Kendrick B Turner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4773193/publications.pdf

Version: 2024-02-01

31	978	18	31
papers	citations	h-index	g-index
33	33	33	1232
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Optimization of Heavy Metal Sensors Based on Transcription Factors and Cell-Free Expression Systems. ACS Synthetic Biology, 2021, 10, 3040-3054.	3.8	16
2	Lactobacillus acidophilus Membrane Vesicles as a Vehicle of Bacteriocin Delivery. Frontiers in Microbiology, 2020, 11, 710.	3.5	57
3	Quantification of Interlaboratory Cell-Free Protein Synthesis Variability. ACS Synthetic Biology, 2019, 8, 2080-2091.	3.8	59
4	Sequence Tolerance of a Single-Domain Antibody with a High Thermal Stability: Comparison of Computational and Experimental Fitness Profiles. ACS Omega, 2019, 4, 10444-10454.	3.5	4
5	Bacterial bioreactors: Outer membrane vesicles for enzyme encapsulation. Methods in Enzymology, 2019, 617, 187-216.	1.0	5
6	Enhanced Catalysis from Multienzyme Cascades Assembled on a DNA Origami Triangle. ACS Nano, 2019, 13, 13677-13689.	14.6	100
7	Environmental Decontamination of a Chemical Warfare Simulant Utilizing a Membrane Vesicle-Encapsulated Phosphotriesterase. ACS Applied Materials & Samp; Interfaces, 2018, 10, 15712-15719.	8.0	35
8	Transcriptional regulatory proteins as biosensing tools. Chemical Communications, 2017, 53, 6820-6823.	4.1	4
9	Targeting and delivery of therapeutic enzymes. Therapeutic Delivery, 2017, 8, 577-595.	2.2	49
10	Affinity purification of bacterial outer membrane vesicles (OMVs) utilizing a His-tag mutant. Research in Microbiology, 2017, 168, 139-146.	2.1	40
11	Bacterial Outer Membrane Vesicles: An Emerging Tool in Vaccine Development, as Adjuvants, and for Therapeutic Delivery. Drug Delivery Letters, 2017, 7, .	0.5	1
12	Pairing Alpaca and Llama-Derived Single Domain Antibodies to Enhance Immunoassays for Ricin. Antibodies, 2017, 6, 3.	2.5	6
13	Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles. Scientific Reports, 2016, 6, 24866.	3.3	88
14	Conjugation of biotin-coated luminescent quantum dots with single domain antibody-rhizavidin fusions. Biotechnology Reports (Amsterdam, Netherlands), 2016, 10, 56-65.	4.4	16
15	Directed Protein Packaging within Outer Membrane Vesicles from Escherichia coli : Design, Production and Purification. Journal of Visualized Experiments, 2016, , .	0.3	10
16	Improving the targeting of therapeutics with single-domain antibodies. Expert Opinion on Drug Delivery, 2016, 13, 561-570.	5.0	9
17	Next-Generation Sequencing of a Single Domain Antibody Repertoire Reveals Quality of Phage Display Selected Candidates. PLoS ONE, 2016, 11, e0149393.	2.5	30
18	Enhanced production of a single domain antibody with an engineered stabilizing extra disulfide bond. Microbial Cell Factories, 2015, 14, 158.	4.0	37

#	Article	lF	CITATION
19	Improving the biophysical properties of anti-ricin single-domain antibodies. Biotechnology Reports (Amsterdam, Netherlands), 2015, 6, 27-35.	4.4	35
20	Optimizing Nanoplasmonic Biosensor Sensitivity with Orientated Single Domain Antibodies. Plasmonics, 2015, 10, 1649-1655.	3 . 4	15
21	Enzymatic bioconjugation of nanoparticles: developing specificity and control. Current Opinion in Biotechnology, 2015, 34, 232-241.	6.6	40
22	Can template-based protein models guide the design of sequence fitness for enhanced thermal stability of single domain antibodies?. Protein Engineering, Design and Selection, 2015, 28, 395-402.	2.1	7
23	Bacterial Nanobioreactors–Directing Enzyme Packaging into Bacterial Outer Membrane Vesicles. ACS Applied Materials & Diterfaces, 2015, 7, 24963-24972.	8.0	106
24	Emerging therapeutic delivery capabilities and challenges utilizing enzyme/protein packaged bacterial vesicles. Therapeutic Delivery, 2015, 6, 873-887.	2.2	30
25	Isolation and Epitope Mapping of Staphylococcal Enterotoxin B Single-Domain Antibodies. Sensors, 2014, 14, 10846-10863.	3.8	10
26	Thermostable single domain antibody–maltose binding protein fusion for Bacillus anthracis spore protein BclA detection. Analytical Biochemistry, 2014, 447, 64-73.	2.4	22
27	Enhanced stabilization of a stable single domain antibody for SEB toxin by random mutagenesis and stringent selection. Protein Engineering, Design and Selection, 2014, 27, 89-95.	2.1	34
28	Glucose Recognition Proteins for Glucose Sensing at Physiological Concentrations and Temperatures. ACS Chemical Biology, 2014, 9, 1595-1602.	3.4	21
29	Negative tail fusions can improve ruggedness of single domain antibodies. Protein Expression and Purification, 2014, 95, 226-232.	1.3	22
30	Accumulation and efflux of polychlorinated biphenyls in Escherichia coli. Analytical and Bioanalytical Chemistry, 2012, 403, 2403-2409.	3.7	4
31	Hydroxylated Polychlorinated Biphenyl Detection Based on a Genetically Engineered Bioluminescent Whole-Cell Sensing System. Analytical Chemistry, 2007, 79, 5740-5745.	6.5	61