
Naomi M Levine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4771619/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biogeographical and seasonal dynamics of the marine Roseobacter community and ecological links to DMSP-producing phytoplankton. ISME Communications, 2022, 2, .	4.2	6
2	Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates. Nature Communications, 2022, 13, 1657.	12.8	30
3	Microbial metabolites in the marine carbon cycle. Nature Microbiology, 2022, 7, 508-523.	13.3	71
4	Bacterial chemotaxis to saccharides is governed byÂa trade-off between sensing and uptake. Biophysical Journal, 2022, 121, 2046-2059.	0.5	1
5	Warming Iron-Limited Oceans Enhance Nitrogen Fixation and Drive Biogeographic Specialization of the Globally Important Cyanobacterium Crocosphaera. Frontiers in Marine Science, 2021, 8, .	2.5	13
6	A unified theory for organic matter accumulation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	60
7	Understanding water and energy fluxes in the Amazonia: Lessons from an observationâ€model intercomparison. Global Change Biology, 2021, 27, 1802-1819.	9.5	6
8	Ecosystem implications of fine-scale frontal disturbances in the oligotrophic ocean – An idealized modeling approach. Progress in Oceanography, 2021, 192, 102519.	3.2	2
9	Mechanistic model of nutrient uptake explains dichotomy between marine oligotrophic and copiotrophic bacteria. PLoS Computational Biology, 2021, 17, e1009023.	3.2	20
10	The evolution of trait correlations constrains phenotypic adaptation to high CO ₂ in a eukaryotic alga. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210940.	2.6	14
11	Impact of Lagrangian Sea Surface Temperature Variability on Southern Ocean Phytoplankton Community Growth Rates. Global Biogeochemical Cycles, 2021, 35, e2020GB006880.	4.9	10
12	Marine plankton metabolisms revealed. Nature Microbiology, 2021, 6, 147-148.	13.3	0
13	<scp>DMSP</scp> synthesis genes distinguish two types of <scp>DMSP</scp> producer phenotypes. Environmental Microbiology, 2021, 23, 1656-1669.	3.8	6
14	Multivariate trait analysis reveals diatom plasticity constrained to a reduced set of biological axes. ISME Communications, 2021, 1, .	4.2	9
15	A High-Throughput Assay for Quantifying Phenotypic Traits of Microalgae. Frontiers in Microbiology, 2021, 12, 706235.	3.5	8
16	Evidence for contrasting roles of dimethylsulfoniopropionate production in <i>Emiliania huxleyi</i> and <i>Thalassiosira oceanica</i> . New Phytologist, 2020, 226, 396-409.	7.3	16
17	Microbial evolutionary strategies in a dynamic ocean. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5943-5948.	7.1	29
18	Microbial rhodopsins are major contributors to the solar energy captured in the sea. Science Advances, 2019, 5, eaaw8855.	10.3	97

NAOMI M LEVINE

#	Article	IF	CITATIONS
19	Ocean Time Series Observations of Changing Marine Ecosystems: An Era of Integration, Synthesis, and Societal Applications. Frontiers in Marine Science, 2019, 6, .	2.5	50
20	Global Perspectives on Observing Ocean Boundary Current Systems. Frontiers in Marine Science, 2019, 6, .	2.5	39
21	The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 1: Model description. Geoscientific Model Development, 2019, 12, 4309-4346.	3.6	62
22	The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 2: Model evaluation for tropical South America. Geoscientific Model Development, 2019, 12, 4347-4374.	3.6	29
23	Systematic Variation in Marine Dissolved Organic Matter Stoichiometry and Remineralization Ratios as a Function of Lability. Global Biogeochemical Cycles, 2019, 33, 1389-1407.	4.9	19
24	The role of differential DMSP production and community composition in predicting variability of global surface DMSP concentrations. Limnology and Oceanography, 2019, 64, 757-773.	3.1	51
25	Contextualizing time-series data: quantification of short-term regional variability in the San Pedro Channel using high-resolution in situ glider data. Biogeosciences, 2018, 15, 6151-6165.	3.3	3
26	Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. New Phytologist, 2018, 219, 914-931.	7.3	64
27	Ocean warming alleviates iron limitation of marine nitrogen fixation. Nature Climate Change, 2018, 8, 709-712.	18.8	68
28	The <i>Trichodesmium</i> consortium: conserved heterotrophic co-occurrence and genomic signatures of potential interactions. ISME Journal, 2017, 11, 1813-1824.	9.8	66
29	Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A dataâ€model intercomparison. Clobal Change Biology, 2017, 23, 191-208.	9.5	106
30	Terrestrial and marine perspectives on modeling organic matter degradation pathways. Global Change Biology, 2016, 22, 121-136.	9.5	50
31	Putting the spotlight on organic sulfur. Science, 2016, 354, 418-419.	12.6	18
32	Enhancement of phytoplankton chlorophyll by submesoscale frontal dynamics in the North Pacific Subtropical Gyre. Geophysical Research Letters, 2016, 43, 1651-1659.	4.0	30
33	Revising upper-ocean sulfur dynamics near Bermuda: new lessons from 3 years of concentration and rate measurements. Environmental Chemistry, 2016, 13, 302.	1.5	14
34	Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 793-797.	7.1	161
35	NCAR's Summer Colloquium: Capacity Building in Cross-Disciplinary Research of Earth System Carbon–Climate Connections. Bulletin of the American Meteorological Society, 2015, 96, 1381-1384.	3.3	1
36	The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric <scp>CO</scp> _{2,} and land use. Global Change Biology, 2015, 21, 2569-2587.	9.5	97

NAOMI M LEVINE

#	Article	IF	CITATIONS
37	Hydrometeorological effects of historical land-conversion in an ecosystem-atmosphere model of Northern South America. Hydrology and Earth System Sciences, 2015, 19, 241-273.	4.9	50
38	Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses. Geoscientific Model Development, 2015, 8, 1097-1110.	3.6	31
39	Mechanisms of water supply and vegetation demand govern the seasonality and magnitude of evapotranspiration in Amazonia and Cerrado. Agricultural and Forest Meteorology, 2014, 191, 33-50.	4.8	105
40	Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought. New Phytologist, 2013, 200, 350-365.	7.3	247
41	Deforestation and climate feedbacks threaten the ecological integrity of south–southeastern Amazonia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120155.	4.0	118
42	Environmental, biochemical and genetic drivers of DMSP degradation and DMS production in the Sargasso Sea. Environmental Microbiology, 2012, 14, 1210-1223.	3.8	54
43	Impacts of temporal CO ₂ and climate trends on the detection of ocean anthropogenic CO ₂ accumulation. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	22
44	Detecting anthropogenic CO ₂ changes in the interior Atlantic Ocean between 1989 and 2005. Journal of Geophysical Research, 2010, 115, .	3.3	72
45	The Microbiological Drivers of Temporally Dynamic Dimethylsulfoniopropionate Cycling Processes in Australian Coastal Shelf Waters. Frontiers in Microbiology, 0, 13, .	3.5	5