Guodong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/47706/publications.pdf

Version: 2024-02-01

28 4,168 19 27
papers citations h-index g-index

28 28 28 6392 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature, 2016, 539, 76-80.	27.8	1,201
2	Core–Shell Palladium Nanoparticle@Metal–Organic Frameworks as Multifunctional Catalysts for Cascade Reactions. Journal of the American Chemical Society, 2014, 136, 1738-1741.	13.7	632
3	Metal–Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives. Advanced Materials, 2018, 30, e1800702.	21.0	362
4	Noble metal nanoparticle@metal oxide core/yolk–shell nanostructures as catalysts: recent progress and perspective. Nanoscale, 2014, 6, 3995-4011.	5.6	347
5	A manganese–hydrogen battery with potential for grid-scale energy storage. Nature Energy, 2018, 3, 428-435.	39.5	325
6	Facile synthesis of core–shell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for CO oxidation. Energy and Environmental Science, 2012, 5, 8937.	30.8	258
7	Effective mass and Fermi surface complexity factor from ab initio band structure calculations. Npj Computational Materials, 2017, 3, .	8.7	145
8	Shell-Protective Secondary Silicon Nanostructures as Pressure-Resistant High-Volumetric-Capacity Anodes for Lithium-lon Batteries. Nano Letters, 2018, 18, 7060-7065.	9.1	121
9	Membraneâ€Free Zn/MnO ₂ Flow Battery for Largeâ€Scale Energy Storage. Advanced Energy Materials, 2020, 10, 1902085.	19.5	111
10	Fast and Selective Semihydrogenation of Alkynes by Palladium Nanoparticles Sandwiched in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 3650-3657.	13.8	94
11	Monodisperse Hollow Spheres with Sandwich Heterostructured Shells as High-Performance Catalysts via an Extended SiO2Template Method. Small, 2015, 11, 420-425.	10.0	83
12	Facile synthesis of ultrathin metal-organic framework nanosheets for Lewis acid catalysis. Nano Research, 2019, 12, 437-440.	10.4	79
13	Delocalized electron effect on single metal sites in ultrathin conjugated microporous polymer nanosheets for boosting CO ₂ cycloaddition. Science Advances, 2020, 6, eaaz4824.	10.3	68
14	Metal-organic frameworks as emerging platform for supporting isolated single-site catalysts. Nano Today, 2019, 27, 178-197.	11.9	66
15	Feâ€O Clusters Anchored on Nodes of Metal–Organic Frameworks for Direct Methane Oxidation. Angewandte Chemie - International Edition, 2021, 60, 5811-5815.	13.8	66
16	Interfacial coupling between noble metal nanoparticles and metal–organic frameworks for enhanced catalytic activity. Nanoscale, 2018, 10, 16425-16430.	5.6	46
17	Cobalt Catalysts Enable Selective Hydrogenation of CO ₂ toward Diverse Products: Recent Progress and Perspective. Journal of Physical Chemistry Letters, 2021, 12, 10486-10496.	4.6	40
18	Recent advances in metal-organic frameworks for catalytic CO2 hydrogenation to diverse products. Nano Research, 2022, 15, 10110-10133.	10.4	28

#	ARTICLE	IF	CITATION
19	Metal-organic framework nanosheets and their composites for heterogeneous thermal catalysis: Recent progresses and challenges. Chinese Chemical Letters, 2021, 32, 3307-3321.	9.0	23
20	Hollow TiO ₂ submicrospheres assembled by tiny nanocrystals as superior anode for lithium ion battery. Journal of Materials Chemistry A, 2019, 7, 23733-23738.	10.3	15
21	Fast and Selective Semihydrogenation of Alkynes by Palladium Nanoparticles Sandwiched in Metal–Organic Frameworks. Angewandte Chemie, 2020, 132, 3679-3686.	2.0	15
22	Recent advances in hollow metal-organic frameworks and their composites for heterogeneous thermal catalysis. Science China Chemistry, 2021, 64, 1854-1874.	8.2	13
23	Facile Solvothermal Strategy to Construct Core–Shell Al ₂ O ₃ @CuO Submicrospheres with Improved Catalytic Activity for CO Oxidation. Chemistry - an Asian Journal, 2013, 8, 694-699.	3.3	12
24	Recent progress on selective hydrogenation of phenol toward cyclohexanone or cyclohexanol. Nanotechnology, 2022, 33, 072003.	2.6	10
25	Feâ€O Clusters Anchored on Nodes of Metal–Organic Frameworks for Direct Methane Oxidation. Angewandte Chemie, 2021, 133, 5875-5879.	2.0	3
26	Study on the Selective Hydrogenation of Quinoline Catalyzed by Composites of Metal-Organic Framework and Pt Nanoparticles [※] . Acta Chimica Sinica, 2022, 80, 467.	1.4	3
27	Coordinating Zirconium Nodes in Metal-Organic Framework with Trifluoroacetic Acid for Enhanced Lewis Acid Catalysis. Chemical Research in Chinese Universities, 2022, 38, 1301-1307.	2.6	2
28	Fabrication of Core–Shell Structured Metal Nanoparticles@Metal–Organic Frameworks for Heterogeneous Thermal Catalysis. Nanostructure Science and Technology, 2021, , 83-103.	0.1	0