Christoph Stampfer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4769512/publications.pdf

Version: 2024-02-01

219 papers 13,289 citations

54 h-index 23533 111 g-index

223 all docs 223
docs citations

times ranked

223

14748 citing authors

#	Article	IF	CITATIONS
1	2D materials for future heterogeneous electronics. Nature Communications, 2022, 13, 1392.	12.8	174
2	Using a Smartphone Pressure Sensor as Pitot Tube Speedometer. Physics Teacher, 2022, 60, 273-275.	0.3	1
3	Graphene Whisperitronics: Transducing Whispering Gallery Modes into Electronic Transport. Nano Letters, 2022, 22, 128-134.	9.1	6
4	CVD Bilayer Graphene Spin Valves with 26 $\hat{l}\frac{1}{4}$ m Spin Diffusion Length at Room Temperature. Nano Letters, 2022, 22, 4949-4955.	9.1	7
5	Spin relaxation in a single-electron graphene quantum dot. Nature Communications, 2022, 13 , .	12.8	16
6	Charge-Induced Artifacts in Nonlocal Spin-Transport Measurements: How to Prevent Spurious Voltage Signals. Physical Review Applied, 2022, 18 , .	3.8	3
7	Raman imaging of twist angle variations in twisted bilayer graphene at intermediate angles. 2D Materials, 2022, 9, 045009.	4.4	8
8	Reducing the Impact of Bulk Doping on Transport Properties of Biâ€Based 3D Topological Insulators. Physica Status Solidi (B): Basic Research, 2021, 258, 2000021.	1.5	5
9	Phosphate-assisted efficient oxygen evolution over finely dispersed cobalt particles supported on graphene. Catalysis Science and Technology, 2021, 11, 1039-1048.	4.1	2
10	Metal free-covalent triazine frameworks as oxygen reduction reaction catalysts – structure–electrochemical activity relationship. Catalysis Science and Technology, 2021, 11, 6191-6204.	4.1	8
11	Pulsed-gate spectroscopy of single-electron spin states in bilayer graphene quantum dots. Physical Review B, 2021, 103, .	3.2	14
12	Tunable interdot coupling in few-electron bilayer graphene double quantum dots. Applied Physics Letters, 2021, 118, .	3.3	8
13	Dispersive sensing of charge states in a bilayer graphene quantum dot. Applied Physics Letters, 2021, 118, .	3.3	11
14	How to solve problems in micro- and nanofabrication caused by the emission of electrons and charged metal atoms during e-beam evaporation. Journal Physics D: Applied Physics, 2021, 54, 225304.	2.8	8
15	Electrical Control over Phonon Polarization in Strained Graphene. Nano Letters, 2021, 21, 2898-2904.	9.1	9
16	CO ₂ Hydrogenation to Higher Alcohols over K-Promoted Bimetallic Feâ€"In Catalysts on a Ceâ€"ZrO ₂ Support. ACS Sustainable Chemistry and Engineering, 2021, 9, 6235-6249.	6.7	32
17	Tunable coupling of two mechanical resonators by a graphene membrane. 2D Materials, 2021, 8, 035039.	4.4	8
18	Hot-Carrier Cooling in High-Quality Graphene Is Intrinsically Limited by Optical Phonons. ACS Nano, 2021, 15, 11285-11295.	14.6	43

#	Article	IF	CITATIONS
19	Upstream modes and antidots poison graphene quantum Hall effect. Nature Communications, 2021, 12, 4265.	12.8	15
20	Metavalent Bonding in Crystalline Solids: How Does It Collapse?. Advanced Materials, 2021, 33, e2102356.	21.0	65
21	Spin-valley coupling in single-electron bilayer graphene quantum dots. Nature Communications, 2021, 12, 5250.	12.8	29
22	Tunable s-SNOM for Nanoscale Infrared Optical Measurement of Electronic Properties of Bilayer Graphene. ACS Photonics, 2021, 8, 418-423.	6.6	17
23	Contacts and upstream modes explain the electron-hole asymmetry in the graphene quantum Hall regime. Physical Review B, 2021, 104, .	3.2	2
24	Probing Two-Electron Multiplets in Bilayer Graphene Quantum Dots. Physical Review Letters, 2021, 127, 256802.	7.8	15
25	Electron–Hole Crossover in Gate-Controlled Bilayer Graphene Quantum Dots. Nano Letters, 2020, 20, 7709-7715.	9.1	42
26	Use of the Indirect Photoluminescence Peak as an Optical Probe of Interface Defectivity in MoS 2. Advanced Materials Interfaces, 2020, 7, 2000413.	3.7	10
27	Does carrier velocity saturation help to enhance <i>f</i> _{max} in graphene field-effect transistors?. Nanoscale Advances, 2020, 2, 4179-4186.	4.6	4
28	How Photoinduced Gate Screening and Leakage Currents Dynamically Change the Fermi Level in 2D Materials. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000298.	2.4	3
29	Electrostatic Detection of Shubnikov–de Haas Oscillations in Bilayer Graphene by Coulomb Resonances in Gateâ€Defined Quantum Dots. Physica Status Solidi (B): Basic Research, 2020, 257, 2000333.	1.5	8
30	Observation of the Spin-Orbit Gap in Bilayer Graphene by One-Dimensional Ballistic Transport. Physical Review Letters, 2020, 124, 177701.	7.8	39
31	Unveiling Valley Lifetimes of Free Charge Carriers in Monolayer WSe ₂ . Nano Letters, 2020, 20, 3147-3154.	9.1	27
32	Single-Electron Double Quantum Dots in Bilayer Graphene. Nano Letters, 2020, 20, 2005-2011.	9.1	44
33	A lab in the pocket. Nature Reviews Materials, 2020, 5, 169-170.	48.7	28
34	Optimizing Dirac fermions quasi-confinement by potential smoothness engineering. 2D Materials, 2020, 7, 025037.	4.4	7
35	Effects of Self-Heating on $f_{x}=\frac{T}{s}$ and $f_{x}=\frac{T}{s}$ and $f_{x}=\frac{T}{s}$ Performance of Graphene Field-Effect Transistors. IEEE Transactions on Electron Devices, 2020, 67, 1277-1284.	3.0	7
36	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	4.4	333

3

#	Article	IF	Citations
37	Enhanced C3+ alcohol synthesis from syngas using KCoMoSx catalysts: effect of the Co-Mo ratio on catalyst performance. Applied Catalysis B: Environmental, 2020, 272, 118950.	20.2	26
38	Excellent electronic transport in heterostructures of graphene and monoisotopic boron-nitride grown at atmospheric pressure. 2D Materials, 2020, 7, 031009.	4.4	23
39	The Dependence of the High-Frequency Performance of Graphene Field-Effect Transistors on Channel Transport Properties. IEEE Journal of the Electron Devices Society, 2020, 8, 457-464.	2.1	14
40	Fractional quantum Hall effect in CVD-grown graphene. 2D Materials, 2020, 7, 041007.	4.4	22
41	Radially polarized light beams from spin-forbidden dark excitons and trions in monolayer WSe ₂ . Optical Materials Express, 2020, 10, 1273.	3.0	10
42	A corner reflector of graphene Dirac fermions as a phonon-scattering sensor. Nature Communications, 2019, 10, 2428.	12.8	7
43	Imaging Dirac fermions flow through a circular Veselago lens. Physical Review B, 2019, 100, .	3.2	31
44	Insulating State in Lowâ€Disorder Graphene Nanoribbons. Physica Status Solidi (B): Basic Research, 2019, 256, 1900269.	1.5	4
45	Engineering Tunable Strain Fields in Suspended Graphene by Microelectromechanical Systems. , 2019, , .		0
46	Integrated impedance bridge for absolute capacitance measurements at cryogenic temperatures and finite magnetic fields. Review of Scientific Instruments, 2019, 90, 084706.	1.3	3
47	Simple Time-of-Flight Measurement of the Speed of Sound Using Smartphones. Physics Teacher, 2019, 57, 112-113.	0.3	21
48	Spin States Protected from Intrinsic Electron–Phonon Coupling Reaching 100 ns Lifetime at Room Temperature in MoSe2. Nano Letters, 2019, 19, 4083-4090.	9.1	27
49	Graphene Field-Effect Transistors for Millimeter Wave Amplifiers. , 2019, , .		6
50	Wide bandwidth terahertz mixers based on graphene FETs. , 2019, , .		0
51	Graphene Field-Effect Transistors With High Extrinsic <inline-formula> <tex-math notation="LaTeX">\${f}_{T}\$</tex-math> </inline-formula> and <inline-formula> <tex-math notation="LaTeX">\${f}_{mathrm{max}}\$</tex-math> </inline-formula> . IEEE Electron Device Letters, 2019, 40, 131-134.	3.9	35
52	Mesoporous manganese phthalocyanine-based materials for electrochemical water oxidation <i>via</i> i> tailored templating. Catalysis Science and Technology, 2018, 8, 1517-1521.	4.1	11
53	Characterization of Graphene by Confocal Raman Spectroscopy. Springer Series in Surface Sciences, 2018, , 177-194.	0.3	1
54	Quantum transport through MoS ₂ constrictions defined by photodoping. Journal of Physics Condensed Matter, 2018, 30, 205001.	1.8	17

#	Article	IF	CITATIONS
55	Tailoring Mechanically Tunable Strain Fields in Graphene. Nano Letters, 2018, 18, 1707-1713.	9.1	58
56	Impact of Many-Body Effects on Landau Levels in Graphene. Physical Review Letters, 2018, 120, 187701.	7.8	18
57	Out-of-plane heat transfer in van der Waals stacks through electron–hyperbolic phonon coupling. Nature Nanotechnology, 2018, 13, 41-46.	31.5	128
58	Analysis of a Plasmonic Graphene Antenna for Microelectronic Applications. , 2018, , .		0
59	Low-frequency Noise Characterization of Graphene FET THz Detectors. , 2018, , .		2
60	Proximity-induced spin-orbit coupling in graphene/ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>Bi</mml:mi> <mml:mi .<="" 2018,="" 98,="" b,="" heterostructures.="" physical="" review="" td=""><td>°0842<mm< td=""><td>:mស>1.5</td></mm<></td></mml:mi></mml:msub></mml:mrow></mml:math>	°0842 <mm< td=""><td>:mស>1.5</td></mm<>	:m ស >1.5
61	Ultra-long wavelength Dirac plasmons in graphene capacitors. JPhys Materials, 2018, 1, 01LT02.	4.2	17
62	Advanced tools for smartphone-based experiments: phyphox. Physics Education, 2018, 53, 045009.	0.5	175
63	Fabrication of comb-drive actuators for straining nanostructured suspended graphene. Nanotechnology, 2018, 29, 375301.	2.6	11
64	Gate-Defined Electron–Hole Double Dots in Bilayer Graphene. Nano Letters, 2018, 18, 4785-4790.	9.1	48
65	Detecting Ultrasound Vibrations with Graphene Resonators. Nano Letters, 2018, 18, 5132-5137.	9.1	36
66	Identifying suitable substrates for high-quality graphene-based heterostructures. 2D Materials, 2017, 4, 025030.	4.4	83
67	Dry transfer of CVD graphene using MoS ₂ â€based stamps. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700136.	2.4	6
68	A two-dimensional Dirac fermion microscope. Nature Communications, 2017, 8, 15783.	12.8	72
69	Dry-transferred CVD graphene for inverted spin valve devices. Applied Physics Letters, 2017, 111, .	3.3	17
70	Raman Spectroscopy of Lithographically Defined Graphene Nanoribbons ―Influence of Size and Defects. Annalen Der Physik, 2017, 529, 1700167.	2.4	5
71	High Quality Factor Graphene-Based Two-Dimensional Heterostructure Mechanical Resonator. Nano Letters, 2017, 17, 5950-5955.	9.1	7 5
72	Simulations on the Influence of Spatially Varying Spin Transport Parameters on the Measured Spin Lifetime in Graphene Non-Local Spin Valves. Physica Status Solidi (B): Basic Research, 2017, 254, 1700293.	1.5	6

#	Article	IF	Citations
73	From Diffusive to Ballistic Transport in Etched Graphene Constrictions and Nanoribbons. Annalen Der Physik, 2017, 529, 1700082.	2.4	13
74	Aharonov-Bohm oscillations and magnetic focusing in ballistic graphene rings. Physical Review B, 2017, 96, .	3.2	17
75	Intervalley dark trion states with spin lifetimes of 150 ns in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSe</mml:mi><mml:mn>2<td>:m8.2<td>nl:#®ub></td></td></mml:mn></mml:msub></mml:math>	:m 8.2 <td>nl:#®ub></td>	nl:# ® ub>
76	High mobility dry-transferred CVD bilayer graphene. Applied Physics Letters, 2017, 110, .	3.3	42
77	Large-area MoS 2 deposition via MOVPE. Journal of Crystal Growth, 2017, 464, 100-104.	1.5	30
78	Non-equilibrium optical properties of encapsulated graphene. , 2017, , .		0
79	Encapsulated grapheneâ€based Hall sensors on foil with increased sensitivity. Physica Status Solidi (B): Basic Research, 2016, 253, 2316-2320.	1.5	21
80	Size quantization of Dirac fermions in graphene constrictions. Nature Communications, 2016, 7, 11528.	12.8	69
81	Tunable mechanical coupling between driven microelectromechanical resonators. Applied Physics Letters, 2016, 109, .	3.3	15
82	Correspondence: On the nature of strong piezoelectricity in graphene on SiO2. Nature Communications, 2016, 7, 11570.	12.8	2
83	Spatial Control of Laser-Induced Doping Profiles in Graphene on Hexagonal Boron Nitride. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9377-9383.	8.0	20
84	Graphene Quantum Dots. , 2016, , 29-65.		0
85	Line shape of the Raman 2D peak of graphene in van der Waals heterostructures. Physica Status Solidi (B): Basic Research, 2016, 253, 2326-2330.	1.5	11
86	Interplay between nanometer-scale strain variations and externally applied strain in graphene. Physical Review B, 2016, 93, .	3.2	8
87	Modeling charge relaxation in graphene quantum dots induced by electron-phonon interaction. Physical Review B, 2016, 93, .	3.2	2
88	Growth, characterization, and transport properties of ternary (Bi _{1â^²<i>x</i>} Sb _{<i>x</i>}) ₂ Te ₃ topological insulator layers. Journal of Physics Condensed Matter, 2016, 28, 495501.	1.8	41
89	Spin Lifetimes Exceeding 12 ns in Graphene Nonlocal Spin Valve Devices. Nano Letters, 2016, 16, 3533-3539.	9.1	214
90	Ballistic Transport Exceeding 28 μm in CVD Grown Graphene. Nano Letters, 2016, 16, 1387-1391.	9.1	240

#	Article	IF	Citations
91	Nanosecond spin lifetimes in bottom-up fabricated bilayer graphene spin-valves with atomic layer deposited Al2O3 spin injection and detection barriers. Physica Status Solidi (B): Basic Research, 2015, 252, 2395-2400.	1.5	5
92	Uniformity of the pseudomagnetic field in strained graphene. Physical Review B, 2015, 92, .	3.2	35
93	Phase-coherent transport in catalyst-free vapor phase depositedBi2Se3crystals. Physical Review B, 2015, 92, .	3.2	14
94	Probing electronic lifetimes and phonon anharmonicities in high-quality chemical vapor deposited graphene by magneto-Raman spectroscopy. Applied Physics Letters, 2015, 107, 233105.	3.3	6
95	Back action of graphene charge detectors on graphene and carbon nanotube quantum dots. Physica Status Solidi (B): Basic Research, 2015, 252, 2461-2465.	1.5	8
96	Graphen auf dem Weg zur Anwendung. Physik in Unserer Zeit, 2015, 46, 269-270.	0.0	0
97	Contact-induced charge contributions to non-local spin transport measurements in Co/MgO/graphene devices. 2D Materials, 2015, 2, 024001.	4.4	28
98	Low B Field Magneto-Phonon Resonances in Single-Layer and Bilayer Graphene. Nano Letters, 2015, 15, 1547-1552.	9.1	26
99	Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Science Advances, 2015, 1, e1500222.	10.3	635
100	Spin and charge transport in graphene-based spin transport devices with Co/MgO spin injection and spin detection electrodes. Synthetic Metals, 2015, 210, 42-55.	3.9	10
101	Graphene spintronics: the European Flagship perspective. 2D Materials, 2015, 2, 030202.	4.4	243
102	Switchable Coupling of Vibrations to Two-Electron Carbon-Nanotube Quantum Dot States. Nano Letters, 2015, 15, 4417-4422.	9.1	14
103	Raman spectroscopy as probe of nanometre-scale strain variations in graphene. Nature Communications, 2015, 6, 8429.	12.8	341
104	Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride. Applied Physics Letters, 2015, 106, .	3.3	127
105	Dynamics of ultrashort pulsed laser radiation induced non-thermal ablation of graphite. Applied Physics A: Materials Science and Processing, 2014, 117, 1873-1878.	2.3	2
106	Random Strain Fluctuations as Dominant Disorder Source for High-Quality On-Substrate Graphene Devices. Physical Review X, 2014, 4, .	8.9	102
107	Suppression of contact-induced spin dephasing in graphene/MgO/Co spin-valve devices by successive oxygen treatments. Physical Review B, 2014, 90, .	3.2	35
108	Reducing disorder in graphene nanoribbons by chemical edge modification. Applied Physics Letters, 2014, 104, .	3.3	15

#	Article	IF	CITATIONS
109	Negative quantum capacitance in graphene nanoribbons with lateral gates. Physical Review B, 2014, 89,	3.2	13
110	Low-frequency noise in individual carbon nanotube field-effect transistors with top, side and back gate configurations: effect of gamma irradiation. Nanotechnology, 2014, 25, 035703.	2.6	7
111	Low-temperature compatible electrostatic comb-drive actuators with integrated graphene. , 2014, , .		3
112	Nanosecond Spin Lifetimes in Single- and Few-Layer Graphene–hBN Heterostructures at Room Temperature. Nano Letters, 2014, 14, 6050-6055.	9.1	149
113	Limitations to Carrier Mobility and Phase-Coherent Transport in Bilayer Graphene. Physical Review Letters, 2014, 113, 126801.	7.8	55
114	Buried triple-gate structures for advanced field-effect transistor devices. Microelectronic Engineering, 2014, 119, 95-99.	2.4	11
115	Raman spectroscopy on mechanically exfoliated pristine graphene ribbons. Physica Status Solidi (B): Basic Research, 2014, 251, 2551-2555.	1.5	3
116	Impact of thermal annealing on graphene devices encapsulated in hexagonal boron nitride. Physica Status Solidi (B): Basic Research, 2014, 251, 2545-2550.	1.5	13
117	Dielectric screening of the Kohn anomaly of graphene on hexagonal boron nitride. Physical Review B, 2013, 88, .	3.2	63
118	Etched graphene quantum dots on hexagonal boron nitride. Applied Physics Letters, 2013, 103, .	3.3	40
119	Local transport measurements on epitaxial graphene. Applied Physics Letters, 2013, 103, .	3.3	23
120	Fabrication of coupled graphene–nanotube quantum devices. Nanotechnology, 2013, 24, 035204.	2.6	15
121	Probing relaxation times in graphene quantum dots. Nature Communications, 2013, 4, 1753.	12.8	77
122	Graphene-based charge sensors. Nanotechnology, 2013, 24, 444001.	2.6	23
123	Etched graphene single electron transistors on hexagonal boron nitride in high magnetic fields. Physica Status Solidi (B): Basic Research, 2013, 250, 2692-2696.	1.5	10
124	Readout of carbon nanotube vibrations based on spin-phonon coupling. Applied Physics Letters, 2012, 100, .	3.3	34
125	Encapsulating graphene by ultraâ€ŧhin alumina for reducing process contaminations. Physica Status Solidi (B): Basic Research, 2012, 249, 2526-2529.	1.5	2
126	Electronic transport in graphene nanostructures on SiO2. Solid State Communications, 2012, 152, 1306-1310.	1.9	2

#	Article	lF	Citations
127	Laser induced non-thermal deposition of ultrathin graphite. Applied Physics Letters, 2012, 100, .	3.3	16
128	Transport through graphene quantum dots. Reports on Progress in Physics, 2012, 75, 126502.	20.1	143
129	Tunable capacitive interâ€dot coupling in a bilayer graphene double quantum dot. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 169-174.	0.8	9
130	Quantum capacitance and density of states of graphene. Physica Scripta, 2012, T146, 014009.	2.5	27
131	Time-resolved charge detection in graphene quantum dots. Physical Review B, 2011, 83, .	3.2	49
132	Electronic Excited States in Bilayer Graphene Double Quantum Dots. Nano Letters, 2011, 11, 3581-3586.	9.1	39
133	Variations in the work function of doped single- and few-layer graphene assessed by Kelvin probe force microscopy and density functional theory. Physical Review B, 2011, 83, .	3.2	170
134	Non-thermal ablation of graphite by ultrashort pulsed fs-laser radiation. , 2011, , .		0
135	Gauge Factor Tuning, Long-Term Stability, and Miniaturization of Nanoelectromechanical Carbon-Nanotube Sensors. IEEE Transactions on Electron Devices, 2011, 58, 4053-4060.	3.0	19
136	Raman spectroscopy on etched graphene nanoribbons. Journal of Applied Physics, 2011, 109, .	2.5	60
137	Electronic properties of graphene nanostructures. Journal of Physics Condensed Matter, 2011, 23, 243201.	1.8	88
138	Transport in graphene nanostructures. Frontiers of Physics, 2011, 6, 271-293.	5.0	61
139	Transport through a strongly coupled graphene quantum dot in perpendicular magnetic field. Nanoscale Research Letters, 2011, 6, 253.	5 . 7	16
140	Charge detection in a bilayer graphene quantum dot. Physica Status Solidi (B): Basic Research, 2011, 248, 2684-2687.	1.5	29
141	The relevance of electrostatics for scanning-gate microscopy. New Journal of Physics, 2011, 13, 053013.	2.9	17
142	Disorder induced Coulomb gaps in graphene constrictions with different aspect ratios. Applied Physics Letters, 2011, 98, 032109.	3.3	36
143	Asymmetric Franck-Condon factors in suspended carbon nanotube quantum dots. Physical Review B, 2010, 81, .	3.2	39
144	Graphene single-electron transistors. Materials Today, 2010, 13, 44-50.	14.2	116

#	Article	IF	Citations
145	Selective Chemical Modification of Graphene Surfaces: Distinction Between Single―and Bilayer Graphene. Small, 2010, 6, 1125-1130.	10.0	176
146	The Aharonov–Bohm effect in a side-gated graphene ring. New Journal of Physics, 2010, 12, 043054.	2.9	76
147	Observation of excited states in a graphene double quantum dot. Europhysics Letters, 2010, 89, 67005.	2.0	66
148	Transport through open quantum dots: Making semiclassics quantitative. Physical Review B, 2010, 81, .	3.2	11
149	Transition to Landau levels in graphene quantum dots. Physical Review B, 2010, 81, .	3.2	40
150	Local Franck–Condon factors in suspended carbon nanotube quantum dots. Journal of Physics: Conference Series, 2010, 248, 012019.	0.4	1
151	Energy and transport gaps in etched graphene nanoribbons. Semiconductor Science and Technology, 2010, 25, 034002.	2.0	56
152	Quantum capacitance and density of states of graphene. Applied Physics Letters, 2010, 96, .	3.3	131
153	Spin States in Graphene Quantum Dots. Physical Review Letters, 2010, 105, 116801.	7.8	119
154	Imaging localized states in graphene nanostructures. Physical Review B, 2010, 82, .	3.2	77
155	Carbon Nanomaterials: from Nano Electromechanical Systems to Quantum Dots - Invited. ECS Meeting Abstracts, 2009, , .	0.0	0
156	Electron-Hole Crossover in Graphene Quantum Dots. Physical Review Letters, 2009, 103, 046810.	7.8	125
157	TRANSPARENCY OF NARROW CONSTRICTIONS IN A GRAPHENE SINGLE ELECTRON TRANSISTOR. International Journal of Modern Physics B, 2009, 23, 2647-2654.	2.0	7
158	Investigation of the Aharonov–Bohm effect in a gated graphene ring. Physica Status Solidi (B): Basic Research, 2009, 246, 2756-2759.	1.5	69
159	Graphene quantum dots in perpendicular magnetic fields. Physica Status Solidi (B): Basic Research, 2009, 246, 2553-2557.	1.5	33
160	Inside Back Cover (Phys. Status Solidi B 11â€12/2009). Physica Status Solidi (B): Basic Research, 2009, 246, .	1.5	0
161	Energy Gaps in Etched Graphene Nanoribbons. Physical Review Letters, 2009, 102, 056403.	7.8	383
162	Transport gap in side-gated graphene constrictions. Physical Review B, 2009, 79, .	3.2	139

#	Article	IF	Citations
163	Transport through graphene double dots. Applied Physics Letters, 2009, 94, .	3.3	79
164	Graphene quantum dots: Beyond a Dirac billiard. Physical Review B, 2009, 79, .	3.2	170
165	Observation of excited states in a graphene quantum dot. Applied Physics Letters, 2009, 94, .	3.3	148
166	Franck–Condon blockade in suspended carbon nanotube quantum dots. Nature Physics, 2009, 5, 327-331.	16.7	267
167	Sensing NO2 with individual suspended single-walled carbon nanotubes. Sensors and Actuators B: Chemical, 2008, 132, 491-497.	7.8	67
168	Phase-coherent transport in a mesoscopic few-layer graphite wire. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1851-1854.	2.7	3
169	SWNT growth by CVD on Ferritin-based iron catalyst nanoparticles towards CNT sensors. Sensors and Actuators B: Chemical, 2008, 132, 485-490.	7.8	93
170	Tunable Graphene Single Electron Transistor. Nano Letters, 2008, 8, 2378-2383.	9.1	352
171	Tunable Coulomb blockade in nanostructured graphene. Applied Physics Letters, 2008, 92, .	3.3	248
172	Charge detection in graphene quantum dots. Applied Physics Letters, 2008, 93, 212102.	3.3	111
173	Temperature-dependent properties of an individual memsintegrated single-walled carbon nanotube. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2008, ,.	0.0	1
174	Coulomb oscillations in three-layer graphene nanostructures. New Journal of Physics, 2008, 10, 125029.	2.9	23
175	Piezoresponse force microscopy on doubly clamped KNbO3 nanowires. Applied Physics Letters, 2008, 93, .	3.3	21
176	Diffractive paths for weak localization in quantum billiards. Physical Review B, 2008, 77, .	3.2	13
177	Electromechanical transducers based on single-walled carbon nanotubes. , 2008, , .		0
178	Raman Imaging and Electronic Properties of Graphene. , 2008, , 171-176.		4
179	Amorphous carbon contamination monitoring and process optimization for single-walled carbon nanotube integration. Nanotechnology, 2007, 18, 075603.	2.6	19
180	Nanoscale Straining of Individual Carbon Nanotubes by Micromachined Transducers., 2007,,.		4

#	Article	IF	Citations
181	Raman intensity mapping of single-walled carbon nanotubes. Physical Review B, 2007, 75, .	3.2	23
182	NO2 Gas Sensors Based on Individual Suspended Single-Walled Carbon Nanotubes., 2007,,.		5
183	Local gating of a graphene Hall bar by graphene side gates. Physical Review B, 2007, 76, .	3.2	58
184	SWNT Growth by LPCVD on Ferritin-Based Iron Catalyst Nanoparticles Towards CNT Sensors., 2007,,.		2
185	Synthesis of individual single-walled carbon nanotube bridges controlled by support micromachining. Journal of Micromechanics and Microengineering, 2007, 17, 603-608.	2.6	29
186	Piezoresistance of Single-Walled Carbon Nanotubes., 2007,,.		11
187	Raman imaging of doping domains in graphene on SiO2. Applied Physics Letters, 2007, 91, .	3.3	201
188	Flying and Crawling Modes during Surface-Bound Single Wall Carbon Nanotube Growth. Journal of Physical Chemistry C, 2007, 111, 17249-17253.	3.1	9
189	Electron Shuttle Instability for Nano Electromechanical Mass Sensing. Nano Letters, 2007, 7, 2747-2752.	9.1	5
190	Raman spectroscopy on single- and few-layer graphene. AIP Conference Proceedings, 2007, , .	0.4	1
191	Raman imaging of graphene. Solid State Communications, 2007, 143, 44-46.	1.9	124
192	Raman imaging for processing and process monitoring for nanotube devices. Physica Status Solidi (B): Basic Research, 2007, 244, 4341-4345.	1.5	9
193	Progress in carbon nanotube based nanoelectromechanical systems synthesis. Physica Status Solidi (B): Basic Research, 2007, 244, 4323-4326.	1.5	1
194	Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene. Nano Letters, 2007, 7, 238-242.	9.1	2,363
195	Raman mapping of a single-layer to double-layer graphene transition. European Physical Journal: Special Topics, 2007, 148, 171-176.	2.6	26
196	Nano electromechanical sensors based on carbon nanotubes. Sensors and Actuators A: Physical, 2007, 136, 51-61.	4.1	238
197	Fabrication of discrete nanoscaled force sensors based on single-walled carbon nanotubes. IEEE Sensors Journal, 2006, 6, 613-617.	4.7	51
198	Fabrication of Single-Walled Carbon-Nanotube-Based Pressure Sensors. Nano Letters, 2006, 6, 233-237.	9.1	335

#	Article	IF	Citations
199	Nano-Electromechanical Displacement Sensing Based on Single-Walled Carbon Nanotubes. Nano Letters, 2006, 6, 1449-1453.	9.1	288
200	NANO ELECTRO MECHANICAL SYSTEMS WITH SINGLE WALLED CARBON NANOTUBES AS FUNCTIONAL ELEMENTS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 97-101.	0.4	2
201	Micromachined pressure sensors for electromechanical characterization of carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3537-3541.	1.5	9
202	A method for enhanced analysis of specific as-grown carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3138-3141.	1.5	4
203	Process integration of carbon nanotubes into microelectromechanical systems. Sensors and Actuators A: Physical, 2006, 130-131, 588-594.	4.1	31
204	The mechanical properties of atomic layer deposited alumina for use in micro- and nano-electromechanical systems. Sensors and Actuators A: Physical, 2006, 130-131, 419-429.	4.1	169
205	Electrothermal effects at the microscale and their consequences on system design. Journal of Micromechanics and Microengineering, 2006, 16, 1633-1638.	2.6	35
206	Direct wiring of carbon nanotubes for integration in nanoelectromechanical systems. Journal of Vacuum Science & Technology B, 2006, 24, 3144.	1.3	26
207	Thermography on a suspended microbridge using confocal Raman scattering. Applied Physics Letters, 2006, 88, 191901.	3.3	23
208	Comment on "Dynamic range of nanotube- and nanowire-based electromechanical systems―[Appl. Phys. Lett. 86, 223105 (2005)]. Applied Physics Letters, 2006, 88, 036101.	3.3	4
209	Single Walled Carbon Nanotubes as Active Elements in Nanotransducers. AIP Conference Proceedings, 2005, , .	0.4	1
210	Pseudopath semiclassical approximation to transport through open quantum billiards: Dyson equation for diffractive scattering. Physical Review E, 2005, 72, 036223.	2.1	13
211	CNT based nano electro mechanical systems (NEMS)., 2005, , .		8
212	Semiclassical theory for transmission through open billiards: Convergence towards quantum transport. Physical Review E, 2003, 67, 016206.	2.1	20
213	Fabrication of discrete carbon nanotube based nano-scaled force sensors. , 0, , .		14
214	Low stress atomic layer deposited alumina for nano electro mechanical systems. , 0, , .		2
215	Nano electromechanical transducer based on single walled carbon nanotubes. , 0, , .		3
216	Novel process flow for the integration of carbon nanotubes into mems. , 0, , .		2

CHRISTOPH STAMPFER

#	Article	IF	CITATIONS
217	A MEMS Actuator for Integrated Carbon Nanotube Strain Sensing. , 0, , .		6
218	CNT Based Sensors. Advances in Science and Technology, 0, , .	0.2	9
219	Graphene quantum dots: transport experiments and local imaging. , 0, , 296-316.		O