Yvette van Kooyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/477241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of the glyco-code in pancreatic ductal adenocarcinoma identifies glycan-mediated immune regulatory circuits. Communications Biology, 2022, 5, 41.	4.4	8
2	Uptake Kinetics Of Liposomal Formulations of Differing Charge Influences Development of in Vivo Dendritic Cell Immunotherapy. Journal of Pharmaceutical Sciences, 2022, 111, 1081-1091.	3.3	12
3	Incorporation of Toll-Like Receptor Ligands and Inflammasome Stimuli in GM3 Liposomes to Induce Dendritic Cell Maturation and T Cell Responses. Frontiers in Immunology, 2022, 13, 842241.	4.8	7
4	Synthesis of Asparagine Derivatives Harboring a Lewis X Type DCâ€SIGN Ligand and Evaluation of their Impact on Immunomodulation in Multiple Sclerosis. Chemistry - A European Journal, 2021, 27, 2742-2752.	3.3	3
5	Human C-Type Lectins, MGL, DC-SIGN and Langerin, Their Interactions With Endogenous and Exogenous Ligand Patterns. , 2021, , 425-441.		1
6	α2-3 Sialic acid binding and uptake by human monocyte-derived dendritic cells alters metabolism and cytokine release and initiates tolerizing T cell programming. Immunotherapy Advances, 2021, 1, .	3.0	7
7	Tolerogenic Immunotherapy: Targeting DC Surface Receptors to Induce Antigen-Specific Tolerance. Frontiers in Immunology, 2021, 12, 643240.	4.8	44
8	Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec receptors Siglec-7 and Siglec-9. Nature Communications, 2021, 12, 1270.	12.8	111
9	Quantitative Phosphoproteomic Analysis Reveals Dendritic Cell- Specific STAT Signaling After α2-3–Linked Sialic Acid Ligand Binding. Frontiers in Immunology, 2021, 12, 673454.	4.8	3
10	Therapeutic Liposomal Vaccines for Dendritic Cell Activation or Tolerance. Frontiers in Immunology, 2021, 12, 674048.	4.8	26
11	Palmitoylated antigens for the induction of anti-tumor CD8+ TÂcells and enhanced tumor recognition. Molecular Therapy - Oncolytics, 2021, 21, 315-328.	4.4	3
12	Myeloid-Specific Acly Deletion Alters Macrophage Phenotype In Vitro and In Vivo without Affecting Tumor Growth. Cancers, 2021, 13, 3054.	3.7	6
13	Distinct antigen uptake receptors route to the same storage compartments for crossâ€presentation in dendritic cells. Immunology, 2021, 164, 494-506.	4.4	8
14	CD169 Defines Activated CD14+ Monocytes With Enhanced CD8+ T Cell Activation Capacity. Frontiers in Immunology, 2021, 12, 697840.	4.8	33
15	Liposomal Nanovaccine Containing α-Galactosylceramide and Ganglioside GM3 Stimulates Robust CD8+ T Cell Responses via CD169+ Macrophages and cDC1. Vaccines, 2021, 9, 56.	4.4	20
16	Bacterial inclusion bodies function as vehicles for dendritic cell-mediated T cell responses. Cellular and Molecular Immunology, 2020, 17, 415-417.	10.5	9
17	Adaptable antigen matrix platforms for peptide vaccination strategies and T cell-mediated anti-tumor immunity. Biomaterials, 2020, 262, 120342.	11.4	7
18	Selective tumor antigen vaccine delivery to human CD169 ⁺ antigen-presenting cells using ganglioside-liposomes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27528-27539.	7.1	54

#	Article	IF	CITATIONS
19	Tn Antigen Expression Contributes to an Immune Suppressive Microenvironment and Drives Tumor Growth in Colorectal Cancer. Frontiers in Oncology, 2020, 10, 1622.	2.8	41
20	Optimization of Liposomes for Antigen Targeting to Splenic CD169+ Macrophages. Pharmaceutics, 2020, 12, 1138.	4.5	15
21	Monocyte-derived APCs are central to the response of PD1 checkpoint blockade and provide a therapeutic target for combination therapy. , 2020, 8, e000588.		38
22	Targeting of the C-Type Lectin Receptor Langerin Using Bifunctional Mannosylated Antigens. Frontiers in Cell and Developmental Biology, 2020, 8, 556.	3.7	13
23	Pairing <i>Bacteroides vulgatus</i> LPS Structure with Its Immunomodulatory Effects on Human Cellular Models. ACS Central Science, 2020, 6, 1602-1616.	11.3	55
24	Lipo-Based Vaccines as an Approach to Target Dendritic Cells for Induction of T- and iNKT Cell Responses. Frontiers in Immunology, 2020, 11, 990.	4.8	27
25	Activation of the C-Type Lectin MGL by Terminal GalNAc Ligands Reduces the Glycolytic Activity of Human Dendritic Cells. Frontiers in Immunology, 2020, 11, 305.	4.8	22
26	Glioblastomas exploit truncated O <i>-</i> linked glycans for local and distant immune modulation via the macrophage galactose-type lectin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3693-3703.	7.1	57
27	<i>C</i> -Mannosyl Lysine for Solid Phase Assembly of Mannosylated Peptide Conjugate Cancer Vaccines. ACS Chemical Biology, 2020, 15, 728-739.	3.4	16
28	Immune involvement of the contralateral hemisphere in a glioblastoma mouse model. , 2020, 8, e000323.		6
29	Macrophage galactose-type lectin (MGL) is induced on M2 microglia and participates in the resolution phase of autoimmune neuroinflammation. Journal of Neuroinflammation, 2019, 16, 130.	7.2	23
30	Chemically engineered glycan-modified cancer vaccines to mobilize skin dendritic cells. Current Opinion in Chemical Biology, 2019, 53, 167-172.	6.1	9
31	Glycan modification of glioblastomaâ€derived extracellular vesicles enhances receptorâ€mediated targeting of dendritic cells. Journal of Extracellular Vesicles, 2019, 8, 1648995.	12.2	72
32	Glycan-Modified Melanoma-Derived Apoptotic Extracellular Vesicles as Antigen Source for Anti-Tumor Vaccination. Cancers, 2019, 11, 1266.	3.7	47
33	Systematic Dual Targeting of Dendritic Cell C-Type Lectin Receptor DC-SIGN and TLR7 Using a Trifunctional Mannosylated Antigen. Frontiers in Chemistry, 2019, 7, 650.	3.6	37
34	Next-generation malarial vaccines. Nature Materials, 2019, 18, 94-96.	27.5	3
35	Outer membrane vesicles engineered to express membrane-bound antigen program dendritic cells for cross-presentation to CD8+ T cells. Acta Biomaterialia, 2019, 91, 248-257.	8.3	76
36	Activation of CD8+ T Cell Responses after Melanoma Antigen Targeting to CD169+ Antigen Presenting Cells in Mice and Humans. Cancers, 2019, 11, 183.	3.7	21

3

#	Article	IF	CITATIONS
37	Glyco-Dendrimers as Intradermal Anti-Tumor Vaccine Targeting Multiple Skin DC Subsets. Theranostics, 2019, 9, 5797-5809.	10.0	48
38	Disruption of sialic acid metabolism drives tumor growth by augmenting CD8 ⁺ T cell apoptosis. International Journal of Cancer, 2019, 144, 2290-2302.	5.1	34
39	Glycosylated extracellular vesicles released by glioblastoma cells are decorated by CCL18 allowing for cellular uptake via chemokine receptor CCR8. Journal of Extracellular Vesicles, 2018, 7, 1446660.	12.2	64
40	The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nature Reviews Immunology, 2018, 18, 204-211.	22.7	303
41	Functional CD169 on Macrophages Mediates Interaction with Dendritic Cells for CD8+ T Cell Cross-Priming. Cell Reports, 2018, 22, 1484-1495.	6.4	106
42	TMIC-28. GLIOBLASTOMA EXPLOITS CELL SURFACE GLYCOSYLATION-MEDIATED IMMUNE REGULATORY CIRCUITS FOR IMMUNE ESCAPE. Neuro-Oncology, 2018, 20, vi262-vi262.	1.2	1
43	IMMU-20. SINGLE CELL CYTOMICS OF PERIPHERAL BLOOD MONONUCLEAR CELLS REVEALS NEW AVENUES FOR GLIOMA IMMUNOTHERAPY. Neuro-Oncology, 2018, 20, vi125-vi125.	1.2	0
44	EXTH-21. REPURPOSING GLIOBLASTOMA EXOSOMES AS PERSONALIZED MULTI-ANTIGENIC ANTI-TUMOR VACCINE. Neuro-Oncology, 2018, 20, vi89-vi89.	1.2	1
45	IMMU-30. HIGH-DIMENSIONAL PHENOTYPING OF IMMUNE SUBSETS AND CHECKPOINTS IN THE MOUSE GLIOBLASTOMA MICROENVIRONMENT. Neuro-Oncology, 2018, 20, vi127-vi127.	1.2	0
46	Modulation of Immune Tolerance via Siglec-Sialic Acid Interactions. Frontiers in Immunology, 2018, 9, 2807.	4.8	188
47	Comparison of Protein and Peptide Targeting for the Development of a CD169-Based Vaccination Strategy Against Melanoma. Frontiers in Immunology, 2018, 9, 1997.	4.8	16
48	Positive & Negative Roles of Innate Effector Cells in Controlling Cancer Progression. Frontiers in Immunology, 2018, 9, 1990.	4.8	29
49	Immobilization of β-galactosidase and α-mannosidase onto magnetic nanoparticles: A strategy for increasing the potentiality of valuable glycomic tools for glycosylation analysis and biological role determination of glycoconjugates. Enzyme and Microbial Technology, 2018, 117, 45-55.	3.2	12
50	Targeting Mycobacterium tuberculosis Antigens to Dendritic Cells via the DC-Specific-ICAM3-Grabbing-Nonintegrin Receptor Induces Strong T-Helper 1 Immune Responses. Frontiers in Immunology, 2018, 9, 471.	4.8	19
51	Mouse DC-SIGN/CD209a as Target for Antigen Delivery and Adaptive Immunity. Frontiers in Immunology, 2018, 9, 990.	4.8	35
52	Toll-Like Receptor 4 Triggering Promotes Cytosolic Routing of DC-SIGN-Targeted Antigens for Presentation on MHC Class I. Frontiers in Immunology, 2018, 9, 1231.	4.8	43
53	Fucosylated Antigens in Cancer: An Alliance toward Tumor Progression, Metastasis, and Resistance to Chemotherapy. Frontiers in Oncology, 2018, 8, 39.	2.8	104
54	Langerin-mediated internalization of a modified peptide routes antigens to early endosomes and enhances cross-presentation by human Langerhans cells. Cellular and Molecular Immunology, 2017, 14, 360-370.	10.5	37

#	Article	IF	CITATIONS
55	Fasciola hepatica glycoconjugates immuneregulate dendritic cells through the Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin inducing T cell anergy. Scientific Reports, 2017, 7, 46748.	3.3	34
56	Targeting C-type lectin receptors: a high-carbohydrate diet for dendritic cells to improve cancer vaccines. Journal of Leukocyte Biology, 2017, 102, 1017-1034.	3.3	67
57	Optical clearing and fluorescence deep-tissue imaging for 3D quantitative analysis of the brain tumor microenvironment. Angiogenesis, 2017, 20, 533-546.	7.2	71
58	Fasciola hepatica Immune Regulates CD11c+ Cells by Interacting with the Macrophage Gal/GalNAc Lectin. Frontiers in Immunology, 2017, 8, 264.	4.8	29
59	Neuroinflammation: Microglia and T Cells Get Ready to Tango. Frontiers in Immunology, 2017, 8, 1905.	4.8	257
60	Tumor sialylation impedes T cell mediated anti-tumor responses while promoting tumor associated-regulatory T cells. Oncotarget, 2016, 7, 8771-8782.	1.8	99
61	New roles for CD14 and ILâ€Î² linking inflammatory dendritic cells to ILâ€17 production in memory CD4 + T cells. Immunology and Cell Biology, 2016, 94, 907-916.	2.3	19
62	A Nanoparticle-Lectin Immunoassay Improves Discrimination of Serum CA125 from Malignant and Benign Sources. Clinical Chemistry, 2016, 62, 1390-1400.	3.2	21
63	Human cytomegalovirus-based immunotherapy to treat glioblastoma: Into the future. Oncolmmunology, 2016, 5, e1214791.	4.6	2
64	Sialic acid-modified antigens impose tolerance via inhibition of T-cell proliferation and de novo induction of regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3329-3334.	7.1	135
65	Apoptotic vesicles as tumor vaccine. Immunotherapy, 2016, 8, 5-8.	2.0	3
66	Glycan modification of antigen alters its intracellular routing in dendritic cells, promoting priming of T cells. ELife, 2016, 5, .	6.0	24
67	Internalization and presentation of myelin antigens by the brain endothelium guides antigen-specific T cell migration. ELife, 2016, 5, .	6.0	37
68	Phenotypic and Functional Properties of Human Steady State CD14+ and CD1a+ Antigen Presenting Cells and Epidermal Langerhans Cells. PLoS ONE, 2015, 10, e0143519.	2.5	18
69	Cross-presentation through langerin and DC-SIGN targeting requires different formulations of glycan-modified antigens. Journal of Controlled Release, 2015, 203, 67-76.	9.9	68
70	Antibody-Opsonized Bacteria Evoke an Inflammatory Dendritic Cell Phenotype and Polyfunctional Th Cells by Cross-Talk between TLRs and FcRs. Journal of Immunology, 2015, 194, 1856-1866.	0.8	33
71	Antigen targeting to dendritic cells combined with transient regulatory T cell inhibition results in long-term tumor regression. Oncolmmunology, 2015, 4, e970462.	4.6	30
72	DC-SIGN: The Strange Case of Dr. Jekyll and Mr. Hyde. Immunity, 2015, 42, 983-985.	14.3	30

#	Article	IF	CITATIONS
73	MPLA incorporation into DC-targeting glycoliposomes favours anti-tumour T cell responses. Journal of Controlled Release, 2015, 216, 37-46.	9.9	64
74	Controlled release of a model vaccine by nanoporous ceramic microneedle arrays. International Journal of Pharmaceutics, 2015, 491, 375-383.	5.2	42
75	Human Milk Blocks DC-SIGN–Pathogen Interaction via MUC1. Frontiers in Immunology, 2015, 6, 112.	4.8	43
76	The Consequences of Multiple Simultaneous C-Type Lectin–Ligand Interactions: DCIR Alters the Endo-Lysosomal Routing of DC-SIGN. Frontiers in Immunology, 2015, 6, 87.	4.8	23
77	In situ Delivery of Antigen to DC-SIGN + CD14 + Dermal Dendritic Cells Results in Enhanced CD8 + T-Cell Responses. Journal of Investigative Dermatology, 2015, 135, 2228-2236.	0.7	35
78	A new cellular target for <i>Yersinia pestis</i> . Immunology and Cell Biology, 2015, 93, 769-770.	2.3	3
79	<i>Trypanosoma cruzi</i> Infection Imparts a Regulatory Program in Dendritic Cells and T Cells via Galectin-1–Dependent Mechanisms. Journal of Immunology, 2015, 195, 3311-3324.	0.8	59
80	Novel insights into the immunomodulatory role of the dendritic cell and macrophage-expressed C-type lectin MGL. Immunobiology, 2015, 220, 185-192.	1.9	62
81	MGL ligand expression is correlated to BRAF mutation and associated with poor survival of stage III colon cancer patients. Oncotarget, 2015, 6, 26278-26290.	1.8	39
82	Understanding the Biology of Antigen Cross-Presentation for the Design of Vaccines Against Cancer. Frontiers in Immunology, 2014, 5, 149.	4.8	106
83	DCIR interacts with ligands from both endogenous and pathogenic origin. Immunology Letters, 2014, 158, 33-41.	2.5	47
84	Glycan-based DC-SIGN targeting vaccines to enhance antigen cross-presentation. Molecular Immunology, 2013, 55, 143-145.	2.2	105
85	Multivalent glycopeptide dendrimers for the targeted delivery of antigens to dendritic cells. Molecular Immunology, 2013, 53, 387-397.	2.2	96
86	The physiological role of DC-SIGN: A tale of mice and men. Trends in Immunology, 2013, 34, 482-486.	6.8	167
87	MGL signaling augments TLR2-mediated responses for enhanced IL-10 and TNF-α secretion. Journal of Leukocyte Biology, 2013, 94, 315-323.	3.3	91
88	Glycan-based DC-SIGN targeting to enhance antigen cross-presentation in anticancer vaccines. OncoImmunology, 2013, 2, e23040.	4.6	34
89	Skin-Resident Antigen-Presenting Cells: Instruction Manual for Vaccine Development. Frontiers in Immunology, 2013, 4, 157.	4.8	57
90	Human T Cell Activation Results in Extracellular Signal-regulated Kinase (ERK)-Calcineurin-dependent Exposure of Tn Antigen on the Cell Surface and Binding of the Macrophage Galactose-type Lectin (MGL)*. Journal of Biological Chemistry, 2013, 288, 27519-27532.	3.4	27

#	Article	IF	CITATIONS
91	Analytical Tools for the Study of Cellular Glycosylation in the Immune System. Frontiers in Immunology, 2013, 4, 451.	4.8	18
92	Online nanoliquid chromatography–mass spectrometry and nanofluorescence detection for high-resolution quantitative N-glycan analysis. Analytical Biochemistry, 2012, 423, 153-162.	2.4	33
93	Glycan-modified liposomes boost CD4+ and CD8+ T-cell responses by targeting DC-SIGN on dendritic cells. Journal of Controlled Release, 2012, 160, 88-95.	9.9	158
94	Highly glycosylated tumour antigens: interactions with the immune system. Biochemical Society Transactions, 2011, 39, 388-392.	3.4	9
95	Design of neoâ€glycoconjugates that target the mannose receptor and enhance TLRâ€independent crossâ€presentation and Th1 polarization. European Journal of Immunology, 2011, 41, 916-925.	2.9	49
96	â€~Dressed for success' C-type lectin receptors for the delivery of glyco-vaccines to dendritic cells. Current Opinion in Immunology, 2011, 23, 131-137.	5.5	63
97	Characterization of murine MGL1 and MGL2 C-type lectins: Distinct glycan specificities and tumor binding properties. Molecular Immunology, 2009, 46, 1240-1249.	2.2	86
98	Targeting glycan modified OVA to murine DC-SIGN transgenic dendritic cells enhances MHC class I and Il presentation. Molecular Immunology, 2009, 47, 164-174.	2.2	109
99	Glycan modification of the tumor antigen gp100 targets DCâ€SIGN to enhance dendritic cell induced antigen presentation to T cells. International Journal of Cancer, 2008, 122, 839-846.	5.1	46
100	Protein-glycan interactions in the control of innate and adaptive immune responses. Nature Immunology, 2008, 9, 593-601.	14.5	660
101	Sweet preferences of MGL: carbohydrate specificity and function. Trends in Immunology, 2008, 29, 83-90.	6.8	140
102	Dendritic Cell Maturation Results in Pronounced Changes in Glycan Expression Affecting Recognition by Siglecs and Galectins. Journal of Immunology, 2007, 179, 8216-8224.	0.8	117
103	MGLâ€mediated internalization and antigen presentation by dendritic cells: A role for tyrosineâ€5. European Journal of Immunology, 2007, 37, 2075-2081.	2.9	52
104	Specificity of DC-SIGN for mannose- and fucose-containing glycans. FEBS Letters, 2006, 580, 6123-6131.	2.8	241
105	<i>Helicobacter pylori</i> Modulates the T Helper Cell 1/T Helper Cell 2 Balance through Phase-variable Interaction between Lipopolysaccharide and DC-SIGN. Journal of Experimental Medicine, 2004, 200, 979-990.	8.5	290
106	C-Type Lectins in Innate Immunity to Pathogens. Trends in Glycoscience and Glycotechnology, 2004, 16, 265-279.	0.1	2
107	Mycobacteria Target DC-SIGN to Suppress Dendritic Cell Function. Journal of Experimental Medicine, 2003, 197, 7-17.	8.5	971
108	Cutting Edge: Carbohydrate Profiling Identifies New Pathogens That Interact with Dendritic Cell-Specific ICAM-3-Grabbing Nonintegrin on Dendritic Cells. Journal of Immunology, 2003, 170, 1635-1639.	0.8	402

#	Article	IF	CITATIONS
109	The Dendritic Cell-Specific Adhesion Receptor DC-SIGN Internalizes Antigen for Presentation to T Cells. Journal of Immunology, 2002, 168, 2118-2126.	0.8	568
110	Identification of Different Binding Sites in the Dendritic Cell-specific Receptor DC-SIGN for Intercellular Adhesion Molecule 3 and HIV-1. Journal of Biological Chemistry, 2002, 277, 11314-11320.	3.4	165
111	Identification of DC-SIGN, a Novel Dendritic Cell–Specific ICAM-3 Receptor that Supports Primary Immune Responses. Cell, 2000, 100, 575-585.	28.9	1,558
112	Constitutive Chemokine Production Results in Activation of Leukocyte Function-Associated Antigen-1 on Adult T-Cell Leukemia Cells. Blood, 1998, 91, 3909-3919.	1.4	75
113	Sialic acid removal from dendritic cells improves antigen cross-presentation and boosts anti-tumor immune responses. Oncotarget, 0, 7, 41053-41066.	1.8	37