
Raymond B Huey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4771524/publications.pdf Version: 2024-02-01

RAVMOND R HILEV

#	Article	lF	CITATIONS
1	Designing a Seasonal Acclimation Study Presents Challenges and Opportunities. Integrative Organismal Biology, 2022, 4, .	1.8	12
2	Three questions about the ecoâ€physiology of overwintering underground. Ecology Letters, 2021, 24, 170-185.	6.4	42
3	Modelling the joint effects of body size and microclimate on heat budgets and foraging opportunities of ectotherms. Methods in Ecology and Evolution, 2021, 12, 458-467.	5.2	13
4	Seasonality in Kgalagadi Lizards: Inferences from Legacy Data. American Naturalist, 2021, 198, 759-771.	2.1	8
5	Dynamics of death by heat. Science, 2020, 369, 1163-1163.	12.6	10
6	Mountaineers on Mount Everest: Effects of age, sex, experience, and crowding on rates of success and death. PLoS ONE, 2020, 15, e0236919.	2.5	26
7	Distribution modelling of an introduced species: do adaptive genetic markers affect potential range?. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201791.	2.6	5
8	Lizards, toepads, and the ghost of hurricanes past. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11194-11196.	7.1	5
9	Climate Warming, Resource Availability, and the Metabolic Meltdown of Ectotherms. American Naturalist, 2019, 194, E140-E150.	2.1	156
10	Revisiting a Key Innovation in Evolutionary Biology: Felsenstein's "Phylogenies and the Comparative Method― American Naturalist, 2019, 193, 755-772.	2.1	44
11	A global test of the coldâ€elimate hypothesis for the evolution of viviparity of squamate reptiles. Global Ecology and Biogeography, 2018, 27, 679-689.	5.8	29
12	Biological buffers and the impacts of climate change. Integrative Zoology, 2018, 13, 349-354.	2.6	16
13	Body temperature distributions of active diurnal lizards in three deserts: Skewed up or skewed down?. Functional Ecology, 2018, 32, 334-344.	3.6	18
14	Model vs. experiment to predict crop losses—Response. Science, 2018, 362, 1122-1123.	12.6	0
15	Increase in crop losses to insect pests in a warming climate. Science, 2018, 361, 916-919.	12.6	764
16	Evolution caused by extreme events. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160146.	4.0	170
17	Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Global Change Biology, 2016, 22, 3829-3842.	9.5	142
18	How Extreme Temperatures Impact Organisms and the Evolution of their Thermal Tolerance. Integrative and Comparative Biology, 2016, 56, 98-109.	2.0	130

#	Article	IF	CITATIONS
19	Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?. Ecology Letters, 2016, 19, 1372-1385.	6.4	587
20	How frigate birds soar around the doldrums. Science, 2016, 353, 26-27.	12.6	4
21	Climate change tightens a metabolic constraint on marine habitats. Science, 2015, 348, 1132-1135.	12.6	547
22	A Few Meters Matter: Local Habitats Drive Reproductive Cycles in a Tropical Lizard. American Naturalist, 2015, 186, E72-E80.	2.1	24
23	Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5610-5615.	7.1	906
24	ASYNCHRONOUS EVOLUTION OF PHYSIOLOGY AND MORPHOLOGY IN <i>ANOLIS</i> LIZARDS. Evolution; International Journal of Organic Evolution, 2013, 67, 2101-2113.	2.3	54
25	Disentangling thermal preference and the thermal dependence of movement in ectotherms. Journal of Thermal Biology, 2012, 37, 631-639.	2.5	35
26	Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1665-1679.	4.0	1,049
27	Variation in universal temperature dependence of biological rates. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10377-10378.	7.1	71
28	Ocean deoxygenation: Past, present, and future. Eos, 2011, 92, 409-410.	0.1	75
29	Does thermoregulatory behavior maximize reproductive fitness of natural isolates of Caenorhabditis elegans?. BMC Evolutionary Biology, 2011, 11, 157.	3.2	51
30	Global metabolic impacts of recent climate warming. Nature, 2010, 467, 704-706.	27.8	729
31	Are Lizards Toast?. Science, 2010, 328, 832-833.	12.6	113
32	On Becoming a Better Scientist. Israel Journal of Ecology and Evolution, 2010, 57, 293-307.	0.6	3
33	Can behavior douse the fire of climate warming?. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3647-3648.	7.1	122
34	Partial thermoregulatory compensation by a rapidly evolving invasive species along a latitudinal cline. Ecology, 2009, 90, 1715-1720.	3.2	68
35	Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1939-1948.	2.6	700
36	Clinal patterns of desiccation and starvation resistance in ancestral and invading populations ofâ€, <i>Drosophila subobscura</i> . Evolutionary Applications, 2008, 1, 513-523.	3.1	43

#	Article	IF	CITATIONS
37	Putting the Heat on Tropical Animals. Science, 2008, 320, 1296-1297.	12.6	788
38	Why "Suboptimal―Is Optimal: Jensen's Inequality and Ectotherm Thermal Preferences. American Naturalist, 2008, 171, E102-E118.	2.1	505
39	Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6668-6672.	7.1	2,833
40	Bart's Familiar Quotations: The Enduring Biological Wisdom of George A. Bartholomew. Physiological and Biochemical Zoology, 2008, 81, 519-525.	1.5	8
41	Climate warming and environmental sex determination in tuatara: the Last of the Sphenodontians?. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2181-2183.	2.6	19
42	Lizard Thermal Biology: Do Genders Differ?. American Naturalist, 2007, 170, 473-478.	2.1	39
43	Response to Comment on "Global Genetic Change Tracks Global Climate Warming in Drosophila subobscura". Science, 2007, 315, 1497b-1497b.	12.6	11
44	Effects of age and gender on success and death of mountaineers on Mount Everest. Biology Letters, 2007, 3, 498-500.	2.3	36
45	Global Genetic Change Tracks Global Climate Warming in Drosophila subobscura. Science, 2006, 313, 1773-1775.	12.6	324
46	Sexual size dimorphism in a Drosophila clade, the D. obscura group. Zoology, 2006, 109, 318-330.	1.2	63
47	Thermodynamics Constrains the Evolution of Insect Population Growth Rates: "Warmer Is Better― American Naturalist, 2006, 168, 512-520.	2.1	272
48	Are mountain passes higher in the tropics? janzen's hypothesis revisited. Integrative and Comparative Biology, 2006, 46, 5-17.	2.0	642
49	Introduction: A Symposium Honoring George A. Bartholomew. Integrative and Comparative Biology, 2005, 45, 217-218.	2.0	3
50	Hypoxia, Global Warming, and Terrestrial Late Permian Extinctions. Science, 2005, 308, 398-401.	12.6	220
51	EVOLUTIONARY PACE OF CHROMOSOMAL POLYMORPHISM IN COLONIZING POPULATIONS OF DROSOPHILA SUBOBSCURA: AN EVOLUTIONARY TIME SERIES. Evolution; International Journal of Organic Evolution, 2003, 57, 1837-1845.	2.3	89
52	Behavioral Drive versus Behavioral Inertia in Evolution: A Null Model Approach. American Naturalist, 2003, 161, 357-366.	2.1	617
53	Mutation Accumulation, Performance, Fitness. Integrative and Comparative Biology, 2003, 43, 387-395.	2.0	14
54	Plants Versus Animals: Do They Deal with Stress in Different Ways?. Integrative and Comparative Biology, 2002, 42, 415-423.	2.0	110

#	Article	IF	CITATIONS
55	NEUROSCIENCE AND EVOLUTION: Snake Sodium Channels Resist TTX Arrest. Science, 2002, 297, 1289-1290.	12.6	12
56	HOW OFTEN DO LIZARDS "RUN ON EMPTY�. Ecology, 2001, 82, 1-7.	3.2	33
57	Rapid evolution of wing size clines in Drosophila subobscura. Genetica, 2001, 112/113, 273-286.	1.1	151
58	LOCOMOTOR PERFORMANCE OF DROSOPHILA MELANOGASTER: INTERACTIONS AMONG DEVELOPMENTAL AND ADULT TEMPERATURES, AGE, AND GEOGRAPHY. Evolution; International Journal of Organic Evolution, 2001, 55, 205-209.	2.3	97
59	PARENTAL AND DEVELOPMENTAL TEMPERATURE EFFECTS ON THE THERMAL DEPENDENCE OF FITNESS IN DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2001, 55, 209-214.	2.3	72
60	Limits to human performance: elevated risks on high mountains. Journal of Experimental Biology, 2001, 204, 3115-3119.	1.7	57
61	Evolutionary Physiology. Annual Review of Ecology, Evolution, and Systematics, 2000, 31, 315-341.	6.7	186
62	Testing the Adaptive Significance of Acclimation: A Strong Inference Approach. American Zoologist, 1999, 39, 323-336.	0.7	239
63	The direct response of Drosophila melanogaster to selection on knockdown temperature. Heredity, 1999, 83, 15-29.	2.6	109
64	Temperature regulation in free-ranging ectotherms: what are the appropriate questions?. African Journal of Herpetology, 1999, 48, 41-48.	0.9	9
65	WITHIN―AND BETWEENâ€GENERATION EFFECTS OF TEMPERATURE ON THE MORPHOLOGY AND PHYSIOLOGY <i>DROSOPHILA MELANOGASTER</i> . Evolution; International Journal of Organic Evolution, 1996, 50, 1205-1218.	OF 2.3	162
66	Within- and Between-Generation Effects of Temperature on the Morphology and Physiology of Drosophila melanogaster. Evolution; International Journal of Organic Evolution, 1996, 50, 1205.	2.3	97
67	CHROMOSOMAL ANALYSIS OF HEATâ€SHOCK TOLERANCE IN <i>DROSOPHILA MELANOGASTER</i> EVOLVING AT DIFFERENT TEMPERATURES IN THE LABORATORY. Evolution; International Journal of Organic Evolution, 1995, 49, 676-684.	2.3	98
68	Within- and between-generation effects of temperature on early fecundity of Drosophila melanogaster. Heredity, 1995, 74, 216-223.	2.6	101
69	Evaluating Temperature Regulation by Field-Active Ectotherms: The Fallacy of the Inappropriate Question. American Naturalist, 1993, 142, 796-818.	2.1	731
70	Evolution of Resistance to High Temperature in Ectotherms. American Naturalist, 1993, 142, S21-S46.	2.1	420
71	PHYLOGENY AND COADAPTATION OF THERMAL PHYSIOLOGY IN LIZARDS: A REANALYSIS. Evolution; International Journal of Organic Evolution, 1991, 45, 1969-1975.	2.3	128
72	THERMAL SENSITIVITY OF <i>DROSOPHILA MELANOGASTER</i> RESPONDS RAPIDLY TO LABORATORY NATURAL SELECTION. Evolution; International Journal of Organic Evolution, 1991, 45, 751-756.	2.3	176

#	Article	IF	CITATIONS
73	Physiological Consequences of Habitat Selection. American Naturalist, 1991, 137, S91-S115.	2.1	680
74	Locomotor impairment and defense in gravid lizards (Eumeces laticeps): behavioral shift in activity may offset costs of reproduction in an active forager. Behavioral Ecology and Sociobiology, 1990, 27, 153-157.	1.4	164
75	Hot Rocks and Not-So-Hot Rocks: Retreat-Site Selection by Garter Snakes and Its Thermal Consequences. Ecology, 1989, 70, 931-944.	3.2	376
76	Locomotor performance of hatchling fence lizards (Sceloporus occidentalis): Quantitative genetics and morphometric correlates. Evolutionary Ecology, 1989, 3, 240-252.	1.2	138
77	TESTING SYMMORPHOSIS: DOES STRUCTURE MATCH FUNCTIONAL REQUIREMENTS?. Evolution; International Journal of Organic Evolution, 1987, 41, 1404-1409.	2.3	82
78	PHYLOGENETIC STUDIES OF COADAPTATION: PREFERRED TEMPERATURES VERSUS OPTIMAL PERFORMANCE TEMPERATURES OF LIZARDS. Evolution; International Journal of Organic Evolution, 1987, 41, 1098-1115.	2.3	503
79	REPEATABILITY OF LOCOMOTOR PERFORMANCE IN NATURAL POPULATIONS OF THE LIZARD <i>SCELOPORUS MERRIAMI</i> . Evolution; International Journal of Organic Evolution, 1987, 41, 1116-1120.	2.3	132
80	Phylogenetic Studies of Coadaptation: Preferred Temperatures Versus Optimal Performance Temperatures of Lizards. Evolution; International Journal of Organic Evolution, 1987, 41, 1098.	2.3	198
81	Physiological Consequences of Thermoregulation in a Tropical Lizard (Ameiva festiva). Physiological Zoology, 1986, 59, 464-472.	1.5	78
82	The Parasol Tail and Thermoregulatory Behavior of the Cape Ground Squirrel Xerus inauris. Physiological Zoology, 1984, 57, 57-62.	1.5	53
83	IS A JACKâ€OFâ€ALLâ€TEMPERATURES A MASTER OF NONE?. Evolution; International Journal of Organic Evolution, 1984, 38, 441-444.	2.3	293
84	Effects of Body Size and Slope on Acceleration of a Lizard (<i>Stellio Stellio</i>). Journal of Experimental Biology, 1984, 110, 113-123.	1.7	96
85	HOMAGE TO SANTA ANITA: THERMAL SENSITIVITY OF SPRINT SPEED IN AGAMID LIZARDS. Evolution; International Journal of Organic Evolution, 1983, 37, 1075-1084.	2.3	244
86	Parapatry and niche complementarity of Peruvian Desert geckos (Phyllodactylus): the ambiguous role of competition. Oecologia, 1979, 38, 249-259.	2.0	46
87	Integrating Thermal Physiology and Ecology of Ectotherms: A Discussion of Approaches. American Zoologist, 1979, 19, 357-366.	0.7	1,173
88	Latitudinal Pattern of Between-Altitude Faunal Similarity: Mountains Might be "Higher" in the Tropics. American Naturalist, 1978, 112, 225-229.	2.1	81
89	Seasonal Variation in Thermoregulatory Behavior and Body Temperature of Diurnal Kalahari Lizards. Ecology, 1977, 58, 1066-1075.	3.2	221
90	Cost and Benefits of Lizard Thermoregulation. Quarterly Review of Biology, 1976, 51, 363-384.	0.1	869