Shiming Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4771004/publications.pdf Version: 2024-02-01

SHIMING ZHANG

#	Article	IF	CITATIONS
1	Pt utilization in proton exchange membrane fuel cells: structure impacting factors and mechanistic insights. Chemical Society Reviews, 2022, 51, 1529-1546.	38.1	80
2	Facile Synthesis of Surfactantâ€Induced Platinum Nanospheres with a Porous Network Structure for Highly Effective Oxygen Reduction Catalysis. Chemistry - an Asian Journal, 2022, 17, .	3.3	8
3	Synergy of staggered stacking confinement and microporous defect fixation for high-density atomic Fell-N4 oxygen reduction active sites. Chinese Journal of Catalysis, 2022, 43, 1870-1878.	14.0	9
4	Advanced Noncarbon Materials as Catalyst Supports and Non-noble Electrocatalysts for Fuel Cells and Metal–Air Batteries. Electrochemical Energy Reviews, 2021, 4, 336-381.	25.5	120
5	Metathesis Reaction to Form Nanosheet-Structured Co(OH) ₂ Deposited on N-Doped Carbon as Composite Electrocatalysts for Oxygen Reduction. ACS Applied Energy Materials, 2021, 4, 4165-4172.	5.1	14
6	High index surface-exposed and composition-graded PtCu3@Pt3Cu@Pt nanodendrites for high-performance oxygen reduction. Chinese Journal of Catalysis, 2021, 42, 1108-1116.	14.0	33
7	Sensitive monitoring and bioimaging intracellular highly reactive oxygen species based on gold nanoclusters@nanoscale metal-organic frameworks. Analytica Chimica Acta, 2019, 1092, 108-116.	5.4	33
8	Nanoscaled luminescent terbium metal–organic frameworks for measuring and scavenging reactive oxygen species in living cells. Journal of Materials Chemistry B, 2019, 7, 3027-3033.	5.8	23
9	Pyridinicâ€N Protected Synthesis of 3D Nitrogenâ€Doped Porous Carbon with Increased Mesoporous Defects for Oxygen Reduction. Small, 2019, 15, e1805325.	10.0	70
10	Induced growth of Fe-N x active sites using carbon templates. Chinese Journal of Catalysis, 2018, 39, 1427-1435.	14.0	22
11	Boosting the Performance of Iron-Phthalocyanine as Cathode Electrocatalyst for Alkaline Polymer Fuel Cells Through Edge-Closed Conjugation. ACS Applied Materials & Interfaces, 2018, 10, 28664-28671.	8.0	34
12	Metal and Metal Oxide Interactions and Their Catalytic Consequences for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2017, 139, 7893-7903.	13.7	135
13	Highly Fluorescent Polyimide Covalent Organic Nanosheets as Sensing Probes for the Detection of 2,4,6-Trinitrophenol. ACS Applied Materials & amp; Interfaces, 2017, 9, 13415-13421.	8.0	234
14	Surfactant-Template Preparation of Polyaniline Semi-Tubes for Oxygen Reduction. Catalysts, 2015, 5, 1202-1210.	3.5	15
15	Tailoring molecular architectures of Fe phthalocyanine on nanocarbon supports for high oxygen reduction performance. Journal of Materials Chemistry A, 2015, 3, 10013-10019.	10.3	63
16	Synergistic increase of oxygen reduction favourable Fe–N coordination structures in a ternary hybrid of carbon nanospheres/carbon nanotubes/graphene sheets. Physical Chemistry Chemical Physics, 2013, 15, 18482.	2.8	42
17	Fe–N doped carbon nanotube/graphene composite: facile synthesis and superior electrocatalytic activity. Journal of Materials Chemistry A, 2013, 1, 3302.	10.3	115
18	Enhanced-electrocatalytic activity of Pt nanoparticles supported onÂnitrogen-doped carbon for the oxygen reduction reaction. Journal of Power Sources, 2013, 240, 60-65.	7.8	47

SHIMING ZHANG

#	Article	IF	CITATIONS
19	N-doped graphene/carbon composite as non-precious metal electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2012, 81, 313-320.	5.2	97
20	Oneâ€Pot Synthesized DNA–CdTe Quantum Dots Applied in a Biosensor for the Detection of Sequence‧pecific Oligonucleotides. Chemistry - A European Journal, 2012, 18, 8296-8300.	3.3	51
21	Biosensing Platform Based on Fluorescence Resonance Energy Transfer from Upconverting Nanocrystals to Graphene Oxide. Angewandte Chemie - International Edition, 2011, 50, 6851-6854.	13.8	277
22	In-Situ Formed Micropores as Footholds Enabling Well-Dispersed High-Density Fe-Nx Active Sites for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 0, , .	3.1	5