patterns associated with anaplasia. Oncogene, 2005, 24, 457-468.	5.9	43
105	Detection of foreign RNA: Implications for RNAi. Immunology and Cell Biology, 2005, 83, 224-228.	2.3	41
106	Dicing with siRNA. Nature Biotechnology, 2005, 23, 181-182.	17.5	9
107	Double-stranded RNA-dependent protein kinase (PKR) is downregulated by phorbol ester. FEBS Journal, 2005, 272, 1568-1576.	4.7	9
108	Down-Regulation of p53 by Double-Stranded RNA Modulates the Antiviral Response. Journal of Virology, 2005, 79, 11105-11114.	3.4	57

#	Article	IF	CITATIONS
109	A transcriptional signaling pathway in the IFN system mediated by 2′-5′-oligoadenylate activation of RNase L. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14533-14538.	7.1	99
110	Involvement of the Interferon-Regulated Antiviral Proteins PKR and RNase L in Reovirus-Induced Shutoff of Cellular Translation. Journal of Virology, 2005, 79, 2240-2250.	3.4	65
111	Analysis of Genes Induced by Sendai Virus Infection of Mutant Cell Lines Reveals Essential Roles of Interferon Regulatory Factor 3, NF-κB, and Interferon but Not Toll-Like Receptor 3. Journal of Virology, 2005, 79, 3920-3929.	3.4	97
112	Targeting Specific Cell Types with Silencing RNA. New England Journal of Medicine, 2005, 353, 1410-1411.	27.0	18
113	RNA-Dependent Protein Kinase Is Required for Alpha-1 Interferon Transgene-Induced Resistance to Genital Herpes Simplex Virus Type 2. Journal of Virology, 2005, 79, 9341-9345.	3.4	17
114	A Gene Expression Signature for Relapse of Primary Wilms Tumors. Cancer Research, 2005, 65, 2592-2601.	0.9	56
115	RNase L and Double-Stranded RNA-Dependent Protein Kinase Exert Complementary Roles in Islet Cell Defense during Coxsackievirus Infection. Journal of Immunology, 2005, 174, 1171-1177.	0.8	91
116	Dichotomy between survival and lytic gene expression in RNase L- and PKR-deficient mice transduced with an adenoviral vector expressing murine IFN-β following ocular HSV-1 infection. Experimental Eye Research, 2005, 80, 167-173.	2.6	7
117	AU-rich transient response transcripts in the human genome: expressed sequence tag clustering and gene discovery approach. Genomics, 2005, 85, 165-175.	2.9	28
118	PKR-Dependent and -Independent Mechanisms Are Involved in Translational Shutoff during Sindbis Virus Infection. Journal of Virology, 2004, 78, 8455-8467.	3.4	119
119	The Wilms Tumor Suppressor-1 Target Gene Podocalyxin Is Transcriptionally Repressed by p53. Journal of Biological Chemistry, 2004, 279, 33575-33585.	3.4	36
120	Synergistic Activation of Innate Immunity by Double-Stranded RNA and CpG DNA Promotes Enhanced Antitumor Activity. Cancer Research, 2004, 64, 5850-5860.	0.9	166
121	Phospholipid Scramblase 1 Potentiates the Antiviral Activity of Interferon. Journal of Virology, 2004, 78, 8983-8993.	3.4	107
122	Induction of interferon-stimulated gene expression and antiviral responses require protein deacetylase activity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9578-9583.	7.1	194
123	Protein Kinase R (PKR) Interacts with and Activates Mitogen-activated Protein Kinase Kinase 6 (MKK6) in Response to Double-stranded RNA Stimulation. Journal of Biological Chemistry, 2004, 279, 37670-37676.	3.4	97
124	Distinctive Roles for 2′,5′-Oligoadenylate Synthetases and Double-Stranded RNA-Dependent Protein Kinase R in the In Vivo Antiviral Effect of an Adenoviral Vector Expressing Murine IFN-β. Journal of Immunology, 2004, 172, 5638-5647.	0.8	23
125	Limited role of N-terminal phosphoserine residues in the activation of transcription by p53. Oncogene, 2004, 23, 4477-4487.	5.9	32
126	Patterns of coordinate down-regulation of ARE-containing transcripts following immune cell activation. Genomics, 2004, 84, 1002-1013.	2.9	57

#	Article	IF	CITATIONS
127	Expressed Gene Clusters Associated with Cellular Sensitivity and Resistance Towards Anti-viral and Anti-proliferative Actions of Interferon. Journal of Molecular Biology, 2004, 342, 833-846.	4.2	35
128	RNA interference and double-stranded-RNA-activated pathways. Biochemical Society Transactions, 2004, 32, 952-956.	3.4	102
129	Biochemical Analyses of Multiple Fractions of PKR Purified from<1> Escherichia coli 1 . Journal of Interferon and Cytokine Research, 2004, 24, 522-535.	1.2	Ο
130	Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2003, 8, 237-249.	4.9	719
131	The murine double-stranded RNA-dependent protein kinase PKR and the murine 2′,5′-oligoadenylate synthetase-dependent RNase L are required for IFN-β-mediated resistance against herpes simplex virus type 1 in primary trigeminal ganglion culture. Virology, 2003, 313, 126-135.	2.4	50
132	Derivation and characterization of a Wilms' tumour cell line, WiT 49. International Journal of Cancer, 2003, 107, 365-374.	5.1	59
133	Activation of the interferon system by short-interfering RNAs. Nature Cell Biology, 2003, 5, 834-839.	10.3	1,354
134	Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nature Medicine, 2003, 9, 33-39.	30.7	260
135	Poly(dl·dC)-induced Toll-like Receptor 3 (TLR3)-mediated Activation of NFκB and MAP Kinase Is through an Interleukin-1 Receptor-associated Kinase (IRAK)-independent Pathway Employing the Signaling Components TLR3-TRAF6-TAK1-TAB2-PKR. Journal of Biological Chemistry, 2003, 278, 16713-16719.	3.4	271
136	Impaired Innate Host Defense Causes Susceptibility to Respiratory Virus Infections in Cystic Fibrosis. Immunity, 2003, 18, 619-630.	14.3	119
137	Type I Interferon Induction Pathway, but Not Released Interferon, Participates in the Maturation of Dendritic Cells Induced by Negativeâ€5trand RNA Viruses. Journal of Infectious Diseases, 2003, 187, 1126-1136.	4.0	98
138	Alphavirus Minus-Strand Synthesis and Persistence in Mouse Embryo Fibroblasts Derived from Mice Lacking RNase L and Protein Kinase R. Journal of Virology, 2003, 77, 1801-1811.	3.4	39
139	IMMUNOLOGY: A Viral On/Off Switch for Interferon. Science, 2003, 300, 1100-1101.	12.6	15
140	ISG20, a New Interferon-induced RNase Specific for Single-stranded RNA, Defines an Alternative Antiviral Pathway against RNA Genomic Viruses. Journal of Biological Chemistry, 2003, 278, 16151-16158.	3.4	188
141	RNase L Mediates Transient Control of the Interferon Response through Modulation of the Double-stranded RNA-dependent Protein Kinase PKR. Journal of Biological Chemistry, 2003, 278, 20124-20132.	3.4	52
142	Novel Growth and Death Related Interferon-Stimulated Genes (ISGs) in Melanoma: Greater Potency of IFN- <i>β</i> Compared with IFN- <i>α</i> 2. Journal of Interferon and Cytokine Research, 2003, 23, 745-756.	1.2	111
143	Thrombomodulin RNA Is Destabilized Through Its 3â€2-Untranslated Element in Cells Exposed to IFN-γ. Journal of Interferon and Cytokine Research, 2003, 23, 723-728.	1.2	10
144	ARED 2.0: an update of AU-rich element mRNA database. Nucleic Acids Research, 2003, 31, 421-423.	14.5	149

#	Article	IF	CITATIONS
145	C114 Is a Novel IL-11-inducible Nuclear Double-stranded RNA-binding Protein That Inhibits Protein Kinase R. Journal of Biological Chemistry, 2003, 278, 22838-22845.	3.4	19
146	p38 Mitogen-Activated Protein Kinase-Dependent and -Independent Signaling of mRNA Stability of AU-Rich Element-Containing Transcripts. Molecular and Cellular Biology, 2003, 23, 425-436.	2.3	269
147	Heterogeneity in Control of mRNA Stability by AU-rich Elements. Journal of Biological Chemistry, 2003, 278, 12085-12093.	3.4	110
148	TLR2 and TLR4 agonists stimulate unique repertoires of host resistance genes in murine macrophages: interferon-β-dependent signaling in TLR4-mediated responses. Journal of Endotoxin Research, 2003, 9, 169-175.	2.5	17
149	Wilms' Tumor as a Model for Cancer Biology. , 2003, 222, 239-248.		10
150	Differential expression of E-cadherin and catenin in primary and metastatic Wilms's tumours. Journal of Clinical Pathology, 2003, 56, 218-225.	1.9	22
151	Absence of PKR Attenuates the Anti-HSV-1 Activity of an Adenoviral Vector Expressing Murine IFN-β. Journal of Interferon and Cytokine Research, 2002, 22, 861-871.	1.2	16
152	Editorial. Viral Immunology, 2002, 15, 1-2.	1.3	2
153	Differential Effect of Murine Alpha/Beta Interferon Transgenes on Antagonization of Herpes Simplex Virus Type 1 Replication. Journal of Virology, 2002, 76, 6558-6567.	3.4	64
154	Interferon-Regulated Pathways That Control Hepatitis B Virus Replication in Transgenic Mice. Journal of Virology, 2002, 76, 2617-2621.	3.4	112
155	Blockade of Interferon Induction and Action by the E3L Double-Stranded RNA Binding Proteins of Vaccinia Virus. Journal of Virology, 2002, 76, 5251-5259.	3.4	162
156	Functional Replacement of the Carboxy-Terminal Two-Thirds of the Influenza A Virus NS1 Protein with Short Heterologous Dimerization Domains. Journal of Virology, 2002, 76, 12951-12962.	3.4	94
157	Expression and localization of HGF and met in Wilms' tumours. Journal of Pathology, 2002, 196, 76-84.	4.5	23
158	TLR4, but not TLR2, mediates IFN-β–induced STAT1α/β-dependent gene expression in macrophages. Nature Immunology, 2002, 3, 392-398.	14.5	753
159	Signal Integration via PKR. Science Signaling, 2001, 2001, re2-re2.	3.6	318
160	Protein kinase PKR is required for platelet-derived growth factor signaling of c-fos gene expression via Erks and Stat3. EMBO Journal, 2001, 20, 2487-2496.	7.8	65
161	RNA-Dependent Protein Kinase PKR Is Required for Activation of NF-κB by IFN-γ in a STAT1-Independent Pathway. Journal of Immunology, 2001, 166, 6170-6180.	0.8	110
162	ARED: human AU-rich element-containing mRNA database reveals an unexpectedly diverse functional repertoire of encoded proteins. Nucleic Acids Research, 2001, 29, 246-254.	14.5	352

#	Article	IF	CITATIONS
163	The Role of NF-κB in the Regulation of the Expression of Wilms Tumor Suppressor Gene WT1. Gene Expression, 2001, 9, 103-114.	1.2	7
164	The protein kinase PKR is required for p38 MAPK activation and the innate immune response to bacterial endotoxin. EMBO Journal, 2000, 19, 4292-4297.	7.8	257
165	Regulation of c-myc expression by IFN-Î ³ through Stat1-dependent and -independent pathways. EMBO Journal, 2000, 19, 263-272.	7.8	281
166	A dynamically tuned double-stranded RNA binding mechanism for the activation of antiviral kinase PKR. EMBO Journal, 2000, 19, 5567-5574.	7.8	151
167	Activation of p38 Mitogen-Activated Protein Kinase and c-Jun NH ₂ -Terminal Kinase by Double-Stranded RNA and Encephalomyocarditis Virus: Involvement of RNase L, Protein Kinase R, and Alternative Pathways. Molecular and Cellular Biology, 2000, 20, 617-627.	2.3	193
168	Induction of E-Selectin Expression by Double-Stranded RNA and TNF-α Is Attenuated in Murine Aortic Endothelial Cells Derived from Double-Stranded RNA-Activated Kinase (PKR)-Null Mice. Journal of Immunology, 2000, 164, 2077-2083.	0.8	27
169	Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6097-6101.	7.1	224
170	NF-κB Activation by Double-Stranded-RNA-Activated Protein Kinase (PKR) Is Mediated through NF-κB-Inducing Kinase and IκB Kinase. Molecular and Cellular Biology, 2000, 20, 1278-1290.	2.3	350
171	Effect of Deficiency of the Double-Stranded RNA-Dependent Protein Kinase, PKR, on Antiviral Resistance in the Presence or Absence of Ribonuclease L: HSV-1 Replication Is Particularly Sensitive to Deficiency of the Major IFN-Mediated Enzymes. Journal of Interferon and Cytokine Research, 2000, 20, 653-659	1.2	61
172	Negative Regulation of CD8+ T Cell Function by the IFN-Induced and Double-Stranded RNA-Activated Kinase PKR. Journal of Immunology, 2000, 165, 6896-6901.	0.8	25
173	Central Role of Double-Stranded RNA-Activated Protein Kinase in Microbial Induction of Nitric Oxide Synthase. Journal of Immunology, 2000, 165, 988-996.	0.8	91
174	The B56α Regulatory Subunit of Protein Phosphatase 2A Is a Target for Regulation by Double-Stranded RNA-Dependent Protein Kinase PKR. Molecular and Cellular Biology, 2000, 20, 5285-5299.	2.3	119
175	Identification of Connective Tissue Growth Factor as a Target of WT1 Transcriptional Regulation. Journal of Biological Chemistry, 2000, 275, 38139-38150.	3.4	36
176	HIV-I TAT Inhibits PKR Activity by Both RNA-Dependent and RNA-Independent Mechanisms. Archives of Biochemistry and Biophysics, 2000, 373, 361-367.	3.0	80
177	Characterization of a 500-kb Contig Spanning the Region between c-Ha-Ras and MUC2 on Chromosome 11p15.5. Genomics, 2000, 69, 196-202.	2.9	10
178	Characterization of the Gene Encoding the 100-kDa Form of Human 2′,5′Oligoadenylate Synthetase. Genomics, 2000, 70, 232-240.	2.9	29
179	Identification of Critical Residues Required for Suppressor of Cytokine Signaling-specific Regulation of Interleukin-4 Signaling. Journal of Biological Chemistry, 2000, 275, 26500-26506.	3.4	61
180	The antiviral enzymes PKR and RNase L suppress gene expression from viral and non-viral based vectors. Nucleic Acids Research, 1999, 27, 4369-4375.	14.5	52

#	Article	IF	CITATIONS
181	Involvement of Double-stranded RNA-activated Protein Kinase in the Synergistic Activation of Nuclear Factor-κB by Tumor Necrosis Factor-α and γ-Interferon in Preneuronal Cells. Journal of Biological Chemistry, 1999, 274, 4801-4806.	3.4	61
182	Translational control perks up. Nature, 1999, 397, 209-211.	27.8	28
183	Cell cycle regulation of the double stranded RNA activated protein kinase, PKR. Oncogene, 1999, 18, 315-326.	5.9	65
184	PKR; a sentinel kinase for cellular stress. Oncogene, 1999, 18, 6112-6120.	5.9	763
185	Interferon Action in Triply Deficient Mice Reveals the Existence of Alternative Antiviral Pathways. Virology, 1999, 258, 435-440.	2.4	230
186	p38 MAP kinase is required for STAT1 serine phosphorylation and transcriptional activation induced by interferons. EMBO Journal, 1999, 18, 5601-5608.	7.8	349
187	The DNA-binding subunit p140 of replication factor C is upregulated in cycling cells and associates with G 1 phase cell cycle regulatory proteins. Journal of Molecular Medicine, 1999, 77, 386-392.	3.9	7
188	DRBP76, a Double-stranded RNA-binding Nuclear Protein, Is Phosphorylated by the Interferon-induced Protein Kinase, PKR. Journal of Biological Chemistry, 1999, 274, 20432-20437.	3.4	116
189	JNK2 and IKKÎ ² Are Required for Activating the Innate Response to Viral Infection. Immunity, 1999, 11, 721-731.	14.3	362
190	1H, 13C, 15N resonance assignment of the 20 kDa double stranded RNA binding domain of PKR. Journal of Biomolecular NMR, 1998, 12, 349-351.	2.8	17
191	Structure of the double-stranded RNA-binding domain of the protein kinase PKR reveals the molecular basis of its dsRNA-mediated activation. EMBO Journal, 1998, 17, 5458-5465.	7.8	298
192	Loss of heterozygosity at chromosome 11p15 in Wilms tumors: identification of two independent regions. Oncogene, 1998, 17, 237-240.	5.9	41
193	Subcellular localization of the von Hippel-Lindau disease gene product is cell cycle-dependent. , 1998, 78, 62-69.		33
194	Constitutive expression of the Wilms tumor suppressor gene (WT1) in renal cell carcinoma. , 1998, 78, 182-188.		60
195	HOW CELLS RESPOND TO INTERFERONS. Annual Review of Biochemistry, 1998, 67, 227-264.	11.1	3,630
196	Genomic Features of Human <i>PKR:</i> Alternative Splicing and a Polymorphic CGG Repeat in the 5′-Untranslated Region. Journal of Interferon and Cytokine Research, 1998, 18, 609-616.	1.2	16
197	Review of Recent Developments in the Molecular Characterization of Recombinant Alfa Interferons on the 40th Anniversary of the Discovery of Interferon. Cancer Biotherapy and Radiopharmaceuticals, 1998, 13, 143-154.	1.0	28
198	p53, bcl-2, and Bax Expression in Renal Cell Carcinoma. Urology, 1998, 51, 1057-1061.	1.0	67

#	Article	IF	CITATIONS
199	Two distinct tumor suppressor loci within chromosome 11p15 implicated in breast cancer progression and metastasis. Human Molecular Genetics, 1998, 7, 895-903.	2.9	62
200	Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 15623-15628.	7.1	1,676
201	Mutations in the Double-stranded RNA-activated Protein Kinase Insert Region That Uncouple Catalysis from eIF21± Binding. Journal of Biological Chemistry, 1998, 273, 11274-11280.	3.4	29
202	Protein-tyrosine Phosphatase Shp-1 Is a Negative Regulator of IL-4- and IL-13-dependent Signal Transduction. Journal of Biological Chemistry, 1998, 273, 33893-33896.	3.4	158
203	Potential Alu Function: Regulation of the Activity of Double-Stranded RNA-Activated Kinase PKR. Molecular and Cellular Biology, 1998, 18, 58-68.	2.3	194
204	Characterization of the Solution Complex between the Interferon-induced, Double-stranded RNA-activated Protein Kinase and HIV-I Trans-activating Region RNA. Journal of Biological Chemistry, 1997, 272, 9510-9516.	3.4	115
205	Specific Binding of the ETS-Domain Protein to the Interferon-Stimulated Response Element. Journal of Interferon and Cytokine Research, 1997, 17, 1-10.	1.2	33
206	Receptor-associated constitutive protein tyrosine phosphatase activity controls the kinase function of JAK1. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8563-8568.	7.1	63
207	Role of the double-stranded RNA-activated protein kinase (PKR) in cell regulation. Biochemical Society Transactions, 1997, 25, 509-513.	3.4	157
208	A double-stranded RNA-activated protein kinase-dependent pathway mediating stress-induced apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3279-3283.	7.1	380
209	Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: role of IRF-1 and NF-kappa B. EMBO Journal, 1997, 16, 406-416.	7.8	336
210	Interferon gamma and interleukin 4 stimulate prolonged expression of inducible nitric oxide synthase in human airway epithelium through synthesis of soluble mediators Journal of Clinical Investigation, 1997, 100, 829-838.	8.2	161
211	Testicular cancer in association with developmental renal anomalies and hypospadias. Urology, 1996, 47, 82-87.	1.0	6
212	Tissue-specific regulation of theWT1 locus. , 1996, 27, 456-461.		7
213	Expression of Intracellular Interferon Constitutively Activates ISGF3 and Confers Resistance to EMC Viral Infection. Journal of Interferon and Cytokine Research, 1996, 16, 507-510.	1.2	13
214	The interferon-inducible double-stranded RNA-activated protein kinase self-associates in vitro and in vivo Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 8283-8287.	7.1	151
215	Analysis of the wilms tumor suppressor geneWT1 in endometrial carcinoma. Genes Chromosomes and Cancer, 1995, 14, 313-315.	2.8	16
216	HIV-1 Tat Directly Interacts with the Interferon-Induced, Double-Stranded RNA-Dependent Kinase, PKR. Virology, 1995, 213, 413-424.	2.4	156

#	Article	IF	CITATIONS
217	Human PKR Transfected into Murine Cells Stimulates Expression of Genes under Control of the HIV1 or HTLV-I LTR. Virology, 1995, 214, 653-659.	2.4	19
218	Mutational Analysis of the Double-stranded RNA (dsRNA) Binding Domain of the dsRNA-activated Protein Kinase, PKR. Journal of Biological Chemistry, 1995, 270, 2601-2606.	3.4	77
219	Roles of Protein-tyrosine Phosphatases in Stat1α-mediated Cell Signaling. Journal of Biological Chemistry, 1995, 270, 25709-25714.	3.4	92
220	Microsatellite instability at a single locus (D11S988) on chromosome 11p15.5 as a late event in mammary tumorigenesis. Human Molecular Genetics, 1995, 4, 1889-1894.	2.9	27
221	Response and Resistance to Interferons and Interacting Cytokines. Journal of the National Cancer Institute, 1995, 87, 257-264.	6.3	11
222	The role of the dsRNA-activated kinase, PKR, in signal transduction. Seminars in Virology, 1995, 6, 191-202.	3.9	73
223	In situ expression of the early growth response gene-1 during murine nephrogenesis. Journal of Urology, 1995, 154, 700-705.	0.4	12
224	Targeting RNA for Degradation with a (2', 5')-Oligoadenylate Antisense Chimera. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 1073-1076.	1.1	1
225	Blockage of NF-kappa B signaling by selective ablation of an mRNA target by 2-5A antisense chimeras. Science, 1994, 265, 789-792.	12.6	241
226	HIV-1 TAR RNA Has an Intrinsic Ability to Activate Interferon-Inducible Enzymes. Virology, 1994, 204, 823-827.	2.4	154
227	Functional differences in the promoters of the interferon-inducible (2'-5')A oligoadenylate synthetase and 6-16 genes in interferon-resistant Daudi cells. FEBS Journal, 1994, 219, 547-553.	0.2	14
228	The Molecular Genetics of Wilms Tumor. Cancer Investigation, 1994, 12, 57-65.	1.3	15
229	Double-stranded RNA-dependent protein kinase activates transcription factor NF-kappa B by phosphorylating I kappa B Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 6288-6292.	7.1	548
230	Deletion ofWT1andWIT1Genes and Loss of Heterozygosity on Chromosome 11p in Wilms Tumors in Japan. Japanese Journal of Cancer Research, 1993, 84, 616-624.	1.7	10
231	The Interferon-Induced Double-Stranded RNA-Activated Human p68 Protein Kinase Potently Inhibits Protein Synthesis in Cultured Cells. Virology, 1993, 192, 380-385.	2.4	61
232	Localization of the Human Interferon-Induced, ds-RNA Activated p68 Kinase Gene (PRKR) to Chromosome 2p21-p22. Genomics, 1993, 16, 768-770.	2.9	24
233	Molecular characterization of cytogenetic alterations associated with the Beckwith — Wiedemann syndrome (BWS) phenotype refines the localization and suggests the gene for BWS is imprinted. Human Molecular Genetics, 1993, 2, 549-556.	2.9	104
234	Homozygous somatic Wt1 point mutations in sporadic unilateral Wilms tumor Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 1416-1419.	7.1	72

#	Article	IF	CITATIONS
235	PKR: Proposed Nomenclature for the RNA-Dependent Protein Kinase Induced by Interferon. Journal of Interferon Research, 1993, 13, 241-241.	1.2	45
236	Identification of double-stranded RNA-binding domains in the interferon-induced double-stranded RNA-activated p68 kinase Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 5447-5451.	7.1	178
237	Interferon-α Activates Binding of Nuclear Factors to a Sequence Element in the c- <i>fos</i> Proto-Oncogene 5′-Flanking Region. Journal of Interferon Research, 1992, 12, 355-361.	1.2	8
238	Multiple Tumor Suppressor Genes in Multistep Carcinogenesis Tohoku Journal of Experimental Medicine, 1992, 168, 149-152.	1.2	6
239	Basal expression of the gene (TIMP) encoding the murine tissue inhibitor of metalloproteinases is mediated through AP1- and CCAAT-binding factors. Gene, 1992, 116, 187-194.	2.2	18
240	Transcriptional activation of human (2'-5')oligoadenylate synthetase gene expression by the phorbol ester 12-O-tetradecanoyl-phorbol 13-acetate in type-l-interferon-treated HL-60 and HeLa cells. FEBS Journal, 1992, 207, 297-304.	0.2	7
241	Loss of heterozygosity mapping in Wilms tumor indicates the involvement of three distinct regions and a limited role for nondisjunction or mitotic recombination. Genes Chromosomes and Cancer, 1992, 5, 326-334.	2.8	67
242	Constitutive expression of human double-stranded RNA-activated p68 kinase in murine cells mediates phosphorylation of eukaryotic initiation factor 2 and partial resistance to encephalomyocarditis virus growth. Journal of Virology, 1992, 66, 5805-5814.	3.4	232
243	The distal region of 11p13 and associated genetic diseases. Genomics, 1991, 11, 284-293.	2.9	22
244	Transcriptional regulation of interferon-stimulated genes. FEBS Journal, 1991, 200, 1-11.	0.2	181
245	Direct pulsed field gel electrophoresis of Wilms' tumors shows that dna deletions in 11 p 13 are rare. Genes Chromosomes and Cancer, 1991, 3, 89-100.	2.8	44
246	The murine 2-5A synthetase locus: three distinct transcripts from two linked genes. Nucleic Acids Research, 1991, 19, 1917-1924.	14.5	39
247	Regulation of Tumor Necrosis Factor Receptor Expression by Acid-Labile Interferon-α from AIDS Sera. AIDS Research and Human Retroviruses, 1991, 7, 545-552.	1.1	22
248	Signal Transduction and Transcriptional Regulation of Interferon-α–Stimulated Genes. Journal of Interferon Research, 1991, 11, 207-213.	1.2	20
249	Signal transduction by interferon-alpha through arachidonic acid metabolism. Science, 1991, 251, 204-207.	12.6	154
250	Role for the Wilms tumor gene in genital development?. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 5383-5386.	7.1	86
251	Wilms Tumor Locus on 11p13 Defined by Multiple CpG Island-Associated Transcripts. Science, 1990, 250, 994-997.	12.6	138
252	Developmental expression of the endogenous TIMP gene and a TIMP-lacZ fusion gene in transgenic mice Genes and Development, 1990, 4, 1094-1106.	5.9	79

#	Article	IF	CITATIONS
253	Tissue, Developmental, and Tumor-Specific Expression of Divergent Transcripts in Wilms Tumor. Science, 1990, 250, 991-994.	12.6	160
254	X chromosome inactivation of the human TIMP gene. Nucleic Acids Research, 1990, 18, 4191-4195.	14.5	56
255	Definition of the limits of the Wilms tumor locus on human chromosome 11p13. Genomics, 1990, 6, 309-315.	2.9	34
256	Molecular characterization of Beckwith-Wiedemann syndrome (BWS) patients with partial duplication of chromosome 11p excludes the gene MYOD1 from the BWS region. Genomics, 1990, 8, 693-698.	2.9	19
257	Constitutional and somatic deletions of two different regions of maternal chromosome 11 in Wilms tumor. Genomics, 1990, 7, 434-438.	2.9	25
258	Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell, 1990, 62, 379-390.	28.9	989
259	Constitutive Expression of a 2′,5′-Oligoadenylate Synthetase cDNA Results in Increased Antiviral Activity and Growth Suppression. Journal of Interferon Research, 1989, 9, 649-657.	1.2	134
260	Interferon and growth factor modulation of nuclear factors binding to 5? upstream elements of the 2-5A synthetase gene. Journal of Cellular Biochemistry, 1988, 38, 261-267.	2.6	2
261	Interferon and phorbol esters down-regulate slgM expression by independent pathways. Journal of Cellular Physiology, 1988, 134, 245-252.	4.1	6
262	The interaction of interferon-α and -γ: Regulation of (2–5)A synthetase activity. Virology, 1988, 165, 87-94.	2.4	16
263	Downregulation of interferon alpha but not gamma receptor expression in vivo in the acquired immunodeficiency syndrome Journal of Clinical Investigation, 1988, 82, 1415-1421.	8.2	41
264	Differential human interferon alpha receptor expression on proliferating and non-proliferating cells. FEBS Journal, 1986, 157, 187-193.	0.2	27
265	Interferon-regulated human 2–5A synthetase gene maps to chromosome 12. Somatic Cell and Molecular Genetics, 1986, 12, 403-408.	0.7	25
266	RFLP detected by an X-Uinked cDNA encoding erythroid-potentiating activity/tissue inhibitor of metalloproteinase (EPA/TIMP). Nucleic Acids Research, 1986, 14, 9226-9226.	14.5	12
267	Early Immune Response in Healthy and Immunocompromised Subjects with Primary Varicella-Zoster Virus Infection. Journal of Infectious Diseases, 1986, 154, 422-429.	4.0	158
268	Regulation of interferon receptor expression in human blood lymphocytes in vitro and during interferon therapy Journal of Clinical Investigation, 1986, 77, 1632-1638.	8.2	66
269	Production and characterization of a monoclonal antibody to a human interferon-induced double-stranded RNA-binding Mr 68,000 protein kinase Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 4959-4963.	7.1	7
270	Elevated Levels of Interferon-Induced 2'-5' Oligoadenylate Synthetase in Generalized Persistent Lymphadenopathy and the Acquired Immunodeficiency Syndrome. Journal of Infectious Diseases, 1985, 152, 466-472.	4.0	42

#	Article	IF	CITATIONS
271	Molecular cloning of cDNAs from androgen-independent mRNA species of DBA/2 mouse sub-maxillary glands. Nucleic Acids Research, 1984, 12, 1361-1376.	14.5	24
272	The effect of interferon on cells deficient in nucleoside transport or lacking thymidine kinase activity. Biochemical and Biophysical Research Communications, 1984, 118, 124-130.	2.1	5
273	Interferon-induced 2-5A synthetase activity in human peripheral blood mononuclear cells after immunization with influenza virus and rubella virus vaccines. Journal of Virology, 1984, 49, 748-753.	3.4	30
274	Differential binding of human interferon- \hat{l}_{\pm} subtypes to receptors on lymphoblastoid cells. Biochemical and Biophysical Research Communications, 1983, 110, 537-544.	2.1	57
275	Molecular cloning of partial cDNA copies of two distinct mouse IFN-β mRNAs. Nucleic Acids Research, 1982, 10, 3069-3084.	14.5	50
276	PROTEIN KINASE ACTIVITY AND THE NATURAL OCCURRENCE OF 2-5A IN INTERFERON-TREATED EMC VIRUS-INFECTED L-CELLS. Annals of the New York Academy of Sciences, 1980, 350, 448-458.	3.8	12
277	The 2–5A (pppA2′ p5′ A2′ p5′ A) system in interferon-treated and control cells. Trends in Biochemic: Sciences, 1980, 5, 138-140.	al 7.5	56
278	The respective roles of the protein kinase and pppA2′ p5′ A2′ p5′ A-activated endonuclease in the inhil of protein synthesis by double stranded RNA in rabbit reticulocyte lysates. Nucleic Acids Research, 1979, 6, 1335-1350.	oition 14.5	57
279	Natural occurrence of 2-5A in interferon-treated EMC virus-infected L cells. Nature, 1979, 282, 582-586.	27.8	265
280	Activation of a nuclease by pppA2′p5′ A2′p5′ A in intact cells. FEBS Letters, 1979, 105, 47-52.	2.8	109
281	Inhibition of protein synthesis by 2′–5′ linked adenine oligonucleotides in intact cells. Nature, 1978, 276, 88-90.	27.8	203
282	Synthesis and Breakdown of pppA2'p5'A2'p5'A and Transient Inhibition of Protein Synthesis in Extracts from Interferon-Treated and Control Cells. FEBS Journal, 1978, 92, 455-462.	0.2	141
283	Inhibition of cell-free protein synthesis by pppA2′ p5′ A2′ p5′ A: a novel oligonucleotide synthesized by interferon-treated L cell extracts. Cell, 1978, 13, 565-572.	28.9	453
284	Solid phase radioimmunoassays using labelled antibodies: A conceptual framework for designing assays. Journal of Immunological Methods, 1977, 14, 73-84.	1.4	27
285	Antiviral response in insects?. Journal of Invertebrate Pathology, 1977, 29, 44-49.	3.2	7
286	Detection of Double-Stranded RNA in Semliki Forest Virus-Infected Cells by an Indirect Solid Phase Radioimmunoassay: an Assay for Interferon. Intervirology, 1977, 8, 110-116.	2.8	2