Bryan R Williams

List of Publications by Year in descending order

[^0]
1 Mitochondrial arginase-2 is essential for IL-10 metabolic reprogramming of inflammatory 5.8 74 macrophages. Nature Communications, 2021, 12, 1460.(â^) â€Epigallocatechinâ $€ 3$ â $€$ gallate and <scp>EZH</scp>2 inhibitor <scp>CSK</scp> 343 have similar inhibitory2 effects and mechanisms of action on colorectal cancer cells. Clinical and ExperimentalPharmacology and Physiology, 2018, 45, 58-67.Mechanisms and consequences of constitutive activation of integrin-linked kinase in acute myeloid3.210
3 leukemia. Cytokine and Growth Factor Reviews, 2018, 43, 1-7.A nonâ€eanonical function of Ezh2 preserves immune homeostasis. EMBO Reports, 2017, 18, 619-631.
11 Activation of cGAS-dependent antiviral responses by DNA intercalating agents. Nucleic Acids Research, 2017, 45, 198-205.
36
12 An Emergence Framework of Carcinogenesis. Frontiers in Oncology, 2017, 7, 198.1.318
13 Understanding immune phenotypes in human gastric disease tissues by multiplexed 1.8 26
immunohistochemistry. Journal of Translational Medicine, 2017, 15, 206.Identification of a histone family gene signature for predicting the prognosis of cervical cancer

Telomerase Deficiency Causes Alveolar Stem Cell Senescence-associated Low-grade Inflammation in

BTB-ZF transcriptional regulator PLZF modifies chromatin to restrain inflammatory signaling
21 programs. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112,
3.3

1535-1540.

22 Sequence-dependent off-target inhibition of TLR7/8 sensing by synthetic microRNA inhibitors. Nucleic
27
28

Inosine-Mediated Modulation of RNA Sensing by Toll-Like Receptor 7 (TLR7) and TLR8. Journal of
Virology, 2014, 88, 799-810.

High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the
transcriptional regulator ATF3. Nature Immunology, 2014, 15, 152-160.
7.0

337

Integrin-linked Kinase Modulates Lipopolysaccharide- and Helicobacter pylori-induced Nuclear Factor
29 श्र-activated Tumor Necrosis Factor- $1 \pm$ Production via Regulation of p65 Serine 536 Phosphorylation.
1.6

Journal of Biological Chemistry, 2014, 289, 27776-27793.
The Role of Ets2 Transcription Factor in the Induction of MicroRNA-155 (miR-155) by Lipopolysaccharide and Its Targeting by Interleukin-10. Journal of Biological Chemistry, 2014, 289, 4316-4325.

Activating Transcription Factor 3 Contributes to Toll-Like Receptor-Mediated Macrophage Survival via
Activating Transcription Factor 3 Contributes to Toli-Like Receptor-Mediated Macrophage Survival via
Repression of<i>Bax</i>and<i>Bak</i>. Journal of Interferon and Cytokine Research, 2013, 33, 682-693.
$0.5 \quad 11$

32 Fine tuning type I interferon responses. Cytokine and Growth Factor Reviews, 2013, 24, 217-225.
3.2

103

33 ATF3 Suppresses Metastasis of Bladder Cancer by Regulating Gelsolin-Mediated Remodeling of the Actin Cytoskeleton. Cancer Research, 2013, 73, 3625-3637.
0.4

114

The use of miRNA microarrays for the analysis of cancer samples with global miRNA decrease. Rna,
2013, 19, 876-888.
1.6

52

[^1]6.5 23
\[

$$
\begin{aligned}
& \text { The Promyelocytic Leukemia Zinc Finger Protein: Two Decades of Molecular Oncology. Frontiers in } \\
& \text { Oncology, 2012, 2, 74. }
\end{aligned}
$$
\]

Human Toll-Like Receptor 8 Can Be Cool Too: Implications for Foreign RNA Sensing. Journal of
Interferon and Cytokine Research, 2012, 32, 350-361.

40 siRNAâ \neq induced immunostimulation through TLR7 promotes antitumoral activity against HPVấedriven

Regulation of Double-Stranded RNA Dependent Protein Kinase Expression and Attenuation of Protein

41 Synthesis Induced by Bacterial Toll-Like Receptors Agonists in the Absence of Interferon. Journal of
$0.5 \quad 4$
Interferon and Cytokine Research, 2012, 32, 495-504.
42 HDACi: molecular mechanisms and therapeutic implications in the innate immune system. Immunology
1.0 and Cell Biology, 2012, 90, 23-32.

Regulation of Actin Dynamics by Protein Kinase R Control of Gelsolin Enforces Basal Innate Immune
$43 \quad \begin{aligned} & \text { Regulation of Actin Dynamics by Protein } \\ & \text { Defense. Immunity, 2012, 36, 795-806. }\end{aligned}$
$6.6 \quad 54$

$$
0.0
$$

44 Dynamiting Viruses with MxA. Immunity, 2011, 35, 491-493.
6.6

Interferon-Stimulated Genes and Their Protein Products: What and How?. Journal of Interferon and
Cytokine Research, 2011, 31, 1-4.
0.5

50

46 Making Sense of Viral RNA Sensing. Molecular Therapy, 2011, 19, 1578-1581.
3.7

10

$$
\begin{aligned}
& 47 \text { Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Research, } \\
& \text { 2011, 39, 5692-5703. }
\end{aligned}
$$

$6.5 \quad 361$

Different modes of interaction by TIAR and HuR with target RNA and DNA. Nucleic Acids Research, 2011,
39, 1117-1130.
6.5

59

Genetic modulation of TLR8 response following bacterial phagocytosis. Human Mutation, 2010, 31,
1.1

67
1069-1079.

Tumor Cell Response to Synchrotron Microbeam Radiation Therapy Differs Markedly From Cells in Normal Tissues. International Journal of Radiation Oncology Biology Physics, 2010, 77, 886-894.

51 Viral apoptosis is induced by IRF-3-mediated activation of Bax. EMBO Journal, 2010, 29, 1762-1773.
 3.5
 224

X4 and R5 HIV-1 Have Distinct Post-entry Requirements for Uracil DNA Clycosylase during Infection of
Primary Cells. Journal of Biological Chemistry, 2010, 285, 18603-18614.
1.6 27

```
5 5 \text { Differentiating the interferon pathway. Cell Cycle, 2010, 9, 3400-3400.}

57 An Antiviral Response Directed by PKR Phosphorylation of the RNA Helicase A. PLoS Pathogens, 2009, 5,
el000311.

Modified vaccinia virus Ankara can activate NF-ÎOB transcription factors through a double-stranded
58 RNA-activated protein kinase (PKR)-dependent pathway during the early phase of virus replication.

Virology, 2009, 391, 177-186.
\(59 \quad\) Promyelocytic Leukemia Zinc Finger Protein Regulates Interferon-Mediated Innate Immunity. Immunity,
\(2009,30,802-816\).
60 ATF3 transcription factor and its emerging roles in immunity and cancer. Journal of Molecular

Medicine, 2009, 87, 1053-1060.
1.7

295

61 siRNA delivery not Toll-free. Nature Biotechnology, 2009, 27, 911-912.
\(9.4 \quad 14\)

\section*{62 Differential Expression in Clear Cell Renal Cell Carcinoma Identified by Gene Expression Profiling.}

Journal of Urology, 2009, 181, 849-860.
0.2

25

63 Latest advances in innate antiviral defence. F1000 Biology Reports, 2009, 1, 22.
4.0

4

64 Interferon-inducible antiviral effectors. Nature Reviews Immunology, 2008, 8, 559-568.
65 Regulation of CRABP-Il expression by MycN in Wilms tumor. Experimental Cell Research, 2008, 314,
3663-3668.
26
TLR7 Is Involved in Sequence-Specific Sensing of Single-Stranded RNAs in Human Macrophages. Journal ..... 0.4 ..... 145 of Immunology, 2008, 180, 2117-2124.
67 Determinants of Cytokine Induction by Small Interfering RNA in Human Peripheral Blood Mononuclear Cells. Journal of Interferon and Cytokine Research, 2008, 28, 221-233.

The p59 oligoadenylate synthetase-like protein possesses antiviral activity that requires the C-terminalubiquitin-like domain. Journal of General Virology, 2008, 89, 2767-2772.

Protein Kinase R-dependent Regulation of Interleukin-10 in Response to Double-stranded RNA. Journal
1.6

34
of Biological Chemistry, 2008, 283, 25132-25139.

The Role of PACT in Mediating Gene Induction, PKR Activation, and Apoptosis in Response to Diverse

74 Novel interferon-Î2-induced gene expression in peripheral blood cells. Journal of Leukocyte Biology, 2007, 82, 1353-1360.

Negative Regulation of TLR-Signaling Pathways by Activating Transcription Factor-3. Journal of
Oligoadenylate Synthetase/Protein Kinase R Pathways and \(\hat{I} \pm \hat{I}^{2} T C R+T\) Cells Are Required for Adenovirus
Vector: IFN-1̂3 Inhibition of Herpes Simplex Virus-1 in Cornea. Journal of Immunology, 2007, 178, 5166-5172. 79
The response of mammalian cells to double-stranded RNA. Cytokine and Growth Factor Reviews, 2007, 18, 363-371.
Distinct roles of protein kinase R
stimuli. Clia, 2007, 55, 239-252.\(0.4 \quad 10\)2.565
83 Gene Modulatory Effects, Pharmacokinetics, and Clinical Tolerance of Interferon \(\hat{-1} \pm 1 \mathrm{~b}\) : A Second Member of the Interferon-lt Family. Clinical Pharmacology and Therapeutics, 2007, 81, 354-361.Fineâ€tuning of the innate immune response by microRNAs. Immunology and Cell Biology, 2007, 85,
1.0 ..... 99
458-462. 8485 Interferons induce an antiviral state in human pancreatic islet cells. Virology, 2007, 367, 92-101.1.185
Cystic Fibrosis and Normal Human Airway Epithelial Cell Response to Influenza A Viral Infection..0.535Journal of Interferon and Cytokine Research, 2006, 26, 609-627.Dynamic Flexibility of Double-stranded RNA Activated PKR in Solution. Journal of Molecular Biology,2.021
2006, 359, 610-623.
â€œEndogenous adjuvantâ€ activity of the RNA components of lupus autoantigens Sm/RNP and Ro 60.
Arthritis and Rheumatism, 2006, 54, 1557-1567.
\begin{tabular}{l}
93 Cellular Retinoic Acidấ"Binding Protein II Is a Direct Transcriptional Target of MycN in Neuroblastoma. \\
\hline Cancer Research, 2006, 66, 8100-8108.
\end{tabular}

Replication of Hepatitis C Virus (HCV) RNA in Mouse Embryonic Fibroblasts: Protein Kinase R
\begin{tabular}{llll}
94 & (PKR)-Dependent and PKR-Independent Mechanisms for Controlling HCV RNA Replication and Mediating & 1.5 & 91 \\
Interferon Activities. Journal of Virology, 2006, 80, 7364-7374.
\end{tabular}

95 PKR and RNase L Contribute to Protection against Lethal West Nile Virus Infection by Controllin
Early Viral Spread in the Periphery and Replication in Neurons. Journal of Virology, 2006, 80, 7009-7019.
1.5

Stability of CXCLâ€8 and Related AUâ€Rich mRNAs in the Context of Hepatitis C Virus Replication In Vitro.
Journal of Infectious Diseases, 2006, 193, 802-811.
1.9

Trigeminal Ganglia Cultures. Journal of Interferon and Cytokine Research, 2006, 26, 220-225.

Functional Annotation of IFN-Ît-Stimulated Gene Expression Profiles from Sensitive and Resistant Renal
Cell Carcinoma Cell Lines. Journal of Interferon and Cytokine Research, 2006, 26, 534-547.

A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major
role of BTG2 in suppression of Ras-induced transformation. Genes and Development, 2006, 20, 236-252.
Efficient suppression of secretory clusterin levels by polymer-siRNA nanocomplexes enhances ionizing
100 radiation lethality in human MCF-7 breast cancer cells in vitro. International Journal of
3.3

Nanomedicine, 2006, 1, 155-162.

101 RNA interference in biology and disease. Blood, 2005, 106, 787-794.
\(0.6 \quad 135\)

102 Expression of IFITM1 in chronic myeloid leukemia patients. Leukemia Research, 2005, 29, 283-286.
0.4

33

103 Activation of the mammalian immune system by siRNAs. Nature Biotechnology, 2005, 23, 1399-1405.
9.4

321

Transcript profiling of Wilms tumors reveals connections to kidney morphogenesis and expression patterns associated with anaplasia. Oncogene, 2005, 24, 457-468.
2.6

43

105 Detection of foreign RNA: Implications for RNAi. Immunology and Cell Biology, 2005, 83, 224-228.
1.0

41

106 Dicing with siRNA. Nature Biotechnology, 2005, 23, 181-182.

3.3

99 14533-14538.

Involvement of the Interferon-Regulated Antiviral Proteins PKR and RNase L in Reovirus-Induced
1.5 Shutoff of Cellular Translation. Journal of Virology, 2005, 79, 2240-2250.

Analysis of Genes Induced by Sendai Virus Infection of Mutant Cell Lines Reveals Essential Roles of
111 Interferon Regulatory Factor 3, NF-îob, and Interferon but Not Toll-Like Receptor 3. Journal of Virology,
1.5

2005, 79, 3920-3929.

112 Targeting Specific Cell Types with Silencing RNA. New England Journal of Medicine, 2005, 353, 1410-1411.
\(13.9 \quad 18\)
113 RNA-Dependent Protein Kinase Is Required for Alpha-1 Interferon Transgene-Induced Resistance
Cenital Herpes Simplex Virus Type 2. Journal of Virology, 2005, 79, 9341-9345.
114 A Gene Expression Signature for Relapse of Primary Wilms Tumors. Cancer Research, 2005, 65,
2592-2601.
\(1.5 \quad 17\) 2592-2601.
\(0.4 \quad 56\)

115 RNase L and Double-Stranded RNA-Dependent Protein Kinase Exert Complementary Roles in Islet Cell
Defense during Coxsackievirus Infection. Journal of Immunology, 2005, 174, 1171-1177.
0.4

91

Dichotomy between survival and lytic gene expression in RNase L- and PKR-deficient mice transduced
116 with an adenoviral vector expressing murine IFN- \(\hat{I}^{2}\) following ocular HSV-1 infection. Experimental Eye Research, 2005, 80, 167-173.

117 AU-rich transient response transcripts in the human genome: expressed sequence tag clustering and gene discovery approach. Genomics, 2005, 85, 165-175.

PKR-Dependent and -Independent Mechanisms Are Involved in Translational Shutoff during Sindbis
118 Virus Infection. Journal of Virology, 2004, 78, 8455-8467.
1.5

119

119 The Wilms Tumor Suppressor-1 Target Gene Podocalyxin Is Transcriptionally Repressed by p53. Journal
of Biological Chemistry, 2004, 279, 33575-33585.

Synergistic Activation of Innate Immunity by Double-Stranded RNA and CpG DNA Promotes Enhanced
120 Antitumor Activity. Cancer Research, 2004, 64, 5850-5860.
0.4

166

Phospholipid Scramblase 1 Potentiates the Antiviral Activity of Interferon. Journal of Virology, 2004,
78, 8983-8993.
1.5

107

Induction of interferon-stimulated gene expression and antiviral responses require protein
122 deacetylase activity. Proceedings of the National Academy of Sciences of the United States of America,
3.3

194 2004, 101, 9578-9583.

Protein Kinase R (PKR) Interacts with and Activates Mitogen-activated Protein Kinase Kinase 6 (MKK6) in
Response to Double-stranded RNA Stimulation. Journal of Biological Chemistry, 2004, 279, 37670-37676.

Distinctive Roles for \(2 \hat{1} €^{2}, 5 a ̂ \not €^{2}\)-Oligoadenylate Synthetases and Double-Stranded RNA-Dependent Protein
Kinase R in the In Vivo Antiviral Effect of an Adenoviral Vector Expressing Murine IFN- \(\hat{I}^{2}\). Journal of
Immunology, 2004, 172, 5638-5647.

Limited role of \(N\)-terminal phosphoserine residues in the activation of transcription by p53. Oncogene,
2004, 23, 4477-4487.
2.6

32
127

Expressed Gene Clusters Associated with Cellular Sensitivity and Resistance Towards Anti-viral and
2.0

35
Anti-proliferative Actions of Interferon. Journal of Molecular Biology, 2004, 342, 833-846.

RNA interference and double-stranded-RNA-activated pathways. Biochemical Society Transactions, 2004, 32, 952-956.
1.6

102
\begin{tabular}{|c|c|c|c|}
\hline 131 & The murine double-stranded RNA-dependent protein kinase PKR and the murine \(2 \hat{a} €^{2}, 5 a ̂ \epsilon^{2}\)-oligoadenylate synthetase-dependent RNase \(L\) are required for IFN- \(\hat{I}^{2}\)-mediated resistance against herpes simplex virus type 1 in primary trigeminal ganglion culture. Virology, 2003, 313, 126-135. & 1.1 & 50 \\
\hline 132 & Derivation and characterization of a Wilms' tumour cell line, WiT 49. International Journal of Cancer, 2003, 107, 365-374. & 2.3 & 59 \\
\hline 133 & Activation of the interferon system by short-interfering RNAs. Nature Cell Biology, 2003, 5, 834-839. & 4.6 & 1,354 \\
\hline 134 & Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nature Medicine, 2003, 9, 33-39. & 15.2 & 260 \\
\hline 135 & Poly (dIÂ.dC)-induced Toll-like Receptor 3 (TLR3)-mediated Activation of NF̂̂ B and MAP Kinase Is through an Interleukin-1 Receptor-associated Kinase (IRAK)-independent Pathway Employing the Signaling Components TLR3-TRAF6-TAK1-TAB2-PKR. Journal of Biological Chemistry, 2003, 278, 16713-16719. & 1.6 & 271 \\
\hline 136 & Impaired Innate Host Defense Causes Susceptibility to Respiratory Virus Infections in Cystic Fibrosis. Immunity, 2003, 18, 619-630. & 6.6 & 119 \\
\hline 137 & Type I Interferon Induction Pathway, but Not Released Interferon, Participates in the Maturation of Dendritic Cells Induced by Negativeâ€Strand RNA Viruses. Journal of Infectious Diseases, 2003, 187, 1126-1136. & 1.9 & 98 \\
\hline 138 & Alphavirus Minus-Strand Synthesis and Persistence in Mouse Embryo Fibroblasts Derived from Mice Lacking RNase L and Protein Kinase R. Journal of Virology, 2003, 77, 1801-1811. & 1.5 & 39 \\
\hline 139 & IMMUNOLOGY: A Viral On/Off Switch for Interferon. Science, 2003, 300, 1100-1101. & 6.0 & 15 \\
\hline
\end{tabular}

140 ISG20, a New Interferon-induced RNase Specific for Single-stranded RNA, Defines an Alternative
1.6

188
Antiviral Pathway against RNA Genomic Viruses. Journal of Biological Chemistry, 2003, 278, 16151-16158.

RNase L Mediates Transient Control of the Interferon Response through Modulation of the
141 Double-stranded RNA-dependent Protein Kinase PKR. Journal of Biological Chemistry, 2003, 278,
1.6

52
20124-20132.

Novel Growth and Death Related Interferon-Stimulated Genes (ISGs) in Melanoma: Greater Potency of IFN-Î²Compared with IFN-Î \(\pm 2\). Journal of Interferon and Cytokine Research, 2003, 23, 745-756.
145 C114 Is a Novel IL-11-inducible Nuclear Double-stranded RNA-binding Protein That Inhibits Protein Kinase
R. Journal of Biological Chemistry, 2003, 278, 22838-22845.

TLR2 and TLR4 agonists stimulate unique repertoires of host resistance genes in murine macrophages:
148 interferon- \(\hat{2}^{2}\)-dependent signaling in TLR4-mediated responses. Journal of Endotoxin Research, 2003, 9,151 Absence of PKR Attenuates the Anti-HSV-1 Activity of an Adenoviral Vector Expressing Murine IFN-î2.\(0.5 \quad 16\)
152 Editorial. Viral Immunology, 2002, 15, 1-2. ..... 0.6 ..... 2
153 Differential Effect of Murine Alpha/Beta Interferon Transgenes on Antagonization of Herpes Simplex Virus Type 1 Replication. Journal of Virology, 2002, 76, 6558-6567.
155 Blockade of Interferon Induction and Action by the E3L Double-Stranded RNA Binding Proteins of Vaccinia Virus. Journal of Virology, 2002, 76, 5251-5259. 1.5 ..... 162
Functional Replacement of the Carboxy-Terminal Two-Thirds of the Influenza A Virus NS1 Protein with Short Heterologous Dimerization Domains. Journal of Virology, 2002, 76, 12951-12962. ..... 1.5 ..... 94
157 Expression and localization of HGF and met in Wilms' tumours. Journal of Pathology, 2002, 196, 76-84. ..... 2.1 ..... 23
TLR4, but not TLR2, mediates IFN- \(\hat{I}^{2}\) â \(€^{\prime \prime}\) induced STAT1 \(\hat{l} \pm / \hat{l}^{2}\)-dependent gene expression in macrophages. Nature ..... 7.0 ..... 753 Immunology, 2002, 3, 392-398.
\(1.6 \quad 318\)

165 Regulation of c-myc expression by IFN-î3 through Statl-dependent and -independent pathways. EMBO Journal, 2000, 19, 263-272.

A dynamically tuned double-stranded RNA binding mechanism for the activation of antiviral kinase
\begin{tabular}{cll} 
Activation of p38 Mitogen-Activated Protein Kinase and c-Jun NH 2 -Terminal Kinase by Double-Stranded \\
167 & \begin{tabular}{l} 
RNA and Encephalomyocarditis Virus: Involvement of RNase L, Protein Kinase R, and Alternative \\
Pathways. Molecular and Cellular Biology, 2000, 20, 617-627.
\end{tabular} & 1.1
\end{tabular}

172 Negative Regulation of CD8+ T Cell Function by the IFN-Induced and Double-Stranded RNA-Activated Kinase PKR. Journal of Immunology, 2000, 165, 6896-6901.
0.4
Central Role of Double-Stranded RNA-Activated Protein Kinase in Microbial Induction of Nitric Oxide173 Synthase. Journal of Immunology, 2000, 165, 988-996.
91
The B56 \(1 \pm\) Regulatory Subunit of Protein Phosphatase 2A Is a Target for Regulation by Double-Stranded1.1
\begin{tabular}{|c|c|c|c|}
\hline 181 & Involvement of Double-stranded RNA-activated Protein Kinase in the Synergistic Activation of Nuclear Factor- \(\hat{\imath} \mathrm{B}\) by Tumor Necrosis Factor- \(\hat{ \pm} \pm\) and \(\hat{3}\)-Interferon in Preneuronal Cells. Journal of Biological Chemistry, 1999, 274, 4801-4806. & 1.6 & 61 \\
\hline 182 & Translational control perks up. Nature, 1999, 397, 209-211. & 13.7 & 28 \\
\hline 183 & Cell cycle regulation of the double stranded RNA activated protein kinase, PKR. Oncogene, 1999, 18, 315-326. & 2.6 & 65 \\
\hline 184 & PKR; a sentinel kinase for cellular stress. Oncogene, 1999, 18, 6112-6120. & 2.6 & 763 \\
\hline 185 & Interferon Action in Triply Deficient Mice Reveals the Existence of Alternative Antiviral Pathways. Virology, 1999, 258, 435-440. & 1.1 & 230 \\
\hline 186 & p38 MAP kinase is required for STAT1 serine phosphorylation and transcriptional activation induced by interferons. EMBO Journal, 1999, 18, 5601-5608. & 3.5 & 349 \\
\hline 187 & The DNA-binding subunit p140 of replication factor C is upregulated in cycling cells and associates with G 1 phase cell cycle regulatory proteins. Journal of Molecular Medicine, 1999, 77, 386-392. & 1.7 & 7 \\
\hline 188 & DRBP76, a Double-stranded RNA-binding Nuclear Protein, Is Phosphorylated by the Interferon-induced Protein Kinase, PKR. Journal of Biological Chemistry, 1999, 274, 20432-20437. & 1.6 & 116 \\
\hline 189 & JNK2 and IKK1̂² Are Required for Activating the Innate Response to Viral Infection. Immunity, 1999, 11, 721-731. & 6.6 & 362 \\
\hline 190 & \(1 \mathrm{H}, 13 \mathrm{C}, 15 \mathrm{~N}\) resonance assignment of the 20 kDa double stranded RNA binding domain of PKR. Journal of Biomolecular NMR, 1998, 12, 349-351. & 1.6 & 17 \\
\hline 191 & Structure of the double-stranded RNA-binding domain of the protein kinase PKR reveals the molecular basis of its dsRNA-mediated activation. EMBO Journal, 1998, 17, 5458-5465. & 3.5 & 298 \\
\hline 192 & Loss of heterozygosity at chromosome 11p15 in Wilms tumors: identification of two independent regions. Oncogene, 1998, 17, 237-240. & 2.6 & 41 \\
\hline 193 & Subcellular localization of the von Hippel-Lindau disease gene product is cell cycle-dependent. , 1998, 78, 62-69. & & 33 \\
\hline
\end{tabular}

194 Constitutive expression of the Wilms tumor suppressor gene (WT1) in renal cell carcinoma. , 1998, 78,Review of Recent Developments in the Molecular Characterization of Recombinant Alfa Interferons197 on the 40th Anniversary of the Discovery of Interferon. Cancer Biotherapy and Radiopharmaceuticals,\(0.7 \quad 28\)1998, 13, 143-154.Two distinct tumor suppressor loci within chromosome 11 p15 implicated in breast cancer progressionProceedings of the National Academy of Sciences of the United States of America, 1998, 95, 15623-15628.
203 Potential Alu Function: Regulation of the Activity of Double-Stranded RNA-Activated Kinase PKR. Molecular and Cellular Biology, 1998, 18, 58-68.
Characterization of the Solution Complex between the Interferon-induced, Double-stranded\(1.1 \quad 194\)1997, 272, 9510-9516.
205 Specific Binding of the ETS-Domain Protein to the I ..... 0.5 ..... 33
Receptor-associated constitutive protein tyrosine phosphatase activity controls the kinase function
206 of JAK1. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, ..... 3.3 ..... 63 8563-8568.
207 Role of the double-stranded RNA-activated protein kinase (PKR) in cell regulation. Biochemical Society Transactions, 1997, 25, 509-513.
A double-stranded RNA-activated protein kinase-dependent pathway mediating stress-induced208 apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94,3.33803279-3283.
209 Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: role of IRF-1 and NF-kappa B. EMBO Journal, 1997, 16, 406-416.3.5336
Interferon gamma and interleukin 4 stimulate prolonged expression of inducible nitric oxide synthase
210 in human airway epithelium through synthesis of soluble mediators.. Journal of Clinical Investigation,3.9161
1997, 100, 829-838.
0.5 ..... 6
6
Testicular cancer in association with developmental renal anomalies and hypospadias. Urology, 1996, 47, 82-87.
212 Tissue-specific regulation of theWT1 locus. , 1996, 27, 456-461.7
213 Expression of Intracellular Interferon Constitutively Activates ISGF3 and Confers Resistance to EMC 0.5 ..... 13The interferon-inducible double-stranded RNA-activated protein kinase self-associates in vitro and in214 vivo.. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92,3.38283-8287.
\[
\begin{aligned}
& 217 \text { Human PKR Transfected into Murine Cells Stimulates Expression of Genes under Control of the HIV1 } \\
& \text { or HTLV-I LTR. Virology, 1995, 214, 653-659. }
\end{aligned}
\]

Mutational Analysis of the Double-stranded RNA (dsRNA) Binding Domain of the dsRNA-activated Protein Kinase, PKR. Journal of Biological Chemistry, 1995, 270, 2601-2606.

Roles of Protein-tyrosine Phosphatases in Statl̂̂t-mediated Cell Signaling. Journal of Biological Chemistry, 1995, 270, 25709-25714.

Microsatellite instability at a single locus (D11S988) on chromosome 11 p15.5 as a late event in mammary tumorigenesis. Human Molecular Genetics, 1995, 4, 1889-1894.

Response and Resistance to Interferons and Interacting Cytokines. Journal of the National Cancer Institute, 1995, 87, 257-264.

The role of the dsRNA-activated kinase, PKR, in signal transduction. Seminars in Virology, 1995, 6, 191-202.

In situ expression of the early growth response gene-1 during murine nephrogenesis. Journal of Urology, 1995, 154, 700-705.
\(0.2 \quad 12\)

Targeting RNA for Degradation with a (2', 5')-Oligoadenylate Antisense Chimera. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 1073-1076.

Blockage of NF-kappa B signaling by selective ablation of an mRNA target by 2-5A antisense chimeras.
6.0

241

Science, 1994, 265, 789-792.
225 Science, 1994, 265, 789-792.

1
154
HIV-1 TAR RNA Has an Intrinsic Ability to Activate Interferon-Inducible Enzymes. Virology, 1994, 204, 823-827.

Functional differences in the promoters of the interferon-inducible (2'-5')A oligoadenylate synthetase
227 and 6-16 genes in interferon-resistant Daudi cells. FEBS Journal, 1994, 219, 547-553.

228 The Molecular Genetics of Wilms Tumor. Cancer Investigation, 1994, 12, 57-65.
0.6

15

> Double-stranded RNA-dependent protein kinase activates transcription factor NF-kappa B by
> phosphorylating I kappa B.. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 6288-6292.
3.3

548

230 Deletion ofWTlandWIT1Genes and Loss of Heterozygosity on Chromosome 11 p in Wilms Tumors in
1.7 Japan. Japanese Journal of Cancer Research, 1993, 84, 616-624.

The Interferon-Induced Double-Stranded RNA-Activated Human p68 Protein Kinase Potently Inhibits Protein Synthesis in Cultured Cells. Virology, 1993, 192, 380-385.
1.1

61

Localization of the Human Interferon-Induced, ds-RNA Activated p68 Kinase Gene (PRKR) to
1.3

24
235 PKR: Proposed Nomenclature for the RNA-Dependent Protein Kinase Induced by Interferon. Journal of1.2Interferon Research, 1993, 13, 241-241.
Identification of double-stranded RNA-binding domains in the interferon-induced double-stranded236 RNA-activated p68 kinase.. Proceedings of the National Academy of Sciences of the United States of3.3178America, 1992, 89, 5447-5451.
237 Interferon- \(\mathrm{l} \pm\) Activates Binding of Nuclear Factors to a Sequence Element in the
c-<i> fos</i>Proto-Oncogene 5â€²-Flanking Region. Journal of Interferon Research, 1992, 12, 355-361.
Multiple Tumor Suppressor Genes in Multistep Carcinogenesis.. Tohoku Journal of Experimental Medicine, 1992, 168, 149-152. 2381.20.5Basal expression of the gene (TIMP) encoding the murine tissue inhibitor of metalloproteinases ismediated through AP1-and CCAAT-binding factors. Gene, 1992, 116, 187-194.
1.0 ..... 18Transcriptional activation of human ( \(2^{\prime}-5\) ') oligoadenylate synthetase gene expression by the phorbol
ester 12-O-tetradecanoyl-phorbol 13-acetate in type-l-interferon-treated HL-60 and HeLa cells. FEBS0.27Journal, 1992, 207, 297-304.
Loss of heterozygosity mapping in Wilms tumor indicates the involvement of three distinct regions
241 and a limited role for nondisjunction or mitotic recombination. Genes Chromosomes and Cancer, ..... 1.5 1992, 5, 326-334.
Constitutive expression of human double-stranded RNA-activated p68 kinase in murine cells mediates 242 phosphorylation of eukaryotic initiation factor 2 and partial resistance to encephalomyocarditis ..... 1.5 ..... 232 virus growth. Journal of Virology, 1992, 66, 5805-5814.
243 The distal region of 11 p13 and associated genetic diseases. Genomics, 1991, 11, 284-293. ..... 1.3 ..... 22
244 Transcriptional regulation of interferon-stimulated genes. FEBS Journal, 1991, 200, 1-11.0.2181
245 Direct pulsed field gel electrophoresis of Wilms' tumors shows that dna deletions in 11 p 13 are rare. Genes Chromosomes and Cancer, 1991, 3, 89-100.1.5446.539
The murine 2-5A synthetase locus: three distinct transcripts from two linked genes. Nucleic Acids Research, 1991, 19, 1917-1924. 246
0.5 ..... 22
Regulation of Tumor Necrosis Factor Receptor Expression by Acid-Labile Interferon-̂̂士 from AIDS Sera. 247 RIDS Research and Human Retroviruses, 1991, 7, 545-552.1.220Signal Transduction and Transcriptional Regulation of Interferon-Î \(\pm \hat{A} €^{\prime \prime}\) Stimulated Genes. Journal ofInterferon Research, 1991, 11, 207-213.
Signal transduction by interferon-alpha through arachidonic acid metabolism. Science, 1991, 251, 6.0 ..... 154
249 204-207.Role for the Wilms tumor gene in genital development?. Proceedings of the National Academy of
Wilms tumor locus on 11 p13 defined by multiple CpG island-associated transcripts. Science, 1990, 250,
994-997.
253 Tissue, developmental, and tumor-specific expression of divergent transcripts in Wilms tumor.
Science, 1990, 250, 991-994.

254 X chromosome inactivation of the human TIMP gene. Nucleic Acids Research, 1990, 18, 4191-4195.
6.5

Definition of the limits of the Wilms tumor locus on human chromosome 11p13. Genomics, 1990, 6, 309-315.

Molecular characterization of Beckwith-Wiedemann syndrome (BWS) patients with partial
256 duplication of chromosome 11p excludes the gene MYOD1 from the BWS region. Genomics, 1990, 8, 693-698.
\begin{tabular}{|c|c|c|c|}
\hline 257 & Constitutional and somatic deletions of two different regions of maternal chromosome 11 in Wilms tumor. Genomics, 1990, 7, 434-438. & 1.3 & 25 \\
\hline 258 & Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell, 1990, 62, 379-390. & 13.5 & 989 \\
\hline 259 & Constitutive Expression of a \(2 \hat{a} €^{2}, 5 a €^{2}\)-Oligoadenylate Synthetase cDNA Results in Increased Antiviral Activity and Growth Suppression. Journal of Interferon Research, 1989, 9, 649-657. & 1.2 & 134 \\
\hline 260 & Interferon and growth factor modulation of nuclear factors binding to 5 ? upstream elements of the 2-5A synthetase gene. Journal of Cellular Biochemistry, 1988, 38, 261-267. & 1.2 & 2 \\
\hline 261 & Interferon and phorbol esters down-regulate slgM expression by independent pathways. Journal of Cellular Physiology, 1988, 134, 245-252. & 2.0 & 6 \\
\hline
\end{tabular}

262 The interaction of interferon- \(\mathrm{I} \pm\) and \(-\hat{1}\) : Regulation of ( \(2 \hat{\mathrm{a}} €^{\prime \prime} 5\) )A synthetase activity. Virology, 1988, 165, 87-94. 1.1
\(263 \begin{aligned} & \text { Downregulation of interferon alpha but not gamma receptor expression in vivo in the acquired } \\ & \text { immunodeficiency syndrome.. Journal of Clinical Investigation, 1988, 82, 1415-1421. }\end{aligned}\)

Differential human interferon alpha receptor expression on proliferating and non-proliferating cells.
264 FEBS Journal, 1986, 157, 187-193.
0.2

27

Interferon-regulated human \(2 \hat{a} €^{\text {" }} 5\) A synthetase gene maps to chromosome 12. Somatic Cell and
Molecular Genetics, 1986, 12, 403-408.

RFLP detected by an X-Uinked cDNA encoding erythroid-potentiating activity/tissue inhibitor of metalloproteinase (EPA/TIMP). Nucleic Acids Research, 1986, 14, 9226-9226.
6.5

12

Early Immune Response in Healthy and Immunocompromised Subjects with Primary Varicella-Zoster
1.9

158
267 Virus Infection. Journal of Infectious Diseases, 1986, 154, 422-429.

Regulation of interferon receptor expression in human blood lymphocytes in vitro and during
interferon therapy.. Journal of Clinical Investigation, 1986, 77, 1632-1638.
3.9

66

Production and characterization of a monoclonal antibody to a human interferon-induced
269 double-stranded RNA-binding Mr 68,000 protein kinase.. Proceedings of the National Academy of
3.3

Sciences of the United States of America, 1985, 82, 4959-4963.
Elevated Levels of Interferon-Induced 2'-5' Oligoadenylate Synthetase in Generalized Persistent
270 Lymphadenopathy and the Acquired Immunodeficiency Syndrome. Journal of Infectious Diseases, 1985,
1.9

42
271
272

Molecular cloning of cDNAs from androgen-independent mRNA species of DBA/2 mouse sub-maxillary glands. Nucleic Acids Research, 1984, 12, 1361-1376.
6.5

24

The effect of interferon on cells deficient in nucleoside transport or lacking thymidine kinase activity. Biochemical and Biophysical Research Communications, 1984, 118, 124-130.
1.0

5
\begin{tabular}{lll}
273 & \begin{tabular}{l} 
Interferon-induced 2-5A synthetase activity in human peripheral blood mononuclear cells after \\
immunization with influenza virus and rubella virus vaccines. Journal of Virology, 1984, 49, 748-753.
\end{tabular} & 1.5
\end{tabular} 30

The respective roles of the protein kinase and pppA2â \(\epsilon^{2}\) p5 \(\hat{a} \epsilon^{2} A 2 \hat{a} \epsilon^{2} p 5 a €^{2} A\)-activated endonuclease in the inhibition 278 of protein synthesis by double stranded RNA in rabbit reticulocyte lysates. Nucleic Acids Research,
6.5

57 1979, 6, 1335-1350.

279 Natural occurrence of 2-5A in interferon-treated EMC virus-infected L cells. Nature, 1979, 282, 582-586.
13.7

265

280 Activation of a nuclease by pppA2â \(€^{2} p 5 a ̂ €^{2} A 2 a ̂ \epsilon^{2} p 5 \hat{a} \not €^{2} A\) in intact cells. FEBS Letters, 1979, 105, 47-52.
1.3

109
\[
\begin{aligned}
& \text { Inhibition of protein synthesis by } 2 \hat{\text { â }} €^{2} \hat{a ̂} €^{"} 5 \text { } 5 \text { €̂ } €^{2} \text { linked adenine oligonucleotides in intact cells. Nature, 1978, 276, } \\
& 88-90 \text {. }
\end{aligned}
\]

Synthesis and Breakdown of pppA2'p5'A2'p5'A and Transient Inhibition of Protein Synthesis in Extracts from Interferon-Treated and Control Cells. FEBS Journal, 1978, 92, 455-462.
0.2

141

> Inhibition of cell-free protein synthesis by pppA2ấ \({ }^{2}\) p \(5 \hat{a} \epsilon^{2}\) A2ấ \(\epsilon^{2}\) p5â \(\epsilon^{2}\) A: a novel oligonucleotide synthesized by interferon-treated L cell extracts. Cell, \(1978,13,565-572\).

Solid phase radioimmunoassays using labelled antibodies: A conceptual framework for designing assays. Journal of Immunological Methods, 1977, 14, 73-84.```


[^0]:    Source: https:/|exaly.com/author-pdf/4774509/publications.pdf
    Version: 2024-02-01

[^1]:    35 Conformational rearrangements of RIG-I receptor on formation of a multiprotein:dsRNA assembly.

