Thirumala Govender

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4774209/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface modification of nanoâ€drug delivery systems for enhancing antibiotic delivery and activity. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1758.	6.1	38
2	A hyaluronic acid-based nanogel for the co-delivery of nitric oxide (NO) and a novel antimicrobial peptide (AMP) against bacterial biofilms. International Journal of Biological Macromolecules, 2022, 206, 381-397.	7.5	13
3	Exploring the applications of hyaluronic acidâ€based nanoparticles for diagnosis and treatment of bacterial infections. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1799.	6.1	18
4	Nano delivery systems to the rescue of ciprofloxacin against resistant bacteria "E. coli; P. aeruginosa; Saureus; and MRSA―and their infections. Journal of Controlled Release, 2022, 349, 338-353.	9.9	19
5	A self-assembled polymer therapeutic for simultaneously enhancing solubility and antimicrobial activity and lowering serum albumin binding of fusidic acid. Journal of Biomolecular Structure and Dynamics, 2021, 39, 6567-6584.	3.5	3
6	Intrinsic <scp>stimuliâ€responsive</scp> nanocarriers for smart drug delivery of antibacterial agents—An <scp>inâ€depth</scp> review of the last two decades. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1664.	6.1	53
7	Liposomes with pH responsive â€~on and off' switches for targeted and intracellular delivery of antibiotics. Journal of Liposome Research, 2021, 31, 45-63.	3.3	20
8	Advances in sepsis diagnosis and management: a paradigm shift towards nanotechnology. Journal of Biomedical Science, 2021, 28, 6.	7.0	56
9	Biomimetic strategies for enhancing synthesis and delivery of antibacterial nanosystems. International Journal of Pharmaceutics, 2021, 596, 120276.	5.2	14
10	Liposomal delivery systems and their applications against Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Advanced Drug Delivery Reviews, 2021, 178, 113861.	13.7	28
11	Chitosan-Based Hydrogel for the Dual Delivery of Antimicrobial Agents Against Bacterial Methicillin-Resistant <i>Staphylococcus aureus</i> Biofilm-Infected Wounds. ACS Omega, 2021, 6, 21994-22010.	3.5	36
12	Novel Biomimetic Human TLR2-Derived Peptides for Potential Targeting of Lipoteichoic Acid: An In Silico Assessment. Biomedicines, 2021, 9, 1063.	3.2	1
13	Formulation of pH-responsive lipid-polymer hybrid nanoparticles for co-delivery and enhancement of the antibacterial activity of vancomycin and 18î²-glycyrrhetinic acid. Journal of Drug Delivery Science and Technology, 2021, 64, 102607.	3.0	13
14	Biomimetic pH/lipase dual responsive vitamin-based solid lipid nanoparticles for on-demand delivery of vancomycin. International Journal of Pharmaceutics, 2021, 607, 120960.	5.2	13
15	A transferosome-loaded bigel for enhanced transdermal delivery and antibacterial activity of vancomycin hydrochloride. International Journal of Pharmaceutics, 2021, 607, 120990.	5.2	26
16	Formulation of pH responsive multilamellar vesicles for targeted delivery of hydrophilic antibiotics. Colloids and Surfaces B: Biointerfaces, 2021, 207, 112043.	5.0	10
17	Development of niosomes for encapsulating captopril-quercetin prodrug to combat hypertension. International Journal of Pharmaceutics, 2021, 609, 121191.	5.2	8
18	AB2-type amphiphilic block copolymer containing a pH-cleavable hydrazone linkage for targeted antibiotic delivery. International Journal of Pharmaceutics, 2020, 575, 118948.	5.2	22

THIRUMALA GOVENDER

#	Article	IF	CITATIONS
19	Supramolecular amphiphiles of Beta-cyclodextrin and Oleylamine for enhancement of vancomycin delivery. International Journal of Pharmaceutics, 2020, 574, 118881.	5.2	18
20	Acetal containing polymers as pH-responsive nano-drug delivery systems. Journal of Controlled Release, 2020, 328, 736-761.	9.9	66
21	Novel formulation of antimicrobial peptides enhances antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). Amino Acids, 2020, 52, 1439-1457.	2.7	20
22	Supramolecular self-assembled drug delivery system (SADDs) of vancomycin and tocopherol succinate as an antibacterial agent: <i>inÂvitro</i> , <i>in silico</i> and <i>inÂvivo</i> evaluations. Pharmaceutical Development and Technology, 2020, 25, 1090-1108.	2.4	7
23	Formulation of pH-Responsive Quatsomes from Quaternary Bicephalic Surfactants and Cholesterol for Enhanced Delivery of Vancomycin against Methicillin Resistant Staphylococcus aureus. Pharmaceutics, 2020, 12, 1093.	4.5	21
24	pH-Responsive Micelles From an Oleic Acid Tail and Propionic Acid Heads Dendritic Amphiphile for the Delivery of Antibiotics. Journal of Pharmaceutical Sciences, 2020, 109, 2594-2606.	3.3	10
25	Novel chitosan-based pH-responsive lipid-polymer hybrid nanovesicles (OLA-LPHVs) for delivery of vancomycin against methicillin-resistant Staphylococcus aureus infections. International Journal of Biological Macromolecules, 2020, 147, 385-398.	7.5	44
26	Free radical-releasing systems for targeting biofilms. Journal of Controlled Release, 2020, 322, 248-273.	9.9	17
27	Antimicrobial cell penetrating peptides with bacterial cell specificity: pharmacophore modelling, quantitative structure activity relationship and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 2019, 37, 2370-2380.	3.5	4
28	Self-assembled oleylamine grafted hyaluronic acid polymersomes for delivery of vancomycin against methicillin resistant Staphylococcus aureus (MRSA). Colloids and Surfaces B: Biointerfaces, 2019, 182, 110388.	5.0	51
29	pH-Responsive Lipid–Dendrimer Hybrid Nanoparticles: An Approach To Target and Eliminate Intracellular Pathogens. Molecular Pharmaceutics, 2019, 16, 4594-4609.	4.6	52
30	Novel fatty acid-based pH-responsive nanostructured lipid carriers for enhancing antibacterial delivery. Journal of Drug Delivery Science and Technology, 2019, 53, 101125.	3.0	19
31	Novel two-chain fatty acid-based lipids for development of vancomycin pH-responsive liposomes against <i>Staphylococcus aureus</i> and methicillin-resistant <i>Staphylococcus aureus</i> (MRSA). Journal of Drug Targeting, 2019, 27, 1094-1107.	4.4	21
32	Grafted hyaluronic acid N-acetyl-l-methionine for targeting of LAT1 receptor: In-silico, synthesis and microscale thermophoresis studies. International Journal of Biological Macromolecules, 2019, 125, 767-777.	7.5	6
33	Delivery of novel vancomycin nanoplexes for combating methicillin resistant Staphylococcus aureus (MRSA) infections. International Journal of Pharmaceutics, 2019, 558, 143-156.	5.2	34
34	Combination drug therapy via nanocarriers against infectious diseases. European Journal of Pharmaceutical Sciences, 2019, 127, 121-141.	4.0	62
35	Novel mono, di and tri-fatty acid esters bearing secondary amino acid ester head groups as transdermal permeation enhancers. New Journal of Chemistry, 2018, 42, 2232-2242.	2.8	3
36	Novel lipids with three C18-fatty acid chains and an amino acid head group for pH-responsive and sustained antibiotic delivery. Chemistry and Physics of Lipids, 2018, 212, 12-25.	3.2	29

#	Article	IF	CITATIONS
37	Identifying the Interaction of Vancomycin With Novel pH-Responsive Lipids as Antibacterial Biomaterials Via Accelerated Molecular Dynamics and Binding Free Energy Calculations. Cell Biochemistry and Biophysics, 2018, 76, 147-159.	1.8	5
38	Conjugates and nano-delivery of antimicrobial peptides for enhancing therapeutic activity. Journal of Drug Delivery Science and Technology, 2018, 44, 153-171.	3.0	34
39	A hybrid of mPEG-b-PCL and G1-PEA dendrimer for enhancing delivery of antibiotics. Journal of Controlled Release, 2018, 290, 112-128.	9.9	38
40	Investigating Organ Toxicity Profile of Tenofovir and Tenofovir Nanoparticle on the Liver and Kidney: Experimental Animal Study. Toxicological Research, 2018, 34, 221-229.	2.1	30
41	Formulation and Molecular Dynamics Simulations of a Fusidic Acid Nanosuspension for Simultaneously Enhancing Solubility and Antibacterial Activity. Molecular Pharmaceutics, 2018, 15, 3512-3526.	4.6	45
42	Experimental and molecular modeling approach to optimize suitable polymers for fabrication of stable fluticasone nanoparticles with enhanced dissolution and antimicrobial activity. Drug Design, Development and Therapy, 2018, Volume 12, 255-269.	4.3	20
43	Fatty acid conjugated pyridinium cationic amphiphiles as antibacterial agents and self-assembling nano carriers. Chemistry and Physics of Lipids, 2018, 214, 1-10.	3.2	17
44	Novel DNA Aptamers Against CCL21 Protein: Characterization and Biomedical Applications for Targeted Drug Delivery to T Cell-Rich Zones. Nucleic Acid Therapeutics, 2018, 28, 242-251.	3.6	7
45	Dexibuprofen nanocrystals with improved therapeutic performance: fabrication, characterization, in silico modeling, and in vivo evaluation. International Journal of Nanomedicine, 2018, Volume 13, 1677-1692.	6.7	25
46	Synthesis of an oleic acid based pH-responsive lipid and its application in nanodelivery of vancomycin. International Journal of Pharmaceutics, 2018, 550, 149-159.	5.2	25
47	Exploring unsaturated fatty acid cholesteryl esters as transdermal permeation enhancers. Drug Delivery and Translational Research, 2017, 7, 333-345.	5.8	10
48	Non-ionic self-assembling amphiphilic polyester dendrimers as new drug delivery excipients. RSC Advances, 2017, 7, 14233-14246.	3.6	13
49	Enhancing targeted antibiotic therapy via pH responsive solid lipid nanoparticles from an acid cleavable lipid. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2067-2077.	3.3	69
50	Nanoemulgel using a bicephalous heterolipid as a novel approach to enhance transdermal permeation of tenofovir. Colloids and Surfaces B: Biointerfaces, 2017, 154, 221-227.	5.0	16
51	Synthesis, characterization and antibacterial activity of novel heterocyclic quaternary ammonium surfactants. Journal of Industrial and Engineering Chemistry, 2017, 47, 405-414.	5.8	33
52	Preparation and Optimization of Meropenem-Loaded Solid Lipid Nanoparticles: In Vitro Evaluation and Molecular Modeling. AAPS PharmSciTech, 2017, 18, 2011-2025.	3.3	18
53	Hydrazone linkages in pH responsive drug delivery systems. European Journal of Pharmaceutical Sciences, 2017, 99, 45-65.	4.0	205
54	An emerging class of amphiphilic dendrimers for pharmaceutical and biomedical applications: Janus amphiphilic dendrimers. European Journal of Pharmaceutical Sciences, 2017, 97, 113-134.	4.0	60

#	Article	IF	CITATIONS
55	Pegylated oleic acid: A promising amphiphilic polymer for nano-antibiotic delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 112, 96-108.	4.3	43
56	pH-responsive chitosan nanoparticles from a novel twin-chain anionic amphiphile for controlled and targeted delivery of vancomycin. Colloids and Surfaces B: Biointerfaces, 2017, 158, 650-657.	5.0	63
57	Interactions of dendrimers with biological drug targets: reality or mystery – a gap in drug delivery and development research. Biomaterials Science, 2016, 4, 1032-1050.	5.4	31
58	Co-encapsulation of multi-lipids and polymers enhances the performance of vancomycin in lipid–polymer hybrid nanoparticles: In vitro and in silico studies. Materials Science and Engineering C, 2016, 61, 616-630.	7.3	64
59	In Silico Characterization of the Binding Affinity of Dendrimers to Penicillin-Binding Proteins (PBPs): Can PBPs be Potential Targets for Antibacterial Dendrimers?. Applied Biochemistry and Biotechnology, 2016, 178, 1546-1566.	2.9	2
60	Polyelectrolyte complex of vancomycin as a nanoantibiotic: Preparation, in vitro and in silico studies. Materials Science and Engineering C, 2016, 63, 489-498.	7.3	26
61	Ultra-small lipid-dendrimer hybrid nanoparticles as a promising strategy for antibiotic delivery: In vitro and in silico studies. International Journal of Pharmaceutics, 2016, 504, 1-10.	5.2	55
62	Investigating extemporaneous compounding practices in the Polokwane tertiary hospital pharmacies in South Africa - a pilot study. African Journal of Pharmacy and Pharmacology, 2015, 9, 1099-1105.	0.3	7
63	Silver salts of carboxylic acid terminated generation 1 poly (propyl ether imine) (PETIM) dendron and dendrimers as antimicrobial agents against S. aureus and MRSA. RSC Advances, 2015, 5, 34967-34978.	3.6	28
64	Nanoengineered Drug Delivery Systems for Enhancing Antibiotic Therapy. Journal of Pharmaceutical Sciences, 2015, 104, 872-905.	3.3	157
65	Novel dendritic derivatives of unsaturated fatty acids as promising transdermal permeation enhancers for tenofovir. Journal of Materials Chemistry B, 2015, 3, 6662-6675.	5.8	19
66	Transforming linoleic acid into a nanoemulsion for enhanced activity against methicillin susceptible and resistant Staphylococcus aureus. RSC Advances, 2015, 5, 90482-90492.	3.6	17
67	Solid lipid nanoparticles of clotrimazole silver complex: An efficient nano antibacterial against Staphylococcus aureus and MRSA. Colloids and Surfaces B: Biointerfaces, 2015, 136, 651-658.	5.0	118
68	Dendrimers – from organic synthesis to pharmaceutical applications: an update. Pharmaceutical Development and Technology, 2015, 20, 22-40.	2.4	37
69	Nanodrug delivery in reversing multidrug resistance in cancer cells. Frontiers in Pharmacology, 2014, 5, 159.	3.5	175
70	Ion pairing with linoleic acid simultaneously enhances encapsulation efficiency and antibacterial activity of vancomycin in solid lipid nanoparticles. Colloids and Surfaces B: Biointerfaces, 2014, 117, 303-311.	5.0	93
71	In Vitro, In Vivo, and In Silico Evaluation of the Bioresponsive Behavior of an Intelligent Intraocular Implant. Pharmaceutical Research, 2014, 31, 607-634.	3.5	21
72	The Impact of Active Site Mutations of South African <scp>HIV PR</scp> on Drug Resistance: Insight from Molecular Dynamics Simulations, Binding Free Energy and Perâ€Residue Footprints. Chemical Biology and Drug Design, 2014, 83, 472-481.	3.2	13

Thirumala Govender

#	Article	IF	CITATIONS
73	<i>In vitro</i> comparative evaluation of monolayered multipolymeric films embedded with didanosine-loaded solid lipid nanoparticles: a potential buccal drug delivery system for ARV therapy. Drug Development and Industrial Pharmacy, 2014, 40, 669-679.	2.0	22
74	Novel oleic acid derivatives enhance buccal permeation of didanosine. Drug Development and Industrial Pharmacy, 2014, 40, 657-668.	2.0	17
75	High-energy ball milling of saquinavir increases permeability across the buccal mucosa. Drug Development and Industrial Pharmacy, 2014, 40, 639-648.	2.0	9
76	Phosphine-Free Tetradentate Salicylaldimine Ligand Complexed with Palladium: First Application in Heck Reactions. Synthetic Communications, 2014, 44, 3337-3345.	2.1	3
77	Comparative buccal permeability enhancement of didanosine and tenofovir by potential multifunctional polymeric excipients and their effects on porcine buccal histology. Pharmaceutical Development and Technology, 2014, 19, 82-90.	2.4	13
78	Synthesis and Antibacterial Activity of Silver Nanoparticles Capped with a Carboxylic Acid-terminated Generation 1 Oleodendrimer. Chemistry Letters, 2014, 43, 1110-1112.	1.3	9
79	Design of an Anti-Inflammatory Composite Nanosystem and Evaluation of Its Potential for Ocular Drug Delivery. Journal of Pharmaceutical Sciences, 2013, 102, 2780-2805.	3.3	17
80	Monolayered multipolymeric buccal films with drug and polymers of opposing solubilities for ARV therapy: Physico-mechanical evaluation and molecular mechanics modelling. International Journal of Pharmaceutics, 2013, 455, 197-212.	5.2	16
81	Comparison of the Molecular Dynamics and Calculated Binding Free Energies for Nine FDAâ€Approved HIVâ€1 PR Drugs Against Subtype B and Câ€SA HIV PR. Chemical Biology and Drug Design, 2013, 81, 208-218.	3.2	32
82	Predictive Models for Maximum Recommended Therapeutic Dose of Antiretroviral Drugs. Computational and Mathematical Methods in Medicine, 2012, 2012, 1-9.	1.3	8
83	Investigating the Effect of <i>Aloe vera</i> Gel on the Buccal Permeability of Didanosine. Planta Medica, 2012, 78, 354-361.	1.3	20
84	Preparation and solid-state characterization of ball milled saquinavir mesylate for solubility enhancement. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 194-202.	4.3	52
85	Preparation, Spectrochemical, and Computational Analysis of L-Carnosine (2-[(3-Aminopropanoyl)amino]-3-(1H-imidazol-5-yl)propanoic Acid) and Its Ruthenium (II) Coordination Complexes in Aqueous Solution. Molecules, 2011, 16, 10269-10291.	3.8	30
86	Ocular drug delivery – a look towards nanobioadhesives. Expert Opinion on Drug Delivery, 2011, 8, 71-94.	5.0	59
87	Anti-malarial drug formulations and novel delivery systems: A review. Acta Tropica, 2011, 118, 71-79.	2.0	41
88	Investigating the Effect of Polymeric Approaches on Circulation Time and Physical Properties of Nanobubbles. Pharmaceutical Research, 2011, 28, 494-504.	3.5	32
89	Preparation and characterization of a poly(ethylene glycol) grafted carboxymethyl konjac glucomannan copolymer. Carbohydrate Polymers, 2010, 79, 648-654.	10.2	29
90	Preparation and Drug-Delivery Potential of Metronidazole-Loaded PELA Tri-block Co-polymeric Electrospun Membranes. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 1321-1334.	3.5	23

#	Article	IF	CITATIONS
91	A novel supramolecular shape memory material based on partial α-CD–PEG inclusion complex. Polymer, 2008, 49, 3205-3210.	3.8	76
92	An ionically crosslinked hydrogel containing vancomycin coating on a porous scaffold for drug delivery and cell culture. International Journal of Pharmaceutics, 2008, 353, 74-87.	5.2	59
93	Formulation of monolayered films with drug and polymers of opposing solubilities. International Journal of Pharmaceutics, 2008, 358, 184-191.	5.2	55
94	Sanguinarine. Cardiovascular Drug Reviews, 2008, 26, 75-83.	4.1	34
95	Polymeric Nanoparticles for Enhancing Antiretroviral Drug Therapy. Drug Delivery, 2008, 15, 493-501.	5.7	48
96	The in vivo effects of Tulbhagia violacea on blood pressure in a salt-sensitive rat model. Journal of Ethnopharmacology, 2008, 117, 263-269.	4.1	21
97	Exploring the use of novel drug delivery systems for antiretroviral drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 697-710.	4.3	108
98	Angiotensin I-Converting Enzyme Inhibitor Activity of Nutritive Plants in KwaZulu-Natal. Journal of Medicinal Food, 2008, 11, 331-336.	1.5	29
99	Comparing the Mucoadhesivity and Drug Release Mechanisms of Various Polymer-Containing Propranolol Buccal Tablets. Drug Development and Industrial Pharmacy, 2008, 34, 189-198.	2.0	10
100	Investigating a New Approach to Film Casting for Enhanced Drug Content Uniformity in Polymeric Films. Drug Development and Industrial Pharmacy, 2008, 34, 1036-1047.	2.0	32
101	The Antihypertensive Effects of Quercetin in a Salt-sensitive Model of Hypertension. Journal of Cardiovascular Pharmacology, 2008, 51, 239-245.	1.9	65
102	A Novel Cellulose-Based Hydrophilic Wafer Matrix for Rapid Bioactive Delivery. Journal of Bioactive and Compatible Polymers, 2007, 22, 119-142.	2.1	11
103	Using an Experimental Design to Identify and Quantify the Effects of Environment Related Test Parameters on the In Vitro Mucoadhesivity Testing of a Propanolol Buccal Tablet. Drug Development and Industrial Pharmacy, 2007, 33, 709-716.	2.0	6
104	Enhancing drug incorporation into tetracycline-loaded chitosan microspheres for periodontal therapy. Journal of Microencapsulation, 2006, 23, 750-761.	2.8	26
105	Statistical optimisation of the mucoadhesivity and characterisation of multipolymeric propranolol matrices for buccal therapy. International Journal of Pharmaceutics, 2006, 323, 43-51.	5.2	31
106	Synthesis of a novel PEG-block-poly(aspartic acid-stat-phenylalanine) copolymer shows potential for formation of a micellar drug carrier. International Journal of Pharmaceutics, 2005, 297, 242-253.	5.2	45
107	Optimisation and characterisation of bioadhesive controlled release tetracycline microspheres. International Journal of Pharmaceutics, 2005, 306, 24-40.	5.2	142
108	Novel Polyelectrolyte Carboxymethyl Konjac Glucomannan–Chitosan Nanoparticles for Drug Delivery. Macromolecular Rapid Communications, 2004, 25, 954-958.	3.9	67

Thirumala Govender

#	Article	IF	CITATIONS
109	Drug–polyionic block copolymer interactions for micelle formation: physicochemical characterisation. Journal of Controlled Release, 2001, 75, 249-258.	9.9	41
110	Defining the drug incorporation properties of PLA–PEG nanoparticles. International Journal of Pharmaceutics, 2000, 199, 95-110.	5.2	197
111	Hydrogen bonding and electrostatic interaction contributions to the interaction of a cationic drug with polyaspartic acid. Pharmaceutical Research, 2000, 17, 871-877.	3.5	45
112	Colloidal stability and drug incorporation aspects of micellar-like PLA–PEG nanoparticles. Colloids and Surfaces B: Biointerfaces, 1999, 16, 147-159.	5.0	190
113	Complex formation between the anionic polymer (PAA) and a cationic drug (procaine HCI): characterization by microcalorimetric studies. Pharmaceutical Research, 1999, 16, 1125-1131.	3.5	23
114	PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. Journal of Controlled Release, 1999, 57, 171-185.	9.9	868
115	Drug Release Modulation from Cross-Linked Calcium Alginate Microdiscs, 1: Evaluation of the Concentration Dependency of Sodium Alginate on Drug Entrapment Capacity, Morphology, and Dissolution Rate. Drug Delivery, 1998, 5, 25-34.	5.7	17
116	Drug Release Modulation from Cross-Linked Calcium Alginate Microdiscs, 2: Swelling, Compression, and Stability of the Hydrodynamically-Sensitive Calcium Alginate Matrix and the Associated Drug Release Mechanisms. Drug Delivery, 1998, 5, 35-46.	5.7	10
117	Ionotropic gelation: Encapsulation of indomethacin in calcium alginate gel discs. Journal of Microencapsulation, 1998, 15, 215-226.	2.8	40
118	In vitrocharacterization of a controlled-release chlorpheniramine maleate delivery system prepared by the air-suspension technique. Journal of Microencapsulation, 1997, 14, 743-751.	2.8	11
119	Formulation and preparation of controlled release pellets of salbutamol by the air suspension technique. Journal of Microencapsulation, 1997, 14, 445-455.	2.8	12
120	Microencapsulated Eudragit® RS30D-coated controlled-release pellets: The influence of dissolution variables and topographical evaluation. Journal of Microencapsulation, 1997, 14, 1-13.	2.8	4
121	Drug Release and Surface Morphology Studies on Salbutamol Controlled Release Pellets. Drug Development and Industrial Pharmacy, 1995, 21, 1303-1322.	2.0	13
122	Beta-2 Microglobulin Removal by Immunoextraction and Passive Adsorption in High-Flux Dialyzers. Journal of Biomimetics, Biomaterials, and Tissue Engineering, 0, 11, 35-44.	0.7	0