
Andrea Gazzaniga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4771272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Administration strategies and smart devices for drug release in specific sites of the upper GI tract. Journal of Controlled Release, 2022, 348, 537-552.	9.9	12
2	Quality considerations on the pharmaceutical applications of fused deposition modeling 3D printing. International Journal of Pharmaceutics, 2021, 592, 119901.	5.2	61
3	The Chronotopicâ"¢ System for Pulsatile and Colonic Delivery of Active Molecules in the Era of Precision Medicine: Feasibility by 3D Printing via Fused Deposition Modeling (FDM). Pharmaceutics, 2021, 13, 759.	4.5	33
4	Shape memory materials and 4D printing in pharmaceutics. Advanced Drug Delivery Reviews, 2021, 173, 216-237.	13.7	62
5	Cellulase as an "active―excipient in prolonged-release HPMC matrices: A novel strategy towards zero-order release kinetics. International Journal of Pharmaceutics, 2021, 607, 121005.	5.2	4
6	Dataset on a Small-Scale Film-Coating Process Developed for Self-Expanding 4D Printed Drug Delivery Devices. Coatings, 2021, 11, 1252.	2.6	11
7	Oral colon delivery platform based on a novel combination approach: Design concept and preliminary evaluation. Journal of Drug Delivery Science and Technology, 2021, 66, 102919.	3.0	7
8	Retentive drug delivery systems based on shape memory materials. Journal of Applied Polymer Science, 2020, 137, 48798.	2.6	28
9	Evaluation of powder-layering vs. spray-coating techniques in the manufacturing of a swellable/erodible pulsatile delivery system. Drug Development and Industrial Pharmacy, 2020, 46, 1230-1237.	2.0	10
10	Erodible coatings based on HPMC and cellulase for oral time-controlled release of drugs. International Journal of Pharmaceutics, 2020, 585, 119425.	5.2	12
11	Non-uniform drug distribution matrix system (NUDDMat) for zero-order release of drugs with different solubility. International Journal of Pharmaceutics, 2020, 581, 119217.	5.2	9
12	Injection Molded Capsules for Colon Delivery Combining Time-Controlled and Enzyme-Triggered Approaches. International Journal of Molecular Sciences, 2020, 21, 1917.	4.1	13
13	Oral hydrophilic matrices having non uniform drug distribution for zero-order release: A literature review. Journal of Controlled Release, 2020, 325, 72-83.	9.9	9
14	3D printing by fused deposition modeling of single- and multi-compartment hollow systems for oral delivery – A review. International Journal of Pharmaceutics, 2020, 579, 119155.	5.2	78
15	Lego-Inspired Capsular Devices for the Development of Personalized Dietary Supplements: Proof of Concept With Multimodal Release of Caffeine. Journal of Pharmaceutical Sciences, 2020, 109, 1990-1999.	3.3	25
16	In vitro and human pharmacoscintigraphic evaluation of an oral 5-ASA delivery system for colonic release. International Journal of Pharmaceutics, 2019, 572, 118723.	5.2	39
17	Expandable drug delivery system for gastric retention based on shape memory polymers: Development via 4D printing and extrusion. International Journal of Pharmaceutics, 2019, 571, 118700.	5.2	126
18	Effect of Polyethylene Glycol Content and Molar Mass on Injection Molding of Hydroxypropyl Methylcellulose Acetate Succinate-Based Gastroresistant Capsular Devices for Oral Drug Delivery. Polymers, 2019, 11, 517.	4.5	7

ANDREA GAZZANIGA

#	Article	IF	CITATIONS
19	Novel hydrophilic matrix system with non-uniform drug distribution for zero-order release kinetics. Journal of Controlled Release, 2018, 287, 247-256.	9.9	12
20	Industrial Development of a 3D-Printed Nutraceutical Delivery Platform in the Form of a Multicompartment HPC Capsule. AAPS PharmSciTech, 2018, 19, 3343-3354.	3.3	49
21	Dry coating of solid dosage forms: an overview of processes and applications. Drug Development and Industrial Pharmacy, 2017, 43, 1919-1931.	2.0	21
22	Enteric coatings for colonic drug delivery: state of the art. Expert Opinion on Drug Delivery, 2017, 14, 1027-1029.	5.0	44
23	Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. International Journal of Pharmaceutics, 2016, 509, 255-263.	5.2	309
24	In vitro and in vivo evaluation of an oral multiple-unit formulation for colonic delivery of insulin. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 108, 76-82.	4.3	31
25	Influence of temperature and relative humidity conditions on the pan coating of hydroxypropyl cellulose molded capsules. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 100, 47-57.	4.3	18
26	Erodible drug delivery systems for time-controlled release into the gastrointestinal tract. Journal of Drug Delivery Science and Technology, 2016, 32, 229-235.	3.0	38
27	Coated pellets for oral colon delivery. Journal of Drug Delivery Science and Technology, 2015, 25, 1-15.	3.0	51
28	Enteric-coating of pulsatile-release HPC capsules prepared by injection molding. European Journal of Pharmaceutical Sciences, 2015, 70, 1-11.	4.0	32
29	3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. Journal of Drug Delivery Science and Technology, 2015, 30, 360-367.	3.0	230
30	Evaluation of Hot-Melt Extrusion and Injection Molding for Continuous Manufacturing of Immediate-Release Tablets. Journal of Pharmaceutical Sciences, 2015, 104, 1971-1980.	3.3	45
31	Impact of needle-like crystals on wet and solid-lipid extrusion processes. Powder Technology, 2015, 270, 476-483.	4.2	1
32	Erodible Timeâ€Dependent Colon Delivery Systems with Improved Efficiency in Delaying the Onset of Drug Release. Journal of Pharmaceutical Sciences, 2014, 103, 3585-3593.	3.3	22
33	Evaluation of hot-melt extrusion technique in the preparation of HPC matrices for prolonged release. European Journal of Pharmaceutical Sciences, 2014, 52, 77-85.	4.0	42
34	Film coatings for oral colon delivery. International Journal of Pharmaceutics, 2013, 457, 372-394.	5.2	86
35	Polymeric coatings for a multiple-unit pulsatile delivery system: Preliminary study on free and applied films. International Journal of Pharmaceutics, 2013, 440, 256-263.	5.2	22
36	Injection-Molded Capsular Device for Oral Pulsatile Release: Development of a Novel Mold. Journal of Pharmaceutical Sciences, 2013, 102, 489-499.	3.3	31

ANDREA GAZZANIGA

#	Article	IF	CITATIONS
37	Gastroresistant capsular device prepared by injection molding. International Journal of Pharmaceutics, 2013, 440, 264-272.	5.2	23
38	Film coatings for oral pulsatile release. International Journal of Pharmaceutics, 2013, 457, 362-371.	5.2	49
39	Comparison of the <i>In Vivo</i> Pharmacokinetics and <i>In Vitro</i> Dissolution of Raltegravir in HIV Patients Receiving the Drug by Swallowing or by Chewing. Antimicrobial Agents and Chemotherapy, 2012, 56, 6132-6136.	3.2	30
40	Oral colon delivery of insulin with the aid of functional adjuvants. Advanced Drug Delivery Reviews, 2012, 64, 540-556.	13.7	98
41	Optimisation and scale-up of a highly-loaded 5-ASA multi-particulate dosage form using a factorial approach. European Journal of Pharmaceutical Sciences, 2012, 45, 158-168.	4.0	4
42	Injection Molding and its application to drug delivery. Journal of Controlled Release, 2012, 159, 324-331.	9.9	114
43	A Novel Injection-Molded Capsular Device for Oral Pulsatile Delivery Based on Swellable/Erodible Polymers. AAPS PharmSciTech, 2011, 12, 295-303.	3.3	45
44	Oral Delivery System for Two-pulse Colonic Release of Protein Drugs and Protease Inhibitor/Absorption Enhancer Compounds. Journal of Pharmaceutical Sciences, 2011, 100, 3251-3259.	3.3	40
45	Oral pulsatile delivery: Rationale and chronopharmaceutical formulations. International Journal of Pharmaceutics, 2010, 398, 1-8.	5.2	53
46	Active packaging for topical cosmetic/drug products: A hot-melt extruded preservative delivery device. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 75, 291-296.	4.3	18
47	Extrusion–spheronisation of highly loaded 5-ASA multiparticulate dosage forms. International Journal of Pharmaceutics, 2010, 402, 153-164.	5.2	33
48	Preparation and evaluation of an oral delivery system for time-dependent colon release of insulin and selected protease inhibitor and absorption enhancer compounds. Journal of Pharmaceutical Sciences, 2009, 98, 4661-4669.	3.3	31
49	Feasibility, stability and release performance of a time-dependent insulin delivery system intended for oral colon release. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 246-251.	4.3	40
50	The Use of ß-Cyclodextrin in the Manufacturing of Disintegrating Pellets with Improved Dissolution Performances. AAPS PharmSciTech, 2008, 9, 708-17.	3.3	6
51	Oral pulsatile delivery systems based on swellable hydrophilic polymers. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68, 11-18.	4.3	50
52	Different HPMC Viscosity Grades as Coating Agents for an Oral Time and/or Siteâ€Controlled Delivery System: An Investigation into the Mechanisms Governing Drug Release. Journal of Pharmaceutical Sciences, 2007, 96, 1527-1536.	3.3	29
53	Solid-State Chemistry of Ambroxol Theophylline-7-Acetate. Journal of Pharmaceutical Sciences, 2007, 96, 1139-1146.	3.3	9
54	Time-controlled oral delivery systems for colon targeting. Expert Opinion on Drug Delivery, 2006, 3, 583-597.	5.0	81

ANDREA GAZZANIGA

#	Article	IF	CITATIONS
55	Drugâ€Î²â€€yclodextrin Containing Pellets Prepared with a Highâ€5hear Mixer. Drug Development and Industrial Pharmacy, 2004, 30, 1061-1068.	2.0	8
56	Different HPMC viscosity grades as coating agents for an oral time and/or site-controlled delivery system: a study on process parameters and in vitro performances. European Journal of Pharmaceutical Sciences, 2004, 22, 469-476.	4.0	65
57	Modeling of drug release from partially coated matrices made of a high viscosity HPMC. International Journal of Pharmaceutics, 2004, 276, 107-114.	5.2	35
58	A study on the release mechanism of drugs from hydrophilic partially coated perforated matrices. Il Farmaco, 2003, 58, 971-976.	0.9	10
59	Solid-state characterization of paracetamol metastable polymorphs formed in binary mixtures with hydroxypropylmethylcellulose. Thermochimica Acta, 2003, 406, 55-67.	2.7	38
60	The effect of poly(ethylene glycol)–poly(d,l-lactic acid) diblock copolymers on peptide acylation. Journal of Controlled Release, 2002, 80, 157-168.	9.9	48
61	Polymorphism of racâ€5,6â€Diisobutyryloxyâ€2â€Methylaminoâ€1,2,3,4â€Tetrahydroâ€Naphthalene Hydrochlor (CHF 1035). I. Thermal, spectroscopic, and Xâ€ray diffraction properties. Journal of Pharmaceutical Sciences, 2002, 91, 2466.	ide 3.3	1
62	Influence of betacyclodextrin on the release of poorly soluble drugs from inert and hydrophilic heterogeneous polymeric matrices. Biomaterials, 2001, 22, 2647-2651.	11.4	35
63	Polymorphism of rac-5,6-diisobutyryloxy-2-methylamino-1,2,3,4-tetrahydro-naphthalene hydrochloride (CHF 1035). I. Thermal, spectroscopic, and X-ray diffraction properties. Journal of Pharmaceutical Sciences, 2001, 90, 1154-1163.	3.3	12
64	In vitro and in vivo evaluation of an oral system for time and/or site-specific drug delivery. Journal of Controlled Release, 2001, 73, 103-110.	9.9	130
65	Solubility and conversion of carbamazepine polymorphs in supercritical carbon dioxide. European Journal of Pharmaceutical Sciences, 2001, 13, 281-286.	4.0	63
66	Assessment of Solubility of Ketoprofen and Vanillic Acid in Supercritical CO2under Dynamic Conditions. Journal of Chemical & Conditions. Journal of Chemical & Conditions Data, 2000, 45, 161-165.	1.9	81
67	Physical properties of parabens and their mixtures: Solubility in water, thermal behavior, and crystal structures. Journal of Pharmaceutical Sciences, 1999, 88, 1210-1216.	3.3	85
68	Crystal Forms of Piroxicam Pivalate: Preparation and Characterization of Two Polymorphs. Journal of Pharmaceutical Sciences, 1998, 87, 333-337.	3.3	19
69	Structural characterization of two polymorphic forms of piroxicam pivalate. Journal of Pharmaceutical Sciences, 1998, 87, 1608-1614.	3.3	14
70	A Physicochemical Approach to the Investigation of the Stability of Trimethoprimâ€Sulfamethoxazole (Co–Trimoxazole) Mixtures for Injectables. Journal of Pharmaceutical Sciences, 1995, 84, 1254-1258.	3.3	3
71	Thermal behaviour and dissolution properties of naproxen in combinations with chemically modified ß-Cyclodextrins. Drug Development and Industrial Pharmacy, 1992, 18, 39-53.	2.0	53
72	Drug/polymer matrix swelling and dissolution. Pharmaceutical Research, 1988, 05, 488-494.	3.5	222

#	Article	IF	CITATIONS
73	A physical analysis of the phenomenon of tablet disintegration. International Journal of Pharmaceutics, 1988, 44, 177-186.	5.2	33
74	The mechanisms of disintegration of compressed particulate systems. Polymer Bulletin, 1987, 18, 541-544.	3.3	5