
Zehui Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/477024/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chemical Society Reviews, 2018, 47, 1351-1390.	38.1	440
2	Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid Using O ₂ and a Photocatalyst of Co-thioporphyrazine Bonded to g-C ₃ N ₄ . Journal of the American Chemical Society, 2017, 139, 14775-14782.	13.7	317
3	Selective aerobic oxidation of the biomass-derived precursor 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions over a magnetic palladium nanocatalyst. Green Chemistry, 2015, 17, 1308-1317.	9.0	233
4	High performance of a cobalt–nitrogen complex for the reduction and reductive coupling of nitro compounds into amines and their derivatives. Science Advances, 2017, 3, e1601945.	10.3	212
5	Catalytic Conversion of Fructose and 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid over a Recyclable Fe ₃ O ₄ –CoO _{<i>x</i>} Magnetite Nanocatalyst. ACS Sustainable Chemistry and Engineering, 2015, 3, 406-412.	6.7	203
6	Catalytic Conversion of Biomass into Chemicals and Fuels over Magnetic Catalysts. ACS Catalysis, 2016, 6, 326-338.	11.2	194
7	Silica coated magnetic Fe3O4 nanoparticles supported phosphotungstic acid: a novel environmentally friendly catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose. Catalysis Science and Technology, 2013, 3, 2104.	4.1	191
8	Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water under mild conditions. Green Chemistry, 2015, 17, 1610-1617.	9.0	180
9	One-pot catalytic conversion of carbohydrates into furfural and 5-hydroxymethylfurfural. Catalysis Science and Technology, 2016, 6, 3694-3712.	4.1	172
10	Catalytic Transfer Hydrogenation of Furfural into Furfuryl Alcohol over Magnetic γ-Fe ₂ O ₃ @HAP Catalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 942-947.	6.7	162
11	Selective cleavage of lignin and lignin model compounds without external hydrogen, catalyzed by heterogeneous nickel catalysts. Chemical Science, 2019, 10, 4458-4468.	7.4	154
12	Synthesis of $\hat{1}^3 \hat{a} \in V$ alerolactone from Carbohydrates and its Applications. ChemSusChem, 2016, 9, 156-171.	6.8	153
13	Oneâ€Pot Conversion of Carbohydrates into Furan Derivatives via Furfural and 5â€Hydroxylmethylfurfural as Intermediates. ChemSusChem, 2016, 9, 2015-2036.	6.8	146
14	Aerobic oxidation of biomass derived 5-hydroxymethylfurfural into 5-hydroxymethyl-2-furancarboxylic acid catalyzed by a montmorillonite K-10 clay immobilized molybdenum acetylacetonate complex. Green Chemistry, 2014, 16, 2762.	9.0	129
15	A novel magnetic palladium catalyst for the mild aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water. Catalysis Science and Technology, 2015, 5, 3194-3202.	4.1	119
16	Efficient One-Pot Synthesis of 5-(Ethoxymethyl)furfural from Fructose Catalyzed by a Novel Solid Catalyst. Industrial & Engineering Chemistry Research, 2012, 51, 15331-15336.	3.7	109
17	Iron Oxide Encapsulated by Ruthenium Hydroxyapatite as Heterogeneous Catalyst for the Synthesis of 2,5â€Diformylfuran. ChemSusChem, 2014, 7, 3496-3504.	6.8	108
18	Selective and metal-free oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran over nitrogen-doped carbon materials. Green Chemistry, 2018, 20, 4946-4956.	9.0	107

ZEHUI ZHANG

#	Article	IF	CITATIONS
19	One-pot conversion of carbohydrates into 5-ethoxymethylfurfural and ethyl d-glucopyranoside in ethanol catalyzed by a silica supported sulfonic acid catalyst. RSC Advances, 2013, 3, 12313.	3.6	102
20	Aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran with cesium-doped manganese dioxide. Catalysis Science and Technology, 2018, 8, 4430-4439.	4.1	91
21	Magnetic material grafted cross-linked imidazolium based polyionic liquids: an efficient acid catalyst for the synthesis of promising liquid fuel 5-ethoxymethylfurfural from carbohydrates. Journal of Materials Chemistry A, 2015, 3, 4992-4999.	10.3	84
22	Aerobic Oxidation of Biomass-Derived 5-(Hydroxymethyl)furfural into 2,5-Diformylfuran Catalyzed by the Trimetallic Mixed Oxide (Co–Ce–Ru). Industrial & Engineering Chemistry Research, 2014, 53, 1313-1319.	3.7	78
23	Nitrogenâ€Doped Carbonâ€Supported Nickel Nanoparticles: A Robust Catalyst to Bridge the Hydrogenation of Nitriles and the Reductive Amination of Carbonyl Compounds for the Synthesis of Primary Amines. ChemSusChem, 2019, 12, 1246-1255.	6.8	77
24	Cellulose sulfuric acid as a bio-supported and recyclable solid acid catalyst for the synthesis of 5-hydroxymethylfurfural and 5-ethoxymethylfurfural from fructose. Cellulose, 2013, 20, 2081-2089.	4.9	75
25	Environmentally Friendly Oxidation of Biomass Derived 5-Hydroxymethylfurfural into 2,5-Diformylfuran Catalyzed by Magnetic Separation of Ruthenium Catalyst. Industrial & Engineering Chemistry Research, 2014, 53, 5820-5827.	3.7	75
26	Nitrogen-Doped Carbon Materials for the Metal-Free Reduction of Nitro Compounds. ACS Applied Materials & Interfaces, 2018, 10, 44421-44429.	8.0	74
27	Oneâ€pot Reductive Amination of carbonyl Compounds with Nitro Compounds by Transfer Hydrogenation over Co–N _{<i>x</i>} as catalyst. ChemSusChem, 2017, 10, 1892-1897.	6.8	68
28	Polyanilineâ€Grafted VO(acac) ₂ : An Effective Catalyst for the Synthesis of 2,5â€Diformylfuran from 5â€Hydroxymethylfurfural and Fructose. ChemCatChem, 2015, 7, 1470-1477.	3.7	67
29	Catalytic Conversion of Fructose and 5-Hydroxymethylfurfural into 2,5-Diformylfuran over SBA-15 Supported Ruthenium Catalysts. Energy & Fuels, 2016, 30, 5885-5892.	5.1	42
30	Environmentally friendly synthesis of secondary amines via one-pot reductive amination over a heterogeneous Co–N _x catalyst. New Journal of Chemistry, 2017, 41, 11991-11997.	2.8	30
31	Efficient Oxidative Dehydrogenation of <i>N</i> -Heterocycles over Nitrogen-Doped Carbon-Supported Cobalt Nanoparticles. ACS Sustainable Chemistry and Engineering, 2019, 7, 13646-13654.	6.7	30
32	The effect of the alkali additive on the highly active Ru/C catalyst for water gas shift reaction. Catalysis Science and Technology, 2014, 4, 1286.	4.1	27
33	Microbial lipid production by oleaginous yeast in <scp>d</scp> -xylose solution using a two-stage culture mode. RSC Advances, 2014, 4, 34944.	3.6	26
34	One-pot synthesis of N-substituted pyrroles from nitro compounds and 2,5-hexadione over a heterogeneous cobalt catalyst. New Journal of Chemistry, 2017, 41, 10613-10618.	2.8	26
35	N-Doped ordered mesoporous carbon grafted onto activated carbon fibre composites with enhanced activity for the electro-Fenton degradation of Brilliant Red X3B dye. RSC Advances, 2014, 4, 60168-60175.	3.6	22
36	Selective hydrogenation of quinolines into 1,2,3,4-tetrahydroquinolines over a nitrogen-doped carbon-supported Pd catalyst. New Journal of Chemistry, 2018, 42, 16694-16702.	2.8	22

ZEHUI ZHANG

#	Article	IF	CITATIONS
37	Catalytic conversion of carbohydrates into 5â€hydroxymethylfurfural by Hafnium(IV) chloride in ionic liquids. Starch/Staerke, 2012, 64, 770-775.	2.1	20
38	Selective oxidation of 5-hydroxymethylfurfural to 5-formyl-2-furancar-boxylic acid over a Fe-Anderson type catalyst. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104, 8-15.	5.3	17
39	Photodegradation of rhodamine B with molecular oxygen catalyzed by a novel unsymmetrical iron porphyrazine under simulated sunlight. Catalysis Science and Technology, 2013, 3, 1415.	4.1	16
40	Preparation of confined Ru-iongel catalysts and their application for a low temperature water–gas shift reaction. RSC Advances, 2014, 4, 28529-28536.	3.6	9
41	Synthesis of Secondary Aldimines from the Hydrogenative Cross-Coupling of Nitriles and Amines over Al ₂ O ₃ -Supported Ni Catalysts. ACS Catalysis, 2019, 9, 8413-8423.	11.2	9
42	Recyclable Zr/Hf-Containing Acid-Base Bifunctional Catalysts for Hydrogen Transfer Upgrading of Biofuranics: A Review. Frontiers in Chemistry, 2021, 9, 812331.	3.6	8
43	Co–N _x catalyst: an effective catalyst for the transformation of nitro compounds into azo compounds. Reaction Chemistry and Engineering, 2021, 6, 112-118.	3.7	7
44	Synthesis of Asymmetrical Monobenzo‣ubstituted Cobalt Thioporphyrazines and Their Biomimetic Catalytic Property. Chinese Journal of Chemistry, 2016, 34, 1013-1020.	4.9	1
45	Low Temperature Chemoselective Hydrogenation of Aldehydes over a Magnetic Pd Catalyst. Applied Sciences (Switzerland), 2019, 9, 1792.	2.5	1