Ilva Dana Rupenthal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/477351/publications.pdf

Version: 2024-02-01

96 papers 3,213 citations

32 h-index 52 g-index

100 all docs

100 docs citations

100 times ranked

3900 citing authors

#	Article	IF	CITATIONS
1	Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. Journal of Controlled Release, 2017, 248, 96-116.	9.9	340
2	Overcoming ocular drug delivery barriers through the use of physical forces. Advanced Drug Delivery Reviews, 2018, 126, 96-112.	13.7	140
3	Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 1: Physicochemical characterisation and in vitro release. International Journal of Pharmaceutics, 2011, 411, 69-77.	5.2	131
4	Injectable implants for the sustained release of protein and peptide drugs. Drug Discovery Today, 2013, 18, 337-349.	6.4	128
5	Implants for drug delivery to the posterior segment of the eye: A focus on stimuli-responsive and tunable release systems. Journal of Controlled Release, 2014, 196, 208-221.	9.9	125
6	The inflammasome pathway is amplified and perpetuated in an autocrine manner through connexin43 hemichannel mediated ATP release. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 385-393.	2.4	87
7	Connexin43 in retinal injury and disease. Progress in Retinal and Eye Research, 2016, 51, 41-68.	15.5	86
8	Dendrimers for gene delivery – a potential approach for ocular therapy?. Journal of Pharmacy and Pharmacology, 2014, 66, 542-556.	2.4	84
9	Nanocarrier mediated retinal drug delivery: overcoming ocular barriers to treat posterior eye diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1473.	6.1	79
10	Hyaluronic Acid Coated Albumin Nanoparticles for Targeted Peptide Delivery to the Retina. Molecular Pharmaceutics, 2017, 14, 533-545.	4.6	73
11	Hyaluronic acid coated albumin nanoparticles for targeted peptide delivery in the treatment of retinal ischaemia. Biomaterials, 2018, 168, 10-23.	11.4	66
12	In vitro and ex vivo corneal penetration and absorption models. Drug Delivery and Translational Research, 2016, 6, 634-647.	5.8	64
13	Nanoparticle cross-linked collagen shields for sustained delivery of pilocarpine hydrochloride. International Journal of Pharmaceutics, 2016, 501, 96-101.	5.2	57
14	Modern approaches to the ocular delivery of cyclosporine A. Drug Discovery Today, 2016, 21, 977-988.	6.4	56
15	Formulation Considerations for the Management of Dry Eye Disease. Pharmaceutics, 2021, 13, 207.	4.5	56
16	Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 2: Precorneal retention and in vivo pharmacodynamic study. International Journal of Pharmaceutics, 2011, 411, 78-85.	5.2	55
17	Sustained intravitreal delivery of connexin43 mimetic peptide by poly(d,l-lactide-co-glycolide) acid micro- and nanoparticles $\hat{a} \in \text{Closing}$ the gap in retinal ischaemia. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 378-386.	4.3	55
18	Electro-responsive macroporous polypyrrole scaffolds for triggered dexamethasone delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 419-426.	4.3	49

#	Article	IF	CITATIONS
19	Tonabersat Prevents Inflammatory Damage in the Central Nervous System by Blocking Connexin43 Hemichannels. Neurotherapeutics, 2017, 14, 1148-1165.	4.4	49
20	Role of gap junctions in chronic pain. Journal of Neuroscience Research, 2012, 90, 337-345.	2.9	48
21	Development of gatifloxacin-loaded cationic polymeric nanoparticles for ocular drug delivery. Pharmaceutical Development and Technology, 2016, 21, 172-179.	2.4	46
22	Improved Corneal Wound Healing through Modulation of Gap Junction Communication Using Connexin43-Specific Antisense Oligodeoxynucleotides., 2012, 53, 1130.		45
23	Connexin43 hemichannel block protects against the development of diabetic retinopathy signs in a mouse model of the disease. Journal of Molecular Medicine, 2019, 97, 215-229.	3.9	42
24	Connexin Hemichannel Block Using Orally Delivered Tonabersat Improves Outcomes in Animal Models of Retinal Disease. Neurotherapeutics, 2020, 17, 371-387.	4.4	41
25	Semifluorinated alkane based systems for enhanced corneal penetration of poorly soluble drugs. International Journal of Pharmaceutics, 2018, 538, 119-129.	5.2	40
26	Ocular delivery systems for topical application of anti-infective agents. Drug Development and Industrial Pharmacy, 2016, 42, 1-11.	2.0	38
27	Connexin43 hemichannel block protects against retinal pigment epithelial cell barrier breakdown. Acta Diabetologica, 2020, 57, 13-22.	2.5	38
28	Drug delivery to the lens for the management of cataracts. Advanced Drug Delivery Reviews, 2018, 126, 185-194.	13.7	37
29	Ion-Activated <i>In Situ</i> Gelling Systems for Antisense Oligodeoxynucleotide Delivery to the Ocular Surface. Molecular Pharmaceutics, 2011, 8, 2282-2290.	4.6	36
30	Brinzolamide–loaded nanoemulsions: <i>ex vivo</i> transcorneal permeation, cell viability and ocular irritation tests. Pharmaceutical Development and Technology, 2019, 24, 600-606.	2.4	36
31	Intravitreal pro-inflammatory cytokines in non-obese diabetic mice: Modelling signs of diabetic retinopathy. PLoS ONE, 2018, 13, e0202156.	2.5	35
32	Ultrasound-responsive nanobubbles for enhanced intravitreal drug migration: An ex vivo evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 136, 102-107.	4.3	35
33	Depot formulations to sustain periocular drug delivery to the posterior eye segment. Drug Discovery Today, 2019, 24, 1458-1469.	6.4	34
34	Light-responsive <i>in situ</i> forming injectable implants for effective drug delivery to the posterior segment of the eye. Expert Opinion on Drug Delivery, 2016, 13, 953-962.	5.0	32
35	Targeting connexin hemichannels to control the inflammasome: the correlation between connexin43 and NLRP3 expression in chronic eye disease. Expert Opinion on Therapeutic Targets, 2019, 23, 855-863.	3.4	31
36	Validation of hyaluronic acid-agar-based hydrogels as vitreous humor mimetics for in vitro drug and particle migration evaluations. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 148, 118-125.	4.3	31

#	Article	IF	Citations
37	Sustained Connexin43 Mimetic Peptide Release From Loaded Nanoparticles Reduces Retinal and Choroidal Photodamage., 2018, 59, 3682.		30
38	Intravitreal injection of lipoamino acid-modified connexin43 mimetic peptide enhances neuroprotection after retinal ischemia. Drug Delivery and Translational Research, 2015, 5, 480-488.	5.8	29
39	Ultrasound-mediated nanoparticle delivery across ex vivo bovine retina after intravitreal injection. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 125-136.	4.3	29
40	Connexin43 hemichannel block inhibits NLRP3 inflammasome activation in a human retinal explant model of diabetic retinopathy. Experimental Eye Research, 2021, 202, 108384.	2.6	26
41	Ex vivo and In vivo Evaluation of Chitosan Coated Nanostructured Lipid Carriers for Ocular Delivery of Acyclovir. Current Drug Delivery, 2016, 13, 923-934.	1.6	26
42	PLGA nanoparticles for intravitreal peptide delivery: statistical optimization, characterization and toxicity evaluation. Pharmaceutical Development and Technology, 2018, 23, 324-333.	2.4	25
43	Tonabersat Inhibits Connexin43 Hemichannel Opening and Inflammasome Activation in an In Vitro Retinal Epithelial Cell Model of Diabetic Retinopathy. International Journal of Molecular Sciences, 2021, 22, 298.	4.1	25
44	Neuroprotection in the treatment of glaucoma – A focus on connexin43 gap junction channel blockers. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 182-193.	4.3	24
45	Preparation and evaluation of PLGA nanoparticle-loaded biodegradable light-responsive injectable implants as a promising platform for intravitreal drug delivery. Journal of Drug Delivery Science and Technology, 2017, 40, 142-156.	3.0	23
46	Nanoparticle-loaded biodegradable light-responsive in situ forming injectable implants for effective peptide delivery to the posterior segment of the eye. Medical Hypotheses, 2017, 103, 5-9.	1.5	23
47	Connexin43 hemichannels: A potential drug target for the treatment of diabetic retinopathy. Drug Discovery Today, 2019, 24, 1627-1636.	6.4	23
48	Immunohistochemical Characterization of Connexin43 Expression in a Mouse Model of Diabetic Retinopathy and in Human Donor Retinas. International Journal of Molecular Sciences, 2017, 18, 2567.	4.1	22
49	Synergistic effect of chemical penetration enhancer and iontophoresis on transappendageal transport of oligodeoxynucleotides. International Journal of Pharmaceutics, 2013, 441, 687-692.	5.2	21
50	Cytotoxicity and Vitreous Stability of Chemically Modified Connexin43 Mimetic Peptides for the Treatment of Optic Neuropathy. Journal of Pharmaceutical Sciences, 2013, 102, 2322-2331.	3.3	21
51	Drug-device combination approaches for delivery to the eye. Current Opinion in Pharmacology, 2017, 36, 44-51.	3. 5	20
52	Effects of enzymatic degradation on dynamic mechanical properties of the vitreous and intravitreal nanoparticle mobility. European Journal of Pharmaceutical Sciences, 2018, 118, 124-133.	4.0	19
53	Micelle directed chemical polymerization of polypyrrole particles for the electrically triggered release of dexamethasone base and dexamethasone phosphate. International Journal of Pharmaceutics, 2018, 543, 38-45.	5.2	19
54	Preclinical studies evaluating the effect of semifluorinated alkanes on ocular surface and tear fluid dynamics. Ocular Surface, 2019, 17, 241-249.	4.4	19

#	Article	IF	CITATIONS
55	Connexin therapeutics: blocking connexin hemichannel pores is distinct from blocking pannexin channels or gap junctions. Neural Regeneration Research, 2021, 16, 482.	3.0	19
56	Gelatine-based drug-eluting bandage contact lenses: Effect of PEGDA concentration and manufacturing technique. International Journal of Pharmaceutics, 2021, 599, 120452.	5.2	19
57	3-Dimensionally ordered macroporous PEDOT ion-exchange resins prepared by vapor phase polymerization for triggered drug delivery: Fabrication and characterization. Electrochimica Acta, 2018, 269, 560-570.	5.2	17
58	Topical semifluorinated alkane-based azithromycin suspension for the management of ocular infections. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 83-91.	4.3	16
59	Incorporation of ion exchange functionalized-montmorillonite into solid lipid nanoparticles with low irritation enhances drug bioavailability for glaucoma treatment. Drug Delivery, 2020, 27, 652-661.	5.7	16
60	Cytotoxicity considerations and electrically tunable release of dexamethasone from polypyrrole for the treatment of back-of-the-eye conditions. Drug Delivery and Translational Research, 2016, 6, 793-799.	5. 8	15
61	In vitro release characteristics and cellular uptake of poly(D,L-lactic- <i>co</i> plycolic acid) nanoparticles for topical delivery of antisense oligodeoxynucleotides. Drug Delivery, 2011, 18, 493-501.	5.7	13
62	ZnO/PVP nanoparticles induce gelation in type I collagen. European Polymer Journal, 2016, 75, 399-405.	5.4	13
63	Randomised masked trial of the clinical safety and tolerability of MGO Manuka Honey eye cream for the management of blepharitis. BMJ Open Ophthalmology, 2017, 1, e000066.	1.6	13
64	Intracellular oligonucleotide delivery using the cell penetrating peptide Xentry. Scientific Reports, 2018, 8, 11256.	3.3	13
65	Nanotechnology for ocular drug delivery. , 2018, , 137-188.		12
66	Differential Action of Connexin Hemichannel and Pannexin Channel Therapeutics for Potential Treatment of Retinal Diseases. International Journal of Molecular Sciences, 2021, 22, 1755.	4.1	12
67	Blocking the inflammasome: A novel approach to treat uveitis. Drug Discovery Today, 2021, 26, 2839-2857.	6.4	12
68	Correlation between the progression of diabetic retinopathy and inflammasome biomarkers in vitreous and serum $\hat{a}\in ^u$ a systematic review. BMC Ophthalmology, 2022, 22, .	1.4	12
69	Preclinical development of MGO Manuka Honey microemulsion for blepharitis management. BMJ Open Ophthalmology, 2017, 1, e000065.	1.6	11
70	Medicated ocular bandages and corneal health: potential excipients and active pharmaceutical ingredients. Pharmaceutical Development and Technology, 2018, 23, 255-260.	2.4	11
71	Xentry-Gap 19 inhibits Connexin 43 hemichannel opening especially during hypoxic injury. Drug Delivery and Translational Research, 2020, 10, 751-765.	5 . 8	11
72	Formulation Development and Evaluation of the Therapeutic Efficacy of Brinzolamide Containing Nanoemulsions. Iranian Journal of Pharmaceutical Research, 2017, 16, 847-857.	0.5	11

#	Article	IF	Citations
73	Ocular drug delivery—eye on innovation. Drug Delivery and Translational Research, 2016, 6, 631-633.	5.8	9
74	Effect of therapeutic UVC on corneal DNA: Safety assessment for potential keratitis treatment. Ocular Surface, 2021, 20, 130-138.	4.4	8
75	Blocking connexin43 hemichannels prevents TGFâ€Î²2 upregulation and epithelial–mesenchymal transition in retinal pigment epithelial cells. Cell Biology International, 2022, 46, 323-330.	3.0	8
76	Phase transition of a microemulsion upon addition of cyclodextrin – applications in drug delivery. Pharmaceutical Development and Technology, 2018, 23, 167-175.	2.4	7
77	Ocular Drug Delivery., 0,, 729-767.		5
78	Ex vivo evaluation of the stability, safety and antibacterial efficacy of an extemporaneous povidoneâ€iodine preparation for ophthalmic applications. Australasian journal of optometry, The, 2019, 102, 583-589.	1.3	5
79	Characterization of Zinc Oxide Nanoparticle Cross-Linked Collagen Hydrogels. Gels, 2020, 6, 37.	4.5	5
80	<i>Ex vivo</i> evaluation of the influence of pH on the ophthalmic safety, antibacterial efficacy and storage stability of povidoneâ€iodine. Australasian journal of optometry, The, 2021, 104, 162-166.	1.3	5
81	Development of a novel stability indicating RP-HPLC method for quantification of Connexin43 mimetic peptide and determination of its degradation kinetics in biological fluids. Journal of Pharmaceutical Analysis, 2017, 7, 365-373.	5. 3	4
82	Evaluation of 2 ex vivo Bovine Cornea Storage Protocols for Drug Delivery Applications. Ophthalmic Research, 2019, 61, 204-209.	1.9	4
83	Relationship between rheological properties and transverse relaxation time (T2) of artificial and porcine vitreous humour. Experimental Eye Research, 2020, 194, 108006.	2.6	4
84	Micro-interaction of mucin tear film interface with particles: The inconsistency of pharmacodynamics and precorneal retention of ion-exchange, functionalized, Mt-embedded nano- and microparticles. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111355.	5.0	4
85	Ocular Distribution of Papaverine Using Non-aqueous Vehicles. AAPS PharmSciTech, 2021, 22, 160.	3.3	4
86	Preclinical confirmation of UVC efficacy in treating infectious keratitis. Ocular Surface, 2022, 25, 76-86.	4.4	4
87	Azithromycin and Dexamethasone Loaded \hat{l}^2 -Glucan Films for the Treatment of Blepharitis. Drug Delivery Letters, 2016, 6, 22-29.	0.5	3
88	Ocular drugs and drug delivery systems â€" Current trends and future perspectives. Drug Discovery Today, 2019, 24, 1425-1426.	6.4	3
89	The influence of hyperglycemia on the safety of ultrasound in retinal pigment epithelial cells. Cell Biology International, 2021, 45, 558-568.	3.0	3
90	Characterization and evaluation of \hat{l}^2 -glucan formulations as injectable implants for protein and peptide delivery. Drug Development and Industrial Pharmacy, 2012, 38, 1337-1343.	2.0	2

#	Article	IF	CITATIONS
91	Evaluation of Fluorescence Resonance Energy Transfer Approaches as a Tool to Quantify the Stability of Antisense Oligodeoxynucleotides. Current Pharmaceutical Analysis, 2012, 8, 20-27.	0.6	2
92	Magnetic design for an IPT based wireless intraocular pressure regulating implant. , 2017, , .		2
93	Ex vivo investigation of ocular tissue distribution following intravitreal administration of connexin43 mimetic peptide using the microdialysis technique and LC-MS/MS. Drug Delivery and Translational Research, 2016, 6, 763-770.	5.8	1
94	Characterization of a Novel Human Organotypic Retinal Culture Technique. Journal of Visualized Experiments, $2021, \ldots$	0.3	0
95	Imaging Techniques and their Role in Dosage form Design and Drug Delivery Research. Current Pharmaceutical Analysis, 2008, 4, 118-125.	0.6	0
96	Penetration Routes to Retina and Posterior Segment., 2018,, 69-81.		0