
Kendrick B Turner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4773193/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacterial Nanobioreactors–Directing Enzyme Packaging into Bacterial Outer Membrane Vesicles. ACS Applied Materials & Interfaces, 2015, 7, 24963-24972.	8.0	106
2	Enhanced Catalysis from Multienzyme Cascades Assembled on a DNA Origami Triangle. ACS Nano, 2019, 13, 13677-13689.	14.6	100
3	Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles. Scientific Reports, 2016, 6, 24866.	3.3	88
4	Hydroxylated Polychlorinated Biphenyl Detection Based on a Genetically Engineered Bioluminescent Whole-Cell Sensing System. Analytical Chemistry, 2007, 79, 5740-5745.	6.5	61
5	Quantification of Interlaboratory Cell-Free Protein Synthesis Variability. ACS Synthetic Biology, 2019, 8, 2080-2091.	3.8	59
6	Lactobacillus acidophilus Membrane Vesicles as a Vehicle of Bacteriocin Delivery. Frontiers in Microbiology, 2020, 11, 710.	3.5	57
7	Targeting and delivery of therapeutic enzymes. Therapeutic Delivery, 2017, 8, 577-595.	2.2	49
8	Enzymatic bioconjugation of nanoparticles: developing specificity and control. Current Opinion in Biotechnology, 2015, 34, 232-241.	6.6	40
9	Affinity purification of bacterial outer membrane vesicles (OMVs) utilizing a His-tag mutant. Research in Microbiology, 2017, 168, 139-146.	2.1	40
10	Enhanced production of a single domain antibody with an engineered stabilizing extra disulfide bond. Microbial Cell Factories, 2015, 14, 158.	4.0	37
11	Improving the biophysical properties of anti-ricin single-domain antibodies. Biotechnology Reports (Amsterdam, Netherlands), 2015, 6, 27-35.	4.4	35
12	Environmental Decontamination of a Chemical Warfare Simulant Utilizing a Membrane Vesicle-Encapsulated Phosphotriesterase. ACS Applied Materials & Interfaces, 2018, 10, 15712-15719.	8.0	35
13	Enhanced stabilization of a stable single domain antibody for SEB toxin by random mutagenesis and stringent selection. Protein Engineering, Design and Selection, 2014, 27, 89-95.	2.1	34
14	Emerging therapeutic delivery capabilities and challenges utilizing enzyme/protein packaged bacterial vesicles. Therapeutic Delivery, 2015, 6, 873-887.	2.2	30
15	Next-Generation Sequencing of a Single Domain Antibody Repertoire Reveals Quality of Phage Display Selected Candidates. PLoS ONE, 2016, 11, e0149393.	2.5	30
16	Thermostable single domain antibody–maltose binding protein fusion for Bacillus anthracis spore protein BclA detection. Analytical Biochemistry, 2014, 447, 64-73.	2.4	22
17	Negative tail fusions can improve ruggedness of single domain antibodies. Protein Expression and Purification, 2014, 95, 226-232.	1.3	22
18	Glucose Recognition Proteins for Glucose Sensing at Physiological Concentrations and Temperatures. ACS Chemical Biology, 2014, 9, 1595-1602.	3.4	21

Kendrick B Turner

#	Article	IF	CITATIONS
19	Conjugation of biotin-coated luminescent quantum dots with single domain antibody-rhizavidin fusions. Biotechnology Reports (Amsterdam, Netherlands), 2016, 10, 56-65.	4.4	16
20	Optimization of Heavy Metal Sensors Based on Transcription Factors and Cell-Free Expression Systems. ACS Synthetic Biology, 2021, 10, 3040-3054.	3.8	16
21	Optimizing Nanoplasmonic Biosensor Sensitivity with Orientated Single Domain Antibodies. Plasmonics, 2015, 10, 1649-1655.	3.4	15
22	Isolation and Epitope Mapping of Staphylococcal Enterotoxin B Single-Domain Antibodies. Sensors, 2014, 14, 10846-10863.	3.8	10
23	Directed Protein Packaging within Outer Membrane Vesicles from Escherichia coli : Design, Production and Purification. Journal of Visualized Experiments, 2016, , .	0.3	10
24	Improving the targeting of therapeutics with single-domain antibodies. Expert Opinion on Drug Delivery, 2016, 13, 561-570.	5.0	9
25	Can template-based protein models guide the design of sequence fitness for enhanced thermal stability of single domain antibodies?. Protein Engineering, Design and Selection, 2015, 28, 395-402.	2.1	7
26	Pairing Alpaca and Llama-Derived Single Domain Antibodies to Enhance Immunoassays for Ricin. Antibodies, 2017, 6, 3.	2.5	6
27	Bacterial bioreactors: Outer membrane vesicles for enzyme encapsulation. Methods in Enzymology, 2019, 617, 187-216.	1.0	5
28	Accumulation and efflux of polychlorinated biphenyls in Escherichia coli. Analytical and Bioanalytical Chemistry, 2012, 403, 2403-2409.	3.7	4
29	Transcriptional regulatory proteins as biosensing tools. Chemical Communications, 2017, 53, 6820-6823.	4.1	4
30	Sequence Tolerance of a Single-Domain Antibody with a High Thermal Stability: Comparison of Computational and Experimental Fitness Profiles. ACS Omega, 2019, 4, 10444-10454.	3.5	4
31	Bacterial Outer Membrane Vesicles: An Emerging Tool in Vaccine Development, as Adjuvants, and for Therapeutic Delivery. Drug Delivery Letters, 2017, 7, .	0.5	1