Sigmund Jarle Andersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4769511/publications.pdf

Version: 2024-02-01

60 papers

4,420 citations

28 h-index 55 g-index

61 all docs

61 does citations

times ranked

61

1538 citing authors

#	Article	IF	CITATIONS
1	The crystal structure of the β″ phase in Al–Mg–Si alloys. Acta Materialia, 1998, 46, 3283-3298.	7.9	558
2	Modelling of the age hardening behaviour of Al–Mg–Si alloys. Acta Materialia, 2001, 49, 65-75.	7.9	455
3	Structure Determination of Mg5Si6 Particles in Al by Dynamic Electron Diffraction Studies. Science, 1997, 277, 1221-1225.	12.6	365
4	The crystal structure of the β′ phase in Al–Mg–Si alloys. Acta Materialia, 2007, 55, 3815-3823.	7.9	364
5	The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al–Mg–Si alloy. Acta Materialia, 2003, 51, 789-796.	7.9	317
6	Atomic model for GP-zones in a 6082 Al–Mg–Si system. Acta Materialia, 2001, 49, 321-328.	7.9	292
7	Composition of β″ precipitates in Al–Mg–Si alloys by atom probe tomography and first principles calculations. Journal of Applied Physics, 2009, 106, .	2.5	185
8	Crystal structure of the orthorhombic U2-Al4Mg4Si4 precipitate in the Alâ \in Mgâ \in Si alloy system and its relation to the $\hat{1}^2\hat{a}\in$ 2 and $\hat{1}^2\hat{a}\in$ 3 phases. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 390, 127-138.	5.6	181
9	Detailed atomistic insight into the β″ phase in Al–Mg–Si alloys. Acta Materialia, 2014, 69, 126-134.	7.9	156
10	The structural relation between precipitates in Al–Mg–Si alloys, the Al-matrix and diamond silicon, with emphasis on the trigonal phase U1-MgAl2Si2. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 444, 157-169.	5.6	151
11	Quantification of the Mg2Si β″ and β′ phases in AlMgSi alloys by transmission electron microscopy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1995, 26, 1931-1937.	2.2	98
12	Atomic structure of hardening precipitates in an Al–Mg–Zn–Cu alloy determined by HAADF-STEM and first-principles calculations: relation to ÎMgZn2. Journal of Materials Science, 2013, 48, 3638-3651.	3.7	85
13	Bonding in MgSi and Al-Mg-Si compounds relevant to Al-Mg-Si alloys. Physical Review B, 2003, 67, .	3.2	80
14	Improving Thermal Stability in Cu-Containing Al-Mg-Si Alloys by Precipitate Optimization. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2938-2949.	2.2	76
15	Aberration-corrected HAADF-STEM investigations of precipitate structures in Al–Mg–Si alloys with low Cu additions. Philosophical Magazine, 2014, 94, 520-531.	1.6	70
16	The Effects of Low Cu Additions and Predeformation on the Precipitation in a 6060 Al-Mg-Si Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4124-4135.	2.2	67
17	Modeling over-ageing in Al-Mg-Si alloys by a multi-phase CALPHAD-coupled Kampmann-Wagner Numerical model. Acta Materialia, 2017, 122, 178-186.	7.9	65
18	The Effect of Preaging Deformation on the Precipitation Behavior of an Al-Mg-Si Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4006-4014.	2.2	60

#	Article	lF	CITATIONS
19	Atomic Structures of Precipitates in Alâ \in Mgâ \in Si Alloys with Small Additions of Other Elements. Advanced Engineering Materials, 2018, 20, 1800125.	3.5	60
20	TEM study of $\hat{l}^2\hat{a} \in \mathbb{Z}^2$ precipitate interaction mechanisms with dislocations and $\hat{l}^2\hat{a} \in \mathbb{Z}^2$ interfaces with the aluminium matrix in Al $\hat{a} \in \mathbb{Z}^2$ interfaces with the aluminium matrix in Al $\hat{a} \in \mathbb{Z}^2$ interfaces with the	4.4	59
21	The effect of Zn on precipitation in Al–Mg–Si alloys. Philosophical Magazine, 2014, 94, 2410-2425.	1.6	54
22	HAADF-STEM and DFT investigations of the Zn-containing β″ phase in Al–Mg–Si alloys. Acta Materialia, 2014, 78, 245-253.	7.9	52
23	A first-principles study of the \hat{I}^2 ''-phase in Al-Mg-Si alloys. Journal of Physics Condensed Matter, 2002, 14, 4011-4024.	1.8	47
24	Effects of Germanium, Copper, and Silver Substitutions on Hardness and Microstructure in Lean Al-Mg-Si Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4369-4379.	2.2	42
25	Precipitation in an Al–Mg–Cu alloy and the effect of a low amount of Ag. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 658, 91-98.	5. 6	36
26	Cu atoms suppress misfit dislocations at the β″/Al interface in Al–Mg–Si alloys. Scripta Materialia, 2016, 110, 6-9.	5. 2	35
27	Effect of room temperature storage time on precipitation in Al–Mg–Si(–Cu) alloys with different Mg/Si ratios. International Journal of Materials Research, 2012, 103, 948-954.	0.3	33
28	Precipitation processes and structural evolutions of various GPB zones and two types of S phases in a cold-rolled Al-Mg-Cu alloy. Materials and Design, 2021, 199, 109425.	7.0	31
29	The effects and behaviour of Li and Cu alloying agents in lean Al-Mg-Si alloys. Journal of Alloys and Compounds, 2017, 699, 235-242.	5 . 5	30
30	Precipitates in aluminium alloys. Advances in Physics: X, 2018, 3, 1479984.	4.1	28
31	Aberration-corrected scanning transmission electron microscopy study of β′-like precipitates in an Al–Mg–Ge alloy. Acta Materialia, 2012, 60, 3239-3246.	7.9	24
32	Atomistic details of precipitates in lean Al–Mg–Si alloys with trace additions of Ag and Ge studied by HAADF-STEM and DFT. Philosophical Magazine, 2017, 97, 851-866.	1.6	23
33	Z-contrast imaging of the arrangement of Cu in precipitates in 6XXX-series aluminium alloys. Philosophical Magazine Letters, 2006, 86, 589-597.	1.2	21
34	Enhanced nucleation and precipitation hardening in Al–Mg–Si(–Cu) alloys with minor Cd additions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 792, 139698.	5.6	18
35	Precipitates in an Al–Mg–Ge alloy studied by aberration-corrected scanning transmission electron microscopy. Acta Materialia, 2011, 59, 6103-6109.	7.9	17
36	Quantification of small, convex particles by TEM. Ultramicroscopy, 2008, 108, 750-762.	1.9	16

#	Article	IF	Citations
37	A hybrid aluminium alloy and its zoo of interacting nano-precipitates. Materials Characterization, 2015, 106, 226-231.	4.4	16
38	The effect of heavy deformation on the precipitation in an Al-1.3Cu-1.0Mg-0.4Si wt.% alloy. Materials and Design, 2020, 186, 108203.	7.0	16
39	The Dual Nature of Precipitates in Al-Mg-Si Alloys. Materials Science Forum, 2010, 638-642, 390-395.	0.3	15
40	Directionality and Column Arrangement Principles of Precipitates in Al-Mg-Si-(Cu) and Al-Mg-Cu Linked to Line Defect in Al. Materials Science Forum, 0, 877, 461-470.	0.3	15
41	Improving ageing kinetics and precipitation hardening in an Al-Mg-Si alloy by minor Cd addition. Materialia, 2018, 4, 33-37.	2.7	15
42	Structural modifications and electron beam damage in aluminium alloy precipitate Î,'–AL ₂ . Philosophical Magazine, 2015, 95, 3524-3534.	1.6	14
43	Effect of pre-deformation on age-hardening behaviors in an Al-Mg-Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 820, 141557.	5.6	12
44	Characterization and structure of precipitates in 6xxx Aluminium Alloys. Journal of Physics: Conference Series, 2012, 371, 012082.	0.4	10
45	How calcium prevents precipitation hardening in Al–Mg–Si alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 575, 241-247.	5.6	9
46	Mackay icosahedron explaining orientation relationship of dispersoids in aluminium alloys. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2014, 70, 888-896.	1.1	7
47	Icosahedral quasicrystals in an AlMnCrSi alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 134, 1215-1219.	5.6	6
48	Coherence between icosahedral quasicrystals and aluminium in an Al—Mn—Cr—Si alloy. Philosophical Magazine Letters, 1991, 63, 179-183.	1.2	5
49	Elemental electron energy loss mapping of a precipitate in a multi-component aluminium alloy. Micron, 2016, 86, 22-29.	2.2	5
50	Germanium network connecting precipitates in an Mg-rich Al-Mg-Ge alloy. Journal of Electron Microscopy, 2010, 59, S129-S133.	0.9	4
51	The Crystal Structure of the β'-Phase Including Ag in Al-Mg-Si-Ag Alloy. Advanced Materials Research, 0, 409, 67-70.	0.3	4
52	A TEM study of a newly discovered metastable phase in an AlMnCrSi alloy. Micron and Microscopica Acta, 1992, 23, 165-166.	0.2	3
53	Effect of Additional Elements (Cu, Ag) on Precipitation in 6xxx (Al-Mg-Si) Alloys. Materials Science Forum, 0, 706-709, 357-360.	0.3	3
54	Data on atomic structures of precipitates in an Al-Mg-Cu alloy studied by high resolution transmission electron microscopy and first-principles calculations. Data in Brief, 2021, 34, 106748.	1.0	3

#	Article	lF	CITATIONS
55	AutomAl 6000: Semi-automatic structural labelling of HAADF-STEM images of precipitates in Al–Mg–Si(–Cu) alloys. Ultramicroscopy, 2022, 236, 113493.	1.9	3
56	The Effect of Elastic Strain and Small Plastic Deformation on Tensile Strength of a Lean Al–Mg–Si Alloy. Metals, 2019, 9, 1276.	2.3	2
57	Si-particles in an AlNiSiMn alloy. Micron and Microscopica Acta, 1992, 23, 135-136.	0.2	1
58	Structural investigation of precipitates with Cu and Zn atomic columns in Al-Mg-Si alloys by aberration-corrected HAADF-STEM. Journal of Physics: Conference Series, 2014, 522, 012030.	0.4	1
59	The Effect of Elastic Straining on a 6060 Aluminium Alloy during Natural or Artificial Ageing. Materials Science Forum, 0, 794-796, 1205-1210.	0.3	O
60	Studying clusters and nano-precipitates in Aluminium alloys using SPED and ADF-STEM. Microscopy and Microanalysis, 2021, 27, 3090-3094.	0.4	0