
Hasmukh A Patel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4774288/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impervious synthetic layered silicates coating to restrict the swelling of clayâ€rich shales. Canadian Journal of Chemical Engineering, 2022, 100, 1244-1252.	1.7	1
2	Discrete Open-Shell Tris(bipyridinium radical cationic) Inclusion Complexes in the Solid State. Journal of the American Chemical Society, 2021, 143, 163-175.	13.7	15
3	Cross-linked polyrotaxane to improve mechanical properties of oil well cement. MRS Communications, 2021, 11, 762-769.	1.8	5
4	Anisotropic Nano-Platelets to Develop Gel Strength at High Temperature in Aqueous Fluids. , 2021, , .		1
5	Triazine Polymers for Improving Elastic Properties in Oil Well Cements. , 2021, , .		1
6	Next Generation High Performance Invert Emulsion Drilling Fluids with Flat-Rheological Behavior. , 2021, , .		0
7	Organically modified layered magnesium silicates to improve rheology of reservoir drilling fluids. Scientific Reports, 2020, 10, 13851.	3.3	13
8	Functionalized Layered Nanomaterials: A Next-Generation Shale Inhibitor. , 2020, , .		1
9	Expandable, Acid Soluble and Settable LCM for Severe Losses. , 2020, , .		Ο
10	Expandable, Acid Soluble and Settable LCM for Severe Losses. , 2020, , .		0
11	Exceptional Flat Rheology Using a Synthetic Organic-Inorganic Hybrid in Oil-Based Muds Under High Pressure and High Temperature. , 2019, , .		3
12	Covalently-Linked Organic Functionalities on Nano-Platelets as a Viscosifier for Oil-Based Muds. , 2019, , .		3
13	A combined experimental and theoretical study on gas adsorption performance of amine and amide porous polymers. Microporous and Mesoporous Materials, 2019, 279, 61-72.	4.4	15
14	Discrete Dimers of Redox-Active and Fluorescent Perylene Diimide-Based Rigid Isosceles Triangles in the Solid State. Journal of the American Chemical Society, 2019, 141, 1290-1303.	13.7	87
15	Proton Conduction in Tröger's Base-Linked Poly(crown ether)s. ACS Applied Materials & Interfaces, 2018, 10, 25303-25310.	8.0	27
16	Selective removal of heavy metal ions by disulfide linked polymer networks. Journal of Hazardous Materials, 2017, 332, 140-148.	12.4	101
17	Carbon Dioxide Capture Adsorbents: Chemistry and Methods. ChemSusChem, 2017, 10, 1303-1317.	6.8	313
18	Sustainable Nanoporous Benzoxazole Networks as Metalâ€Free Catalysts for Oneâ€Pot Oxidative	5.3	7

Selfâ€Coupling of Amines by Air Oxygen. Advanced Sustainable Systems, 2017, 1, 1700089.

HASMUKH A PATEL

#	Article	IF	CITATIONS
19	Noninvasive Substitution of K ⁺ Sites in Cyclodextrin Metal–Organic Frameworks by Li ⁺ Ions. Journal of the American Chemical Society, 2017, 139, 11020-11023.	13.7	79
20	Reversible water capture by a charged metal-free porous polymer. Polymer, 2017, 126, 308-313.	3.8	33
21	Rapid extraction of uranium ions from seawater using novel porous polymeric adsorbents. RSC Advances, 2016, 6, 45968-45976.	3.6	38
22	Investigation of Ester- and Amide-Linker-Based Porous Organic Polymers for Carbon Dioxide Capture and Separation at Wide Temperatures and Pressures. ACS Applied Materials & Interfaces, 2016, 8, 20772-20785.	8.0	52
23	Charge-specific size-dependent separation of water-soluble organic molecules by fluorinated nanoporous networks. Nature Communications, 2016, 7, 13377.	12.8	132
24	Superacidity in Nafion/MOF Hybrid Membranes Retains Water at Low Humidity to Enhance Proton Conduction for Fuel Cells. ACS Applied Materials & Interfaces, 2016, 8, 30687-30691.	8.0	139
25	Cross-Linked "Poisonous―Polymer: Thermochemically Stable Catalyst Support for Tuning Chemoselectivity. ACS Catalysis, 2016, 6, 2435-2442.	11.2	52
26	Nanoporous networks as effective stabilisation matrices for nanoscale zero-valent iron and groundwater pollutant removal. Journal of Materials Chemistry A, 2016, 4, 632-639.	10.3	36
27	An Ultrahigh Pore Volume Drives Up the Amine Stability and Cyclic CO ₂ Capacity of a Solidâ€Amine@Carbon Sorbent. Advanced Materials, 2015, 27, 4903-4909.	21.0	81
28	Systematic Investigation of the Effect of Polymerization Routes on the Gasâ€Sorption Properties of Nanoporous Azobenzene Polymers. Chemistry - A European Journal, 2015, 21, 15320-15327.	3.3	34
29	Carbon Capture: An Ultrahigh Pore Volume Drives Up the Amine Stability and Cyclic CO ₂ Capacity of a Solidâ€Amine@Carbon Sorbent (Adv. Mater. 33/2015). Advanced Materials, 2015, 27, 4902-4902.	21.0	2
30	Synthesis of nanoporous 1,2,4-oxadiazole networks with high CO ₂ capture capacity. Chemical Communications, 2015, 51, 2915-2917.	4.1	35
31	Nanoporous networks as caging supports for uniform, surfactant-free Co ₃ O ₄ nanocrystals and their applications in energy storage and conversion. Journal of Materials Chemistry A, 2015, 3, 15489-15497.	10.3	18
32	Highly optimized CO2 capture by inexpensive nanoporous covalent organic polymers and their amine composites. Faraday Discussions, 2015, 183, 401-412.	3.2	39
33	Magnetic BaFe12O19 nanofiber filter for effective separation of Fe3O4 nanoparticles and removal of arsenic. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	13
34	Directing the Structural Features of N ₂ â€Phobic Nanoporous Covalent Organic Polymers for CO ₂ Capture and Separation. Chemistry - A European Journal, 2014, 20, 772-780.	3.3	128
35	Nanoporous Benzoxazole Networks by Silylated Monomers, Their Exceptional Thermal Stability, and Carbon Dioxide Capture Capacity. Chemistry of Materials, 2014, 26, 6729-6733.	6.7	50
36	Exceptional organic solvent uptake by disulfide-linked polymeric networks. RSC Advances, 2014, 4, 24320.	3.6	21

HASMUKH A PATEL

#	Article	IF	CITATIONS
37	Nanoporous covalent organic polymers incorporating Tröger's base functionalities for enhanced CO ₂ capture. Journal of Materials Chemistry A, 2014, 2, 12507.	10.3	90
38	Porous synthetic hectorites for selective adsorption of carbon dioxide over nitrogen, methane, carbon monoxide and oxygen. Applied Clay Science, 2014, 91-92, 63-69.	5.2	25
39	Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers. Nature Communications, 2013, 4, 1357.	12.8	456
40	A combined computational and experimental study of high pressure and supercritical CO2 adsorption on Basolite MOFs. Microporous and Mesoporous Materials, 2013, 175, 34-42.	4.4	45
41	One-pot synthesis of hexadecyl modified layered magnesium silicate and polyethylene based nanocomposite preparation. Applied Clay Science, 2013, 80-81, 320-325.	5.2	7
42	Highly Stable Nanoporous Sulfurâ€Bridged Covalent Organic Polymers for Carbon Dioxide Removal. Advanced Functional Materials, 2013, 23, 2270-2276.	14.9	135
43	Exceptional CO2 capture via polymeric materials. , 2012, , 38-41.		0
44	Noninvasive functionalization of polymers of intrinsic microporosity for enhanced CO2 capture. Chemical Communications, 2012, 48, 9989.	4.1	199
45	High capacity carbon dioxide adsorption by inexpensive covalent organic polymers. Journal of Materials Chemistry, 2012, 22, 8431.	6.7	187
46	Exceptional CO2 absorption by covalent organic polymers (COPs). Qatar Foundation Annual Research Forum Proceedings, 2012, , .	0.0	1
47	Arsenic removal by magnetic nanocrystalline barium hexaferrite. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	18
48	Arsenic removal by magnetic nanocrystalline barium hexaferrite. , 2012, , 163-169.		2
49	Sustained release of venlafaxine from venlafaxine–montmorillonite–polyvinylpyrrolidone composites. Applied Clay Science, 2011, 51, 126-130.	5.2	34
50	Mechanical and thermal properties of polypropylene nanocomposites using organically modified Indian bentonite. Polymer Composites, 2010, 31, 399-404.	4.6	6
51	Montmorillonite-Alginate Nanocomposites as a Drug Delivery System: Intercalation and In Vitro Release of Vitamin B ₁ and Vitamin B ₆ . Journal of Biomaterials Applications, 2010, 25, 161-177.	2.4	76
52	Synthesis of Organoclays with Controlled Particle Size and Whiteness from Chemically Treated Indian Bentonite. Industrial & Engineering Chemistry Research, 2010, 49, 1677-1683.	3.7	19
53	Platinum nanoparticle intercalated montmorillonite to enhance the char formation of polyamide 6 nanocomposites. Journal of Materials Chemistry, 2010, 20, 9550.	6.7	10
54	Montmorillonite-alginate composites as a drug delivery system: Intercalation and In vitro release of diclofenac sodium. Indian Journal of Pharmaceutical Sciences, 2010, 72, 732.	1.0	34

HASMUKH A PATEL

#	Article	IF	CITATIONS
55	Synthesis of Highly Dispersed Gold and Silver Nanoparticles Anchored on Surfactant Intercalated Montmorillonite. Journal of Nanoscience and Nanotechnology, 2009, 9, 5946-5952.	0.9	7
56	Intercalation and controlled release of vitamin B6 from montmorillonite–vitamin B6 hybrid. Colloid and Polymer Science, 2009, 287, 1071-1076.	2.1	35
57	Montmorillonite as a drug delivery system: Intercalation and in vitro release of timolol maleate. International Journal of Pharmaceutics, 2009, 374, 53-57.	5.2	276
58	Sorption of Nitrobenzene from Aqueous Solution on Organoclays in Batch and Fixed-Bed Systems. Industrial & Engineering Chemistry Research, 2009, 48, 1051-1058.	3.7	22
59	Rhodium nanoparticles intercalated into montmorillonite for hydrogenation of aromatic compounds in the presence of thiophene. Applied Clay Science, 2009, 42, 386-390.	5.2	56
60	Montmorillonite intercalated with vitamin B1 as drug carrier. Applied Clay Science, 2009, 45, 248-253.	5.2	154
61	Selective adsorption of carbon dioxide over nitrogen on calcined synthetic hectorites with tailor-made porosity. Applied Clay Science, 2009, 46, 109-113.	5.2	56
62	Synthesis of Pd and Rh metal nanoparticles in the interlayer space of organically modified montmorillonite. Journal of Nanoparticle Research, 2008, 10, 625-632.	1.9	22
63	Synthesis of jasminaldehyde using magnesium organo silicate as a solid base catalyst. Journal of Molecular Catalysis A, 2008, 280, 61-67.	4.8	49
64	Synthetic talc as a solid base catalyst for condensation of aldehydes and ketones. Journal of Molecular Catalysis A, 2008, 286, 31-40.	4.8	36
65	Preparation and characterization of phosphonium montmorillonite with enhanced thermal stability. Applied Clay Science, 2007, 35, 194-200.	5.2	186
66	Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. Bulletin of Materials Science, 2006, 29, 133-145.	1.7	285