
Maria G Castro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4771269/publications.pdf Version: 2024-02-01

MADIA C. CASTRO

#	Article	IF	CITATIONS
1	ATRX loss in glioma results in dysregulation of cell-cycle phase transition and ATM inhibitor radio-sensitization. Cell Reports, 2022, 38, 110216.	6.4	32
2	T lymphocytes as dynamic regulators of glioma pathobiology. Neuro-Oncology, 2022, 24, 1647-1657.	1.2	18
3	Murine brain tumor microenvironment immunophenotyping using mass cytometry. STAR Protocols, 2022, 3, 101357.	1.2	1
4	Systemic Delivery of an Adjuvant CXCR4–CXCL12 Signaling Inhibitor Encapsulated in Synthetic Protein Nanoparticles for Glioma Immunotherapy. ACS Nano, 2022, 16, 8729-8750.	14.6	43
5	IMMU-12. Exploring and modulating the tumour immune microenvironment to facilitate the selection of immunotherapies for paediatric-type diffuse high-grade glioma. Neuro-Oncology, 2022, 24, i83-i84.	1.2	0
6	Spatiotemporal analysis of glioma heterogeneity reveals COL1A1 as an actionable target to disrupt tumor progression. Nature Communications, 2022, 13, .	12.8	29
7	Targeting gliomas with STAT3-silencing nanoparticles. Molecular and Cellular Oncology, 2021, 8, 1870647.	0.7	8
8	A novel miR1983-TLR7-IFNβ circuit licenses NK cells to kill glioma cells, and is under the control of galectin-1. Oncolmmunology, 2021, 10, 1939601.	4.6	14
9	Blocking NHE1 stimulates glioma tumor immunity by restoring OXPHOS function of myeloid cells. Theranostics, 2021, 11, 1295-1309.	10.0	24
10	Inhibition of 2-hydroxyglutarate elicits metabolic reprogramming and mutant IDH1 glioma immunity in mice. Journal of Clinical Investigation, 2021, 131, .	8.2	70
11	Current Approaches for Glioma Gene Therapy and Virotherapy. Frontiers in Molecular Neuroscience, 2021, 14, 621831.	2.9	54
12	CD200 Immune-Checkpoint Peptide Elicits an Anti-glioma Response Through the DAP10 Signaling Pathway. Neurotherapeutics, 2021, 18, 1980-1994.	4.4	6
13	Targeting Neuroinflammation in Brain Cancer: Uncovering Mechanisms, Pharmacological Targets, and Neuropharmaceutical Developments. Frontiers in Pharmacology, 2021, 12, 680021.	3.5	33
14	Genetic Alterations in Gliomas Remodel the Tumor Immune Microenvironment and Impact Immune-Mediated Therapies. Frontiers in Oncology, 2021, 11, 631037.	2.8	10
15	Uncovering Spatiotemporal Heterogeneity of High-Grade Gliomas: From Disease Biology to Therapeutic Implications. Frontiers in Oncology, 2021, 11, 703764.	2.8	27
16	G-CSF secreted by mutant IDH1 glioma stem cells abolishes myeloid cell immunosuppression and enhances the efficacy of immunotherapy. Science Advances, 2021, 7, eabh3243.	10.3	53
17	A Single Dose of a Hybrid hAdV5-Based Anti-COVID-19 Vaccine Induces a Long-Lasting Immune Response and Broad Coverage against VOC. Vaccines, 2021, 9, 1106.	4.4	5
18	Editorial: Targeting Neuroinflammation in Central Nervous System Disorders: Uncovering Mechanisms, Pharmacological Targets, and Neuropharmaceutical Developments. Frontiers in Pharmacology, 2021, 12, 771610.	3.5	1

#	Article	IF	CITATIONS
19	Epigenetic reprogramming and chromatin accessibility in pediatric diffuse intrinsic pontine gliomas: a neural developmental disease. Neuro-Oncology, 2020, 22, 195-206.	1.2	14
20	Systemic brain tumor delivery of synthetic protein nanoparticles for glioblastoma therapy. Nature Communications, 2020, 11, 5687.	12.8	142
21	Tumor mutational burden predicts survival in patients with low-grade gliomas expressing mutated IDH1. Neuro-Oncology Advances, 2020, 2, vdaa042.	0.7	12
22	An Optimized Protocol for InÂVivo Analysis of Tumor Cell Division in a Sleeping Beauty-Mediated Mouse Glioma Model. STAR Protocols, 2020, 1, 100044.	1.2	6
23	Purine metabolism regulates DNA repair and therapy resistance in glioblastoma. Nature Communications, 2020, 11, 3811.	12.8	103
24	Hemispherical Pediatric High-Grade Glioma: Molecular Basis and Therapeutic Opportunities. International Journal of Molecular Sciences, 2020, 21, 9654.	4.1	16
25	Genetically Engineered Mouse Model of Brainstem High-Grade Glioma. STAR Protocols, 2020, 1, 100165.	1.2	4
26	Laser Capture Microdissection of Glioma Subregions for Spatial and Molecular Characterization of Intratumoral Heterogeneity, Oncostreams, and Invasion. Journal of Visualized Experiments, 2020, , .	0.3	7
27	Immunotherapy for gliomas: shedding light on progress in preclinical and clinical development. Expert Opinion on Investigational Drugs, 2020, 29, 659-684.	4.1	15
28	Blockade of Cell Volume Regulatory Protein NKCC1 Increases TMZ-Induced Glioma Apoptosis and Reduces Astrogliosis. Molecular Cancer Therapeutics, 2020, 19, 1550-1561.	4.1	22
29	Synthetic HDL Nanoparticles Delivering Docetaxel and CpG for Chemoimmunotherapy of Colon Adenocarcinoma. International Journal of Molecular Sciences, 2020, 21, 1777.	4.1	26
30	The IDH-TAU-EGFR triad defines the neovascular landscape of diffuse gliomas. Science Translational Medicine, 2020, 12, .	12.4	46
31	Functional characterization of tumor antigen-specific T-cells isolated from the tumor microenvironment of sleeping beauty induced murine glioma models. Methods in Enzymology, 2020, 631, 91-106.	1.0	2
32	Fyn tyrosine kinase, a downstream target of receptor tyrosine kinases, modulates antiglioma immune responses. Neuro-Oncology, 2020, 22, 806-818.	1.2	34
33	Prospects of biological and synthetic pharmacotherapies for glioblastoma. Expert Opinion on Biological Therapy, 2020, 20, 305-317.	3.1	16
34	Isolation and characterization of immune cells from the tumor microenvironment of genetically engineered pediatric high-grade glioma models using the sleeping beauty transposon system. Methods in Enzymology, 2020, 632, 369-388.	1.0	9
35	Functional assay to assess T-cell inhibitory properties of myeloid derived suppressor cells (MDSCs) isolated from the tumor microenvironment of murine glioma models. Methods in Enzymology, 2020, 632, 215-228.	1.0	5
36	Therapeutic Efficacy of Immune Stimulatory Thymidine Kinase and fms-like Tyrosine Kinase 3 Ligand (TK/Flt3L) Gene Therapy in a Mouse Model of High-Grade Brainstem Glioma. Clinical Cancer Research, 2020, 26, 4080-4092.	7.0	18

#	Article	IF	CITATIONS
37	Glioblastoma Utilizes Fatty Acids and Ketone Bodies for Growth Allowing Progression during Ketogenic Diet Therapy. IScience, 2020, 23, 101453.	4.1	47
38	Synthetic High-density Lipoprotein Nanodiscs for Personalized Immunotherapy Against Gliomas. Clinical Cancer Research, 2020, 26, 4369-4380.	7.0	48
39	Quantifying the Brain Metastatic Tumor Micro-Environment using an Organ-On-A Chip 3D Model, Machine Learning, and Confocal Tomography. Journal of Visualized Experiments, 2020, , .	0.3	5
40	Immune-stimulatory (TK/Flt3L) gene therapy opens the door to a promising new treatment strategy against brainstem gliomas. Oncotarget, 2020, 11, 4607-4612.	1.8	7
41	IMG-12. CHARACTERISATION OF MODELS OF <i>H3F3A</i> _G34R/V MUTANT PAEDIATRIC GLIOBLASTOMA <i>IN VIVO</i> USING MAGNETIC RESONANCE IMAGING. Neuro-Oncology, 2020, 22, iii357-iii357.	1.2	0
42	TAMI-52. G-CSF SECRETED BY EPIGENETICALLY REPROGRAMMED MUTANT IDH1 GLIOMA STEM CELLS, REVERSES THE MYELOID CELLS'-MEDIATED IMMUNOSUPPRESSIVE TUMOR MICROENVIRONMENT. Neuro-Oncology, 2020, 22, ii224-ii224.	1.2	0
43	CBIO-03. ATRX LOSS IN GLIOMA RESULTS IN EPIGENETIC DYSREGULATION OF CELL CYCLE PHASE TRANSITION. Neuro-Oncology, 2020, 22, ii16-ii16.	1.2	0
44	Engineering patient-specific cancer immunotherapies. Nature Biomedical Engineering, 2019, 3, 768-782.	22.5	123
45	High-Density Lipoprotein-Mimicking Nanodiscs for Chemo-immunotherapy against Glioblastoma Multiforme. ACS Nano, 2019, 13, 1365-1384.	14.6	122
46	HGG-08. ATRX LOSS IN PEDIATRIC GBM RESULTS IN EPIGENETIC DYSREGULATION OF G2/M CHECKPOINT MAINTENANCE AND SENSITIVITY TO ATM INHIBITION. Neuro-Oncology, 2019, 21, ii88-ii88.	1.2	0
47	Effect of caveolin-1 on Stat3-ptyr705 levels in breast and lung carcinoma cells. Biochemistry and Cell Biology, 2019, 97, 638-646.	2.0	2
48	A platform for artificial intelligence based identification of the extravasation potential of cancer cells into the brain metastatic niche. Lab on A Chip, 2019, 19, 1162-1173.	6.0	32
49	Evaluation of Biomarkers in Glioma by Immunohistochemistry on Paraffin-Embedded 3D Glioma Neurosphere Cultures. Journal of Visualized Experiments, 2019, , .	0.3	4
50	IDH1-R132H acts as a tumor suppressor in glioma via epigenetic up-regulation of the DNA damage response. Science Translational Medicine, 2019, 11, .	12.4	169
51	ATIM-44. A PHASE I FIRST-IN-HUMAN TRIAL OF TWO ADENOVIRAL VECTORS EXPRESSING HSV1-TK AND FLT3L FOR TREATING NEWLY DIAGNOSED RESECTABLE MALIGNANT GLIOMA: THERAPEUTIC REPROGRAMMING OF THE BRAIN IMMUNE SYSTEM. Neuro-Oncology, 2019, 21, vi11-vi11.	1.2	4
52	EXTH-47. THERAPEUTIC REVERSAL OF PRENATAL PONTINE ID1 SIGNALING IN DIPG. Neuro-Oncology, 2019, 21, vi92-vi92.	1.2	0
53	TMIC-58. THE CELLULAR AND MOLECULAR BASIS FOR MESENCHYMAL TRANSFORMATION IN GLIOMAS. Neuro-Oncology, 2019, 21, vi260-vi260.	1.2	0
54	TMIC-62. FYN, AN EFFECTOR OF ONCOGENIC RECEPTOR TYROSINE KINASES SIGNALING IN GLIOBLASTOMA, INHIBITS ANTI-GLIOMA IMMUNE RESPONSES: IMPLICATIONS FOR IMMUNOTHERAPY. Neuro-Oncology, 2019, 21, vi261-vi261.	1.2	1

#	Article	IF	CITATIONS
55	TMIC-35. IDH1 MUTATION IN GLIOMA REPROGRAMS EARLY MYELOID DIFFERENTIATION IN THE BONE MARROW (BM) TO PRODUCE NON-IMUNESUPPRESSIVE NEUTROPHILS. Neuro-Oncology, 2019, 21, vi255-vi255.	1.2	0
56	First-in-human phase I trial of the combination of two adenoviral vectors expressing HSV1-TK and FLT3L for the treatment of newly diagnosed resectable malignant glioma: Initial results from the therapeutic reprogramming of the brain immune system Journal of Clinical Oncology, 2019, 37, 2019-2019.	1.6	15
57	Molecular ablation of tumor blood vessels inhibits therapeutic effects of radiation and bevacizumab. Neuro-Oncology, 2018, 20, 1356-1367.	1.2	8
58	Native Chromatin Immunoprecipitation Using Murine Brain Tumor Neurospheres. Journal of Visualized Experiments, 2018, , .	0.3	4
59	Current state and future prospects of immunotherapy for glioma. Immunotherapy, 2018, 10, 317-339.	2.0	60
60	Immature myeloid cells in the tumor microenvironment: Implications for immunotherapy. Clinical Immunology, 2018, 189, 34-42.	3.2	37
61	Evolutionary basis of a new gene- and immune-therapeutic approach for the treatment of malignant brain tumors: from mice to clinical trials for glioma patients. Clinical Immunology, 2018, 189, 43-51.	3.2	27
62	Melanoma induced immunosuppression is mediated by hematopoietic dysregulation. Oncolmmunology, 2018, 7, e1408750.	4.6	38
63	GENE-34. MOUSE MODEL OF DIFFUSE INTRINSIC PONTINE GLIOMA HARBORING Acvr1 G328V. Neuro-Oncology, 2018, 20, vi110-vi111.	1.2	1
64	GENE-35. IDH1-R132H INDUCES AN EPIGENETIC REPROGRAMMING IN GLIOMA IMPACTING MEDIAN SURVIVAL, DNA-DAMAGE RESPONSE AND RADIO-SENSITIVITY. Neuro-Oncology, 2018, 20, vi111-vi111.	1.2	1
65	CSIG-08. DYNAMICS OF GLIOMA GROWTH: SELF-ORGANIZATION GUIDES THE PATTERNING OF THE EXTRACELLULAR MATRIX AND REGULATES TUMOR PROGRESSION. Neuro-Oncology, 2018, 20, vi44-vi44.	1.2	1
66	IMMU-61. INHIBITION OF MUTANT IDH1 WITH AGI-5198 ENHANCES THE EFFICACY OF RADIOTHERAPY ELICITING IMMUNOLOGICAL MEMORY AND IMPROVING OVERALL SURVIVAL. Neuro-Oncology, 2018, 20, vi135-vi135.	1.2	0
67	Blockade of Na/H exchanger stimulates glioma tumor immunogenicity and enhances combinatorial TMZ and anti-PD-1 therapy. Cell Death and Disease, 2018, 9, 1010.	6.3	47
68	Mutant ATRX: uncovering a new therapeutic target for glioma. Expert Opinion on Therapeutic Targets, 2018, 22, 599-613.	3.4	103
69	Matrix Metalloproteinase Activity in Infections by an Encephalitic Virus, Mouse Adenovirus Type 1. Journal of Virology, 2017, 91, .	3.4	21
70	Mutated Chromatin Regulatory Factors as Tumor Drivers in Cancer. Cancer Research, 2017, 77, 227-233.	0.9	46
71	Immunosuppressive Myeloid Cells' Blockade in the Glioma Microenvironment Enhances the Efficacy of Immune-Stimulatory Gene Therapy. Molecular Therapy, 2017, 25, 232-248.	8.2	130
72	Dual activation of Toll-like receptors 7 and 9 impairs the efficacy of antitumor vaccines in murine models of metastatic breast cancer. Journal of Cancer Research and Clinical Oncology, 2017, 143, 1713-1732.	2.5	12

#	Article	IF	CITATIONS
73	Single vs. combination immunotherapeutic strategies for glioma. Expert Opinion on Biological Therapy, 2017, 17, 543-554.	3.1	17
74	Application of Synthetic Tumor-Specific Promoters Responsive to the Tumor Microenvironment. Methods in Molecular Biology, 2017, 1651, 213-227.	0.9	1
75	Survival and Proliferation of Neural Progenitor–Derived Glioblastomas Under Hypoxic Stress is Controlled by a CXCL12/CXCR4 Autocrine-Positive Feedback Mechanism. Clinical Cancer Research, 2017, 23, 1250-1262.	7.0	41
76	IMMU-58. IDH1 MUTATION REGULATES MYELOID CELLS MEDIATED IMMUNOSUPPRESSION IN GLIOMA. Neuro-Oncology, 2017, 19, vi125-vi126.	1.2	0
77	GENT-53. SELF-ORGANIZATION OF GLIOMAS: GENETIC RODENT MODELS, GENOMIC NETWORKS, AND MATHEMATICAL MODELING. Neuro-Oncology, 2016, 18, vi85-vi85.	1.2	0
78	PDCT-03. CLINICALLY INTEGRATED SEQUENCING IN THE MANAGEMENT OF CHILDREN WITH HIGH-RISK BRAIN TUMORS. Neuro-Oncology, 2016, 18, vi145-vi146.	1.2	0
79	ANGI-10. GENETIC DOWN REGULATION OF CXCR4 IN GLIOMA CELLS REDUCES INVASION, REDUCES TUMOR PROGRESSION, AND INCREASES SENSITIVITY TO RADIATION. Neuro-Oncology, 2016, 18, vi17-vi17.	1.2	0
80	Preclinical Efficacy and Safety Profile of Allometrically Scaled Doses of Doxycycline Used to Turn "On―Therapeutic Transgene Expression from High-Capacity Adenoviral Vectors in a Glioma Model. Human Gene Therapy Methods, 2016, 27, 98-111.	2.1	7
81	ATRX mutations and glioblastoma: Impaired DNA damage repair, alternative lengthening of telomeres, and genetic instability. Molecular and Cellular Oncology, 2016, 3, e1167158.	0.7	41
82	Viral Gene Therapy for Central Nervous System Diseases. , 2016, , 519-544.		0
83	Recent advances and future of immunotherapy for glioblastoma. Expert Opinion on Biological Therapy, 2016, 16, 1245-1264.	3.1	57
84	ATRX loss promotes tumor growth and impairs nonhomologous end joining DNA repair in glioma. Science Translational Medicine, 2016, 8, 328ra28.	12.4	212
85	Natural killer cells require monocytic Gr-1 ⁺ /CD11b ⁺ myeloid cells to eradicate orthotopically engrafted glioma cells. Oncolmmunology, 2016, 5, e1163461.	4.6	28
86	Gene Therapy for the Treatment of Neurological Disorders: Central Nervous System Neoplasms. Methods in Molecular Biology, 2016, 1382, 467-482.	0.9	8
87	Reversibility of glioma stem cells' phenotypes explains their complex <i>in vitro</i> and <i>in vivo</i> behavior: Discovery of a novel neurosphere-specific enzyme, cGMP-dependent protein kinase 1, using the genomic landscape of human glioma stem cells as a discovery tool. Oncotarget, 2016, 7, 63020-63041.	1.8	12
88	Characterizing and targeting <i>PDGFRA</i> alterations in pediatric high-grade glioma. Oncotarget, 2016, 7, 65696-65706.	1.8	55
89	CXCR4 increases <i>in-vivo</i> glioma perivascular invasion, and reduces radiation induced apoptosis: A genetic knockdown study. Oncotarget, 2016, 7, 83701-83719.	1.8	75
90	Microtubule targeting agents in glioma. Translational Cancer Research, 2016, 5, S54-S60.	1.0	19

#	Article	IF	CITATIONS
91	Isolation and Flow Cytometric Analysis of Glioma-infiltrating Peripheral Blood Mononuclear Cells. Journal of Visualized Experiments, 2015, , .	0.3	14
92	Transposon Mediated Integration of Plasmid DNA into the Subventricular Zone of Neonatal Mice to Generate Novel Models of Glioblastoma. Journal of Visualized Experiments, 2015, , .	0.3	33
93	Glioma trials and viral tribulations: can anything be concluded from non-controlled trials?. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 125-125.	1.9	0
94	Overview of current immunotherapeutic strategies for glioma. Immunotherapy, 2015, 7, 1073-1104.	2.0	40
95	Gene Therapy Approaches Using Reproducible and Fully Penetrant Lentivirus-Mediated Endogenous Glioma Models. Neuromethods, 2015, , 341-354.	0.3	0
96	The Value of EGFRvIII as the Target for Glioma Vaccines. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2014, , 42-50.	3.8	5
97	Consensus guidelines for the detection of immunogenic cell death. Oncolmmunology, 2014, 3, e955691.	4.6	686
98	Cracking the glioma-NK inhibitory code: toward successful innate immunotherapy. OncoImmunology, 2014, 3, e965573.	4.6	8
99	Blockade of mTOR Signaling via Rapamycin Combined with Immunotherapy Augments Antiglioma Cytotoxic and Memory T-Cell Functions. Molecular Cancer Therapeutics, 2014, 13, 3024-3036.	4.1	48
100	Blocking Immunosuppressive Checkpoints for Glioma Therapy: The More the Merrier!. Clinical Cancer Research, 2014, 20, 5147-5149.	7.0	24
101	Adenoviral vector-mediated gene therapy for gliomas: coming of age. Expert Opinion on Biological Therapy, 2014, 14, 1241-1257.	3.1	44
102	Preclinical Characterization of Signal Transducer and Activator of Transcription 3 Small Molecule Inhibitors for Primary and Metastatic Brain Cancer Therapy. Journal of Pharmacology and Experimental Therapeutics, 2014, 349, 458-469.	2.5	32
103	There Must Be a Way Out of Here: Identifying a Safe and Efficient Combination of Promoter, Transgene, and Vector Backbone for Gene Therapy of Neurological Disease. Molecular Therapy, 2014, 22, 246-247.	8.2	4
104	Natural Killer Cells Eradicate Galectin-1–Deficient Glioma in the Absence of Adaptive Immunity. Cancer Research, 2014, 74, 5079-5090.	0.9	62
105	Mechanisms of Glioma Formation: Iterative Perivascular Glioma Growth and Invasion Leads to Tumor Progression, VEGF-Independent Vascularization, and Resistance to Antiangiogenic Therapy. Neoplasia, 2014, 16, 543-561.	5.3	131
106	Temozolomide Does Not Impair Gene Therapy-Mediated Antitumor Immunity in Syngeneic Brain Tumor Models. Clinical Cancer Research, 2014, 20, 1555-1565.	7.0	32
107	Lentiviral-Induced High-Grade Gliomas in Rats: The Effects of PDGFB, HRAS-G12V, AKT, and IDH1-R132H. Neurotherapeutics, 2014, 11, 623-635.	4.4	10
108	Marmosets as a preclinical model for testing "off-label―use of doxycycline to turn on Flt3L expression from high-capacity adenovirus vectors. Molecular Therapy - Methods and Clinical Development, 2014, 1, 10.	4.1	8

#	Article	IF	CITATIONS
109	Assessing the Role of STAT3 in DC Differentiation and Autologous DC Immunotherapy in Mouse Models of GBM. PLoS ONE, 2014, 9, e96318.	2.5	12
110	Immunotherapies for Brain Cancer: From Preclinical Models to Human Trials. Tumors of the Central Nervous System, 2014, , 239-251.	0.1	0
111	Therapeutic implications of perivascular invasion in the context of high-density brain microvascular networks: A study on recursive pattern formation in malignant glioma Journal of Clinical Oncology, 2014, 32, 2057-2057.	1.6	0
112	Safety profile, efficacy, and biodistribution of a bicistronic high-capacity adenovirus vector encoding a combined immunostimulation and cytotoxic gene therapy as a prelude to a phase I clinical trial for glioblastoma. Toxicology and Applied Pharmacology, 2013, 268, 318-330.	2.8	24
113	Progress in gene therapy for neurological disorders. Nature Reviews Neurology, 2013, 9, 277-291.	10.1	202
114	Effectiveness and Preclinical Safety Profile of Doxycycline to Be Used "Off-Label―to Induce Therapeutic Transgene Expression in a Phase I Clinical Trial for Glioma. Human Gene Therapy Clinical Development, 2013, 24, 116-126.	3.1	9
115	The long and winding road—gene therapy for glioma. Nature Reviews Neurology, 2013, 9, 609-610.	10.1	8
116	Dendritic Cell-Based Immunotherapy for Glioma: Multiple Regimens and Implications in Clinical Trials. Neurologia Medico-Chirurgica, 2013, 53, 741-754.	2.2	19
117	Cytotoxic immunological synapses do not restrict the action of interferon-Î ³ to antigenic target cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7835-7840.	7.1	54
118	Gene therapy for brain tumors: Basic developments and clinical implementation. Neuroscience Letters, 2012, 527, 71-77.	2.1	53
119	Plasmacytoid Dendritic Cells in the Tumor Microenvironment: Immune Targets for Glioma Therapeutics. Neoplasia, 2012, 14, 757-IN26.	5.3	46
120	Immune-mediated Loss of Transgene Expression From Virally Transduced Brain Cells Is Irreversible, Mediated by IFNÎ3, Perforin, and TNFα, and due to the Elimination of Transduced Cells. Molecular Therapy, 2012, 20, 808-819.	8.2	17
121	Gene Therapy-Mediated Reprogramming Tumor Infiltrating T Cells Using IL-2 and Inhibiting NF-κB Signaling Improves the Efficacy of Immunotherapy in a Brain Cancer Model. Neurotherapeutics, 2012, 9, 827-843.	4.4	33
122	Rodent Glioma Models: Intracranial Stereotactic Allografts and Xenografts. Neuromethods, 2012, 77, 229-243.	0.3	9
123	Safety Profile of Gutless Adenovirus Vectors Delivered into the Normal Brain Parenchyma: Implications for a Glioma Phase 1 Clinical Trial. Human Gene Therapy Methods, 2012, 23, 271-284.	2.1	21
124	B Cells Are Critical to T-cell—Mediated Antitumor Immunity Induced by a Combined Immune-Stimulatory/Conditionally Cytotoxic Therapy for Glioblastoma. Neoplasia, 2011, 13, 947-IN23.	5.3	96
125	Targeted Toxins for Glioblastoma Multiforme: Pre-Clinical Studies and Clinical Implementation. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 729-738.	1.7	9
126	Combined Flt3L/TK Gene Therapy Induces Immunological Surveillance Which Mediates an Immune Response Against a Surrogate Brain Tumor Neoantigen. Molecular Therapy, 2011, 19, 1793-1801.	8.2	42

#	Article	IF	CITATIONS
127	Engineering the Brain Tumor Microenvironment Enhances the Efficacy of Dendritic Cell Vaccination: Implications for Clinical Trial Design. Clinical Cancer Research, 2011, 17, 4705-4718.	7.0	35
128	Identification and Visualization of CD8+ T Cell Mediated IFN-Î ³ Signaling in Target Cells during an Antiviral Immune Response in the Brain. PLoS ONE, 2011, 6, e23523.	2.5	4
129	Gene Therapy and Targeted Toxins for Glioma. Current Gene Therapy, 2011, 11, 155-180.	2.0	66
130	Human Flt3L Generates Dendritic Cells from Canine Peripheral Blood Precursors: Implications for a Dog Glioma Clinical Trial. PLoS ONE, 2010, 5, e11074.	2.5	30
131	Exogenous fms-like tyrosine kinase 3 ligand overrides brain immune privilege and facilitates recognition of a neo-antigen without causing autoimmune neuropathology. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14443-14448.	7.1	20
132	Gene Transfer into Rat Brain Using Adenoviral Vectors. Current Protocols in Neuroscience, 2010, 50, Unit 4.24.	2.6	29
133	A Novel Bicistronic High-Capacity Gutless Adenovirus Vector That Drives Constitutive Expression of Herpes Simplex Virus Type 1 Thymidine Kinase and Tet-Inducible Expression of Flt3L for Glioma Therapeutics. Journal of Virology, 2010, 84, 6007-6017.	3.4	37
134	Gene therapy-mediated delivery of targeted cytotoxins for glioma therapeutics. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20021-20026.	7.1	88
135	Anti-tumor immune response correlates with neurological symptoms in a dog with spontaneous astrocytoma treated by gene and vaccine therapy. Vaccine, 2010, 28, 3371-3378.	3.8	47
136	Gene therapy and virotherapy: novel therapeutic approaches for brain tumors. Discovery Medicine, 2010, 10, 293-304.	0.5	38
137	HMCB1 Mediates Endogenous TLR2 Activation and Brain Tumor Regression. PLoS Medicine, 2009, 6, e1000010.	8.4	310
138	Gene therapy for the treatment of pituitary tumors. Expert Review of Endocrinology and Metabolism, 2009, 4, 359-370.	2.4	4
139	Release of HMGB1 in Response to Proapoptotic Glioma Killing Strategies: Efficacy and Neurotoxicity. Clinical Cancer Research, 2009, 15, 4401-4414.	7.0	95
140	Antiglioma Immunological Memory in Response to Conditional Cytotoxic/Immune-Stimulatory Gene Therapy: Humoral and Cellular Immunity Lead to Tumor Regression. Clinical Cancer Research, 2009, 15, 6113-6127.	7.0	68
141	Infiltrating CTLs in Human Glioblastoma Establish Immunological Synapses with Tumorigenic Cells. American Journal of Pathology, 2009, 175, 786-798.	3.8	49
142	Gene Therapy for Brain Cancer: Combination Therapies Provide Enhanced Efficacy and Safety. Current Gene Therapy, 2009, 9, 409-421.	2.0	48
143	Uncertainty in the Translation of Preclinical Experiments to Clinical Trials. Why do Most Phase III Clinical Trials Fail?. Current Gene Therapy, 2009, 9, 368-374.	2.0	70
144	Challenges in the evaluation, consent, ethics and history of early clinical trials - Implications of the Tuskegee 'trial' for safer and more ethical clinical trials. Current Opinion in Molecular Therapeutics, 2009, 11, 481-4.	2.8	4

#	Article	IF	CITATIONS
145	High-Capacity Adenovirus Vector-Mediated Anti-Glioma Gene Therapy in the Presence of Systemic Antiadenovirus Immunity. Journal of Virology, 2008, 82, 4680-4684.	3.4	31
146	Turning the gene tap off; implications of regulating gene expression for cancer therapeutics. Molecular Cancer Therapeutics, 2008, 7, 439-448.	4.1	33
147	Immunization Against the Transgene but not the TetON Switch Reduces Expression From Gutless Adenoviral Vectors in the Brain. Molecular Therapy, 2008, 16, 343-351.	8.2	38
148	Flt3L and TK gene therapy eradicate multifocal glioma in a syngeneic glioblastoma model. Neuro-Oncology, 2008, 10, 19-31.	1.2	68
149	CD20, CD3, and CD40 Ligand Microclusters Segregate Three-Dimensionally In Vivo at B-Cell-T-Cell Immunological Synapses after Viral Immunity in Primate Brain. Journal of Virology, 2008, 82, 9978-9993.	3.4	17
150	In Vivo Polarization of IFN-Î ³ at Kupfer and Non-Kupfer Immunological Synapses during the Clearance of Virally Infected Brain Cells. Journal of Immunology, 2008, 180, 1344-1352.	0.8	35
151	Flt3L in Combination With HSV1-TK-mediated Gene Therapy Reverses Brain Tumor–induced Behavioral Deficits. Molecular Therapy, 2008, 16, 682-690.	8.2	43
152	Gene Transfer into Neural Cells In Vitro Using Adenoviral Vectors. Current Protocols in Neuroscience, 2008, 45, Unit 4.23.	2.6	18
153	Viral gene therapy for central nervous system diseases. , 2008, , 424-434.		0
154	Treg Depletion Inhibits Efficacy of Cancer Immunotherapy: Implications for Clinical Trials. PLoS ONE, 2008, 3, e1983.	2.5	109
155	Regulated Expression of Adenoviral Vectors-Based Gene Therapies. , 2008, 434, 239-266.		9
156	HMGB1 Mediates Endogenous TLR2 Activation And Brain Tumor Regression FASEB Journal, 2008, 22, 515-515.	0.5	1
157	T Cells' Immunological Synapses Induce Polarization of Brain Astrocytes In Vivo and In Vitro: A Novel Astrocyte Response Mechanism to Cellular Injury. PLoS ONE, 2008, 3, e2977.	2.5	46
158	Depletion of CD25+ T cells inhibits CD8+ T cells clonal expansion and glioblastoma multiforme regression FASEB Journal, 2008, 22, 514-514.	0.5	0
159	Optimization of adenoviral vector-mediated transgene expression in the canine brain in vivo, and in canine glioma cells in vitro. Neuro-Oncology, 2007, 9, 245-258.	1.2	40
160	Immune Responses to Adenovirus and Adeno-Associated Vectors Used for Gene Therapy of Brain Diseases: The Role of Immunological Synapses in Understanding the Cell Biology of Neuroimmune Interactions. Current Gene Therapy, 2007, 7, 347-360.	2.0	144
161	One-year Expression From High-capacity Adenoviral Vectors in the Brains of Animals With Pre-existing Anti-adenoviral Immunity: Clinical Implications. Molecular Therapy, 2007, 15, 2154-2163.	8.2	78
162	Efficacy of nonviral gene transfer in the canine brain. Journal of Neurosurgery, 2007, 107, 136-144.	1.6	28

#	Article	IF	CITATIONS
163	Improved distribution of small molecules and viral vectors in the murine brain using a hollow fiber catheter. Journal of Neurosurgery, 2007, 107, 568-577.	1.6	74
164	ADENOVIRAL-MEDIATED GENE TRANSFERINTO THE CANINE BRAIN IN VIVO. Neurosurgery, 2007, 60, 167-178.	1.1	14
165	Immunology of Neurological Gene Therapy: How T Cells Modulate Viral Vector-Mediated Therapeutic Transgene Expression Through Immunological Synapses. Neurotherapeutics, 2007, 4, 715-724.	4.4	20
166	Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. Journal of Neuro-Oncology, 2007, 85, 133-148.	2.9	300
167	In vivo mature immunological synapses forming SMACs mediate clearance of virally infected astrocytes from the brain. Journal of Experimental Medicine, 2006, 203, 2095-2107.	8.5	96
168	Immunological thresholds in neurological gene therapy: highly efficient elimination of transduced cells might be related to the specific formation of immunological synapses between T cells and virus-infected brain cells. Neuron Glia Biology, 2006, 2, 309-322.	1.6	29
169	Fms-Like Tyrosine Kinase 3 Ligand Recruits Plasmacytoid Dendritic Cells to the Brain. Journal of Immunology, 2006, 176, 3566-3577.	0.8	88
170	Immune Regulation of Transgene Expression in the Brain: B Cells Regulate an Early Phase of Elimination of Transgene Expression from Adenoviral Vectors. Viral Immunology, 2006, 19, 508-517.	1.3	7
171	Effective High-Capacity Gutless Adenoviral Vectors Mediate Transgene Expression in Human Glioma Cells. Molecular Therapy, 2006, 14, 371-381.	8.2	44
172	Regulatable Gutless Adenovirus Vectors Sustain Inducible Transgene Expression in the Brain in the Presence of an Immune Response against Adenoviruses. Journal of Virology, 2006, 80, 27-37.	3.4	89
173	In vivo mature immunological synapses forming SMACs mediate clearance of virally infected astrocytes from the brain. Journal of Cell Biology, 2006, 174, i10-i10.	5.2	Ο
174	Human gene therapy and imaging in neurological diseases. European Journal of Nuclear Medicine and Molecular Imaging, 2005, 32, S358-S383.	6.4	21
175	Molecular Neurosurgery in the Pituitary Gland. , 2005, 18, 580-623.		Ο
176	Combining Cytotoxic and Immune-Mediated Gene Therapy to Treat Brain Tumors. Current Topics in Medicinal Chemistry, 2005, 5, 1151-1170.	2.1	44
177	Gene Therapy and Targeted Toxins for Glioma. Current Gene Therapy, 2005, 5, 535-557.	2.0	71
178	Gene Therapy for Pituitary Tumors. Current Gene Therapy, 2005, 5, 559-572.	2.0	9
179	Combined Immunostimulation and Conditional Cytotoxic Gene Therapy Provide Long-term Survival in a Large Clioma Model. Cancer Research, 2005, 65, 7194-7204.	0.9	121
180	Stability of Lentiviral Vector-Mediated Transgene Expression in the Brain in the Presence of Systemic Antivector Immune Responses. Human Gene Therapy, 2005, 16, 741-751.	2.7	137

#	Article	IF	CITATIONS
181	Development of a Novel Helper-Dependent Adenovirus-Epstein-Barr Virus Hybrid System for the Stable Transformation of Mammalian Cells. Journal of Virology, 2004, 78, 6556-6566.	3.4	41
182	Gene Therapy for Liver Transplantation Using Adenoviral Vectors: CD40–CD154 Blockade by Gene Transfer of CD40Ig Protects Rat Livers from Cold Ischemia and Reperfusion Injury. Molecular Therapy, 2004, 9, 38-45.	8.2	21
183	Inflammatory and Anti-glioma Effects of an Adenovirus Expressing Human Soluble Fms-like Tyrosine Kinase 3 Ligand (hsFlt3L): Treatment with hsFlt3L Inhibits Intracranial Glioma Progression. Molecular Therapy, 2004, 10, 1071-1084.	8.2	86
184	Effects of ectopic decorin in modulating intracranial glioma progression in vivo, in a rat syngeneic model. Cancer Gene Therapy, 2004, 11, 721-732.	4.6	75
185	Recent advances in the pharmacology of neurological gene therapy. Current Opinion in Pharmacology, 2004, 4, 91-97.	3.5	20
186	Use of Recombinant Adenovirus for Gene Transfer into the Rat Brain: Evaluation of Gene Transfer Efficiency, Toxicity, and Inflammatory and Immune Reactions. , 2003, 76, 113-134.		8
187	Gene therapy for pituitary tumors: from preclinical models to clinical implementation. Frontiers in Neuroendocrinology, 2003, 24, 62-77.	5.2	8
188	Adenovirus-Mediated Gene Transfer of Transforming Growth Factor-β ₃ , but Not Transforming Growth Factor-β ₁ , Inhibits Constrictive Remodeling and Reduces Luminal Loss After Coronary Angioplasty. Circulation, 2003, 108, 2819-2825.	1.6	39
189	Adenovirus expression of IL-1 and NF-κB inhibitors does not inhibit acute adenoviral-induced brain inflammation, but delays immune system-mediated elimination of transgene expression. Molecular Therapy, 2003, 8, 400-411.	8.2	11
190	Virus Vectors for use in the Central Nervous System. International Review of Neurobiology, 2003, 55, 3-64.	2.0	8
191	Gene Therapy for Pituitary Tumors. , 2003, 13, 351-357.		Ο
192	Active suppression of allogeneic proliferative responses by dendritic cells after induction of long-term allograft survival by CTLA4Ig. Blood, 2003, 101, 3325-3333.	1.4	33
193	Prolonged Blockade of CD40-CD40 Ligand Interactions by Gene Transfer of CD40lg Results in Long-Term Heart Allograft Survival and Donor-Specific Hyporesponsiveness, But Does Not Prevent Chronic Rejection. Journal of Immunology, 2002, 168, 1600-1609.	0.8	87
194	Adenovirus Binding to the Coxsackievirus and Adenovirus Receptor or Integrins Is Not Required To Elicit Brain Inflammation but Is Necessary To Transduce Specific Neural Cell Types. Journal of Virology, 2002, 76, 3452-3460.	3.4	49
195	Intrapituitary Adenoviral Administration of 7B2 Can Extend Life Span and Reverse Endocrinological Deficiencies in 7B2 Null Mice. Endocrinology, 2002, 143, 2314-2323.	2.8	12
196	Adenovirus vector–mediated delivery of the prodrug-converting enzyme carboxypeptidase G2 in a secreted or GPI-anchored form: High-level expression of this active conditional cytotoxic enzyme at the plasma membrane. Cancer Gene Therapy, 2002, 9, 897-907.	4.6	27
197	Intrapituitary Adenoviral Administration of 7B2 Can Extend Life Span and Reverse Endocrinological Deficiencies in 7B2 Null Mice. Endocrinology, 2002, 143, 2314-2323.	2.8	4
198	Progress and challenges in viral vector-mediated gene transfer to the brain. Current Opinion in Molecular Therapeutics, 2002, 4, 359-71.	2.8	22

#	Article	IF	CITATIONS
199	Molecular therapy in a model neuroendocrine disease: developing clinical gene therapy for pituitary tumours. Trends in Endocrinology and Metabolism, 2001, 12, 58-64.	7.1	14
200	Genetic engineering within the adult brain: Implications for molecular approaches to behavioral neuroscience. Physiology and Behavior, 2001, 73, 833-839.	2.1	16
201	Efficient FLPe recombinase enables scalable production of helper-dependent adenoviral vectors with negligible helper-virus contamination. Nature Biotechnology, 2001, 19, 582-585.	17.5	149
202	Adenovirus-mediated expression of HSV1-TK or Fas ligand induces cell death in primary human glioma-derived cell cultures that are resistant to the chemotherapeutic agent CCNU. Cancer Gene Therapy, 2001, 8, 589-598.	4.6	40
203	Adenovirus-Mediated Gene Transfer of a Secreted Transforming Growth Factor-β Type II Receptor Inhibits Luminal Loss and Constrictive Remodeling After Coronary Angioplasty and Enhances Adventitial Collagen Deposition. Circulation, 2001, 104, 2595-2601.	1.6	76
204	Long-Term Transgene Expression within the Anterior Pituitary Glandin Situ: Impact on Circulating Hormone Levels, Cellular and Antibody-Mediated Immune Responses1. Endocrinology, 2001, 142, 464-476.	2.8	29
205	Towards Global and Long-Term Neurological Gene Therapy: Unexpected Transgene Dependent, High-Level, and Widespread Distribution of HSV-1 Thymidine Kinase throughout the CNS. Molecular Therapy, 2001, 4, 490-498.	8.2	35
206	Regulated, Adenovirus-Mediated Delivery of Tyrosine Hydroxylase Suppresses Growth of Estrogen-Induced Pituitary Prolactinomas. Molecular Therapy, 2001, 4, 593-602.	8.2	41
207	Acute Direct Adenoviral Vector Cytotoxicity and Chronic, but Not Acute, Inflammatory Responses Correlate with Decreased Vector-Mediated Transgene Expression in the Brain. Molecular Therapy, 2001, 3, 36-46.	8.2	171
208	Switching On and Off Transgene Expression within Lactotrophic Cells in the Anterior Pituitary Glandin Vivo1. Endocrinology, 2001, 142, 2521-2532.	2.8	29
209	Cell Type Specific and Inducible Transgenesis in the Anterior Pituitary Gland. Growth Hormone, 2001, , 233-256.	0.2	1
210	Long-Term Transgene Expression within the Anterior Pituitary Gland in Situ: Impact on Circulating Hormone Levels, Cellular and Antibody-Mediated Immune Responses. Endocrinology, 2001, 142, 464-476.	2.8	12
211	Switching On and Off Transgene Expression within Lactotrophic Cells in the Anterior Pituitary Gland in Vivo. Endocrinology, 2001, 142, 2521-2532.	2.8	7
212	Transient Transgenesis in The Endocrine System: Viral Vectors for Gene Delivery. Growth Hormone, 2001, , 195-232.	0.2	0
213	Gene Transfer into Neural Cells In Vitro Using Adenoviral Vectors. Current Protocols in Neuroscience, 2000, 13, Unit 4.23.	2.6	19
214	Tolerance to Cardiac Allografts Via Local and Systemic Mechanisms After Adenovirus-Mediated CTLA4lg Expression. Journal of Immunology, 2000, 164, 5258-5268.	0.8	88
215	Cell-Type-Specific and Regulatable Transgenesis in the Adult Brain: Adenovirus-Encoded Combined Transcriptional Targeting and Inducible Transgene Expression. Molecular Therapy, 2000, 2, 579-587.	8.2	78
216	Strong Promoters Are the Key to Highly Efficient, Noninflammatory and Noncytotoxic Adenoviral-Mediated Transgene Delivery into the Brain in Vivo. Molecular Therapy, 2000, 2, 330-338.	8.2	102

#	Article	IF	CITATIONS
217	Interleukin-1 Mediates a Rapid Inflammatory Response After Injection of Adenoviral Vectors into the Brain. Journal of Neuroscience, 1999, 19, 1517-1523.	3.6	107
218	Treatment of Experimental Glioma by Administration of Adenoviral Vectors Expressing Fas Ligand. Human Gene Therapy, 1999, 10, 1641-1648.	2.7	86
219	Generation of a Recombinant Herpes Simplex Virus TypeÂ1 Expressing the Rat Corticotropin- Releasing Hormone Precursor: Endoproteolytic Processing, Intracellular Targeting and Biological Activity. Neuroendocrinology, 1999, 70, 439-450.	2.5	10
220	Adenoviruses encoding HPRT correct biochemical abnormalities of HPRT-deficient cells and allow their survival in negative selection medium. Metabolic Brain Disease, 1999, 14, 205-221.	2.9	13
221	Recent developments in gene therapy: applications for the treatment of pituitary tumours. Best Practice and Research in Clinical Endocrinology and Metabolism, 1999, 13, 431-449.	4.7	4
222	Use of recombinant herpes simplex virus type 1 vectors for gene transfer into tumour and normal anterior pituitary cells. Molecular and Cellular Endocrinology, 1998, 139, 199-207.	3.2	24
223	Chapter 33 Gene therapy for inherited neurological disorders: Towards therapeutic intervention in the Lesch-Nyhan syndrome. Progress in Brain Research, 1998, 117, 485-501.	1.4	9
224	Expression of Transgenes in Normal and Neoplastic Anterior Pituitary Cells Using Recombinant Adenoviruses: Long Term Expression, Cell Cycle Dependency, and Effects on Hormone Secretion*. Endocrinology, 1997, 138, 2184-2194.	2.8	47
225	Effect of the Corticotrophin Releasing Hormone Precursor on Interleukin-6 Release by Human Mononuclear Cells. Clinical Immunology and Immunopathology, 1997, 85, 35-39.	2.0	15
226	Expression of Transgenes in Normal and Neoplastic Anterior Pituitary Cells Using Recombinant Adenoviruses: Long Term Expression, Cell Cycle Dependency, and Effects on Hormone Secretion. Endocrinology, 1997, 138, 2184-2194.	2.8	6
227	Procorticotrophin releasing hormone is endoproteolytically processed by the prohormone convertase PC2 but not by PC1 within stably transfected CHO-K1 cells. Biochemical Society Transactions, 1996, 24, 497S-497S.	3.4	8
228	Expression of Biologically Active Procorticotrophin-Releasing Hormone (proCRH) in Stably Transfected CHO-K1 Cells: Characterization of Nuclear proCRH. Journal of Neuroendocrinology, 1995, 7, 263-272.	2.6	13
229	Biosynthesis of corticotropin-releasing hormone in human T-lymphocytes. Journal of Neuroimmunology, 1993, 44, 7-13.	2.3	98
230	Nuclear localisation of corticotrophin releasing hormone (CRH) in transfected CHO-K1 cells. Biochemical Society Transactions, 1993, 21, 318S-318S.	3.4	1
231	Pro-opiomelanocortin and pro-vasopressin converting enzyme in pituitary secretory vesicles. Biochimie, 1988, 70, 11-16.	2.6	18
232	The Brain as a Target for Gene Therapy. , 0, , 153-165.		0
233	Immune Responses to Viral Vectors Injected Systemically or into the CNS. , 0, , 167-179.		0