
Hans Pretzsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4769256/publications.pdf Version: 2024-02-01

HANS DEFTOCH

#	Article	IF	CITATIONS
1	Towards sustainable management of the stock and ecosystem services of urban trees. From theory to model and application. Trees - Structure and Function, 2023, 37, 177-196.	1.9	14
2	Fertilization modifies forest stand growth but not stand density: consequences for modelling stand dynamics in a changing climate. Forestry, 2022, 95, 187-200.	2.3	2
3	Tracking the temporal dynamics of insect defoliation by highâ€resolution radar satellite data. Methods in Ecology and Evolution, 2022, 13, 121-132.	5.2	15
4	Mixing degree, stand density, and water supply can increase the overyielding of mixed versus monospecific stands in Central Europe. Forest Ecology and Management, 2022, 503, 119741.	3.2	13
5	Temperature effect on size distributions in spruce-fir-beech mixed stands across Europe. Forest Ecology and Management, 2022, 504, 119819.	3.2	6
6	Facilitation and competition reduction in tree species mixtures in Central Europe: Consequences for growth modeling and forest management. Ecological Modelling, 2022, 464, 109812.	2.5	24
7	Assessment of Indicators for Climate Smart Management in Mountain Forests. Managing Forest Ecosystems, 2022, , 59-105.	0.9	2
8	Changes of Tree and Stand Growth: Review and Implications. Managing Forest Ecosystems, 2022, , 189-222.	0.9	6
9	Climate-Smart Silviculture in Mountain Regions. Managing Forest Ecosystems, 2022, , 263-315.	0.9	3
10	Efficacy of Trans-geographic Observational Network Design for Revelation of Growth Pattern in Mountain Forests Across Europe. Managing Forest Ecosystems, 2022, , 141-187.	0.9	4
11	Modelling Future Growth of Mountain Forests Under Changing Environments. Managing Forest Ecosystems, 2022, , 223-262.	0.9	8
12	The emergent past: past natural and human disturbances of trees can reduce their present resistance to drought stress. European Journal of Forest Research, 2022, 141, 87-104.	2.5	9
13	Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Scientific Reports, 2022, 12, 671.	3.3	36
14	The number of tree species on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	86
15	Assessment of defoliation and subsequent growth losses caused by Lymantria dispar using terrestrial laser scanning (TLS). Trees - Structure and Function, 2022, 36, 819-834.	1.9	6
16	The Past Matters: Previous Management Strategies Modulate Current Growth and Drought Responses of Norway Spruce (Picea abies H. Karst.). Forests, 2022, 13, 243.	2.1	12
17	Linking crown structure with tree ring pattern: methodological considerations and proof of concept. Trees - Structure and Function, 2022, 36, 1349-1367.	1.9	6
18	The distribution of carbon stocks between tree woody biomass and soil differs between Scots pine and broadleaved species (beech, oak) in European forests. European Journal of Forest Research, 2022, 141, 467-480.	2.5	5

#	Article	IF	CITATIONS
19	Effects of Climate and Drought on Stem Diameter Growth of Urban Tree Species. Forests, 2022, 13, 641.	2.1	8
20	Crown Shapes of Urban Trees-Their Dependences on Tree Species, Tree Age and Local Environment, and Effects on Ecosystem Services. Forests, 2022, 13, 748.	2.1	12
21	Long-Term Productivity of Monospecific and Mixed Oak (Quercus petraea [Matt.] Liebl. and Quercus) Tj ETQq1 1 724.	0.784314 2.1	rgBT /Overl 3
22	Tracing drought effects from the tree to the stand growth in temperate and Mediterranean forests: insights and consequences for forest ecology and management. European Journal of Forest Research, 2022, 141, 727-751.	2.5	15
23	Crown allometry and growing space requirements of four rare domestic tree species compared to oak and beech: implications for adaptive forest management. European Journal of Forest Research, 2022, 141, 587-604.	2.5	4
24	The Impact of Climate and Adaptative Forest Management on the Intra-Annual Growth of Pinus halepensis Based on Long-Term Dendrometer Recordings. Forests, 2022, 13, 935.	2.1	5
25	Regional climate moderately influences species-mixing effect on tree growth-climate relationships and drought resistance for beech and pine across Europe. Forest Ecology and Management, 2022, 520, 120317.	3.2	4
26	With increasing site quality asymmetric competition and mortality reduces Scots pine (Pinus) Tj ETQq0 0 0 rgBT /	Oyerlock 1	0 Tf 50 462
27	Legacy effects of past thinnings modulate drought stress reactions at present. Scandinavian Journal of Forest Research, 2022, 37, 182-199.	1.4	4
28	Timber tensile strength in mixed stands of European beech (Fagus sylvaticaÂL.). Wood Science and Technology, 2022, 56, 1239-1259.	3.2	3
29	Sustainable management of urban tree stocks based on multi-criteria scenario modelling. Urban Forestry and Urban Greening, 2022, 74, 127666.	5.3	3
30	Tree growth at gap edges. Insights from long term research plots in mixed mountain forests. Forest Ecology and Management, 2022, 520, 120383.	3.2	1
31	Species stratification and weather conditions drive tree growth in Scots pine and Norway spruce mixed stands along Europe. Forest Ecology and Management, 2021, 481, 118697.	3.2	15
32	Short-term reaction of European beech stem taper due to weather extremes. Forest Ecology and Management, 2021, 480, 118653.	3.2	6
33	European beech stem diameter grows better in mixed than in mono-specific stands at the edge of its distribution in mountain forests. European Journal of Forest Research, 2021, 140, 127-145.	2.5	23
34	Effects of elevation-dependent climate warming on intra- and inter-specific growth synchrony in mixed mountain forests. Forest Ecology and Management, 2021, 479, 118587.	3.2	15
35	Height growth-related competitiveness of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) under climate change in Central Europe. Is silvicultural assistance still required in mixed-species stands?. Forest Ecology and Management, 2021, 482, 118780.	3.2	14
36	Mixing has limited impacts on the foliar nutrition of European beech and Scots pine trees across Europe. Forest Ecology and Management, 2021, 479, 118551.	3.2	4

#	Article	IF	CITATIONS
37	Tree species identity drives soil organic carbon storage more than species mixing in major two-species mixtures (pine, oak, beech) in Europe. Forest Ecology and Management, 2021, 481, 118752.	3.2	20
38	Mixing effects on Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) productivity along a climatic gradient across Europe. Forest Ecology and Management, 2021, 482, 118834.	3.2	23
39	Utilising forest inventory data for biodiversity assessment. Ecological Indicators, 2021, 121, 107196.	6.3	18
40	The greater resilience of mixed forests to drought mainly depends on their composition: Analysis along a climate gradient across Europe. Forest Ecology and Management, 2021, 481, 118687.	3.2	104
41	Analyzing the effect of silvicultural management on the trade-off between stand structural heterogeneity and productivity over time. European Journal of Forest Research, 2021, 140, 615-634.	2.5	5
42	The social drift of trees. Consequence for growth trend detection, stand dynamics, and silviculture. European Journal of Forest Research, 2021, 140, 703-719.	2.5	14
43	Simulating the effects of thinning and species mixing on stands of oak (Quercus petraea (Matt.)) Tj ETQq1 1 0.7 109406.	84314 rgB 2.5	T /Overlock
44	Tree growth as affected by stem and crown structure. Trees - Structure and Function, 2021, 35, 947-960.	1.9	22
45	Do trees have constant branch divergence angles?. Journal of Theoretical Biology, 2021, 512, 110567.	1.7	1
46	The Kroof experiment: realization and efficacy of a recurrent drought experiment plus recovery in a beech/spruce forest. Ecosphere, 2021, 12, e03399.	2.2	39
47	Growth–density relationship in mixed stands – Results from long-term experimental plots. Forest Ecology and Management, 2021, 483, 118909.	3.2	15
48	Local 3D fibre orientation for tensile strength prediction of European beech timber. Construction and Building Materials, 2021, 279, 122527.	7.2	13
49	Simulating conversion of even-aged Norway spruce into uneven-aged mixed forest: effects of different scenarios on production, economy and heterogeneity. European Journal of Forest Research, 2021, 140, 1005-1027.	2.5	13
50	Trees grow modulated by the ecological memory of their past growth. Consequences for monitoring, modelling, and silvicultural treatment. Forest Ecology and Management, 2021, 487, 118982.	3.2	21
51	Silvicultural prescriptions for mixed-species forest stands. A European review and perspective. European Journal of Forest Research, 2021, 140, 1267-1294.	2.5	16
52	Modelling the Spatial Structure of White Spruce Plantations and Their Changes after Various Thinning Treatments. Forests, 2021, 12, 740.	2.1	4
53	The cost of risk management and multifunctionality in forestry: a simulation approach for a case study area in Southeast Germany. European Journal of Forest Research, 2021, 140, 1127-1146.	2.5	9
54	Crown structure of European beech (<i>Fagus sylvatica</i>): a noncausal proxy for mechanical–physical wood properties. Canadian Journal of Forest Research, 2021, 51, 834-841.	1.7	6

#	Article	IF	CITATIONS
55	Tree species mixing can increase stand productivity, density and growth efficiency and attenuate the trade-off between density and growth throughout the whole rotation. Annals of Botany, 2021, 128, 767-786.	2.9	22
56	How drought stress becomes visible upon detecting tree shape using terrestrial laser scanning (TLS). Forest Ecology and Management, 2021, 489, 118975.	3.2	30
57	Stand density biases the estimation of the site index especially on dry sites. Canadian Journal of Forest Research, 2021, 51, 1050-1064.	1.7	9
58	From Acid Rain to Low Precipitation: The Role Reversal of Norway Spruce, Silver Fir, and European Beech in a Selection Mountain Forest and Its Implications for Forest Management. Forests, 2021, 12, 894.	2.1	5
59	Urban Tree Growth Characteristics of Four Common Species in South Germany. Arboriculture and Urban Forestry, 2021, 47, 150-169.	0.6	6
60	Comparative analysis of shade and underlying surfaces on cooling effect. Urban Forestry and Urban Greening, 2021, 63, 127223.	5.3	23
61	Genetic diversity reduces competition and increases tree growth on a Norway spruce (Picea abies [L.]) Tj ETQq1 1	0.78431 3.2	4 rgBT /Over
62	Urban tree growth and ecosystem services under extreme drought. Agricultural and Forest Meteorology, 2021, 308-309, 108532.	4.8	18
63	Short- and long-term growth response to climate in mixed and monospecific forests of Pinus pinea and Pinus pinaster. European Journal of Forest Research, 2021, 140, 387-402.	2.5	9
64	Relative impacts of gypsy moth outbreaks and insecticide treatments on forest resources and ecosystems: An experimental approach. Ecological Solutions and Evidence, 2021, 2, e12045.	2.0	13
65	Scots pine's capacity to adapt to climate change in hemi-boreal forests in relation to dominating tree increment and site condition. IForest, 2021, 14, 473-482.	1.4	4
66	A fuzzy logic-based approach for evaluating forest ecosystem service provision and biodiversity applied to a case study landscape in Southern Germany. European Journal of Forest Research, 2021, 140, 1559-1586.	2.5	6
67	Accounting for forest management in the estimation of forest carbon balance using the dynamic vegetation model LPJ-GUESS (v4.0, r9710): implementation and evaluation of simulations for Europe. Geoscientific Model Development, 2021, 14, 6071-6112.	3.6	17
68	Stand growth and structure of mixed-species and monospecific stands of Scots pine (Pinus sylvestris) Tj ETQq0 0 Europe. European Journal of Forest Research, 2020, 139, 349-367.	0 rgBT /0 2.5	verlock 10 T 59
69	Contrasting patterns of tree species mixture effects on wood δ13C along an environmental gradient. European Journal of Forest Research, 2020, 139, 229-245.	2.5	7
70	Analysis of stand density effects on the stem form of Norway spruce trees and volume miscalculation by traditional form factor equations using terrestrial laser scanning (TLS). Canadian Journal of Forest Research, 2020, 50, 51-64.	1.7	24
71	Traits of trees for cooling urban heat islands: A meta-analysis. Building and Environment, 2020, 170, 106606.	6.9	165
72	Density regulation of mixed and mono-specific forest stands as a continuum: a new concept based on species-specific coefficients for density equivalence and density modification. Forestry, 2020, 93, 1-15.	2.3	19

#	Article	IF	CITATIONS
73	Importance of tree species size dominance and heterogeneity on the productivity of spruce-fir-beech mountain forest stands in Europe. Forest Ecology and Management, 2020, 457, 117716.	3.2	31
74	The course of tree growth. Theory and reality. Forest Ecology and Management, 2020, 478, 118508.	3.2	38
75	Modelling Urban Tree Growth and Ecosystem Services: Review and Perspectives. Progress in Botany Fortschritte Der Botanik, 2020, , 405-464.	0.3	11
76	Forest Biodiversity, Carbon Sequestration, and Wood Production: Modeling Synergies and Trade-Offs for Ten Forest Landscapes Across Europe. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	36
77	Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12192-12200.	7.1	140
78	What is Climate-Smart Forestry? A definition from a multinational collaborative process focused on mountain regions of Europe. Ecosystem Services, 2020, 43, 101113.	5.4	100
79	Implications of Reduced Stand Density on Tree Growth and Drought Susceptibility: A Study of Three Species under Varying Climate. Forests, 2020, 11, 627.	2.1	27
80	Drought Resistance of Norway Spruce (Picea abies [L.] Karst) and European Beech (Fagus sylvatica [L.]) in Mixed vs. Monospecific Stands and on Dry vs. Wet Sites. From Evidence at the Tree Level to Relevance at the Stand Level. Forests, 2020, 11, 639.	2.1	12
81	Evidence of elevation-specific growth changes of spruce, fir, and beech in European mixed mountain forests during the last three centuries. Canadian Journal of Forest Research, 2020, 50, 689-703.	1.7	35
82	Development of Fine Root Biomass of Two Contrasting Urban Tree Cultivars in Response to Drought Stress. Forests, 2020, 11, 108.	2.1	11
83	Multifunctionality of Forests: A White Paper on Challenges and Opportunities in China and Germany. Forests, 2020, 11, 266.	2.1	28
84	Impact of spacing and pruning on quantity, quality and economics of Douglas-fir sawn timber: scenario and sensitivity analysis. European Journal of Forest Research, 2020, 139, 747-758.	2.5	9
85	Half a century of Scots pine forest ecosystem monitoring reveals longâ€ŧerm effects of atmospheric deposition and climate change. Global Change Biology, 2020, 26, 5796-5815.	9.5	30
86	Species mixing reduces drought susceptibility of Scots pine (Pinus sylvestris L.) and oak (Quercus) Tj ETQq0 0 0 Forest Ecology and Management, 2020, 461, 117908.	rgBT /Over 3.2	lock 10 Tf 50 65
87	Density and growth of forest stands revisited. Effect of the temporal scale of observation, site quality, and thinning. Forest Ecology and Management, 2020, 460, 117879.	3.2	42
88	Impact of species mixture on the stiffness of European beech (Fagus sylvatica L.) sawn timber. Forest Ecology and Management, 2020, 461, 117935.	3.2	13
89	Assessing transformation scenarios from pure Norway spruce to mixed uneven-aged forests in mountain areas. European Journal of Forest Research, 2020, 139, 567-584.	2.5	34
90	European beech log and lumber grading in wet and dry conditions using longitudinal vibration. Holzforschung, 2020, 74, 939-947.	1.9	15

#	Article	IF	CITATIONS
91	Tree cooling effects and human thermal comfort under contrasting species and sites. Agricultural and Forest Meteorology, 2020, 287, 107947.	4.8	83
92	Growth and mortality of Norway spruce and European beech in monospecific and mixed-species stands under natural episodic and experimentally extended drought. Results of the KROOF throughfall exclusion experiment. Trees - Structure and Function, 2020, 34, 957-970.	1.9	80
93	Oak often needs to be promoted in mixed beech-oak stands - the structural processes behind competition and silvicultural management in mixed stands of European beech and sessile oak. IForest, 2020, 13, 80-88.	1.4	15
94	The PROFOUND Database for evaluating vegetation models and simulating climate impacts on European forests. Earth System Science Data, 2020, 12, 1295-1320.	9.9	33
95	Growth and Tree Water Deficit of Mixed Norway Spruce and European Beech at Different Heights in a Tree and under Heavy Drought. Forests, 2019, 10, 577.	2.1	25
96	Growth of Abies sachalinensis Along an Urban Gradient Affected by Environmental Pollution in Sapporo, Japan. Forests, 2019, 10, 707.	2.1	7
97	The productivity of mixed mountain forests comprised of Fagus sylvatica, Picea abies, and Abies alba across Europe. Forestry, 2019, 92, 512-522.	2.3	46
98	How Do Tilia Cordata Greenspire Trees Cope with Drought Stress Regarding Their Biomass Allocation and Ecosystem Services?. Forests, 2019, 10, 676.	2.1	20
99	The Effect of Tree Crown Allometry on Community Dynamics in Mixed-Species Stands versus Monocultures. A Review and Perspectives for Modeling and Silvicultural Regulation. Forests, 2019, 10, 810.	2.1	50
100	Ecosystem service trade-offs for adaptive forest management. Ecosystem Services, 2019, 39, 100993.	5.4	61
101	Process based simulation of tree growth and ecosystem services of urban trees under present and future climate conditions. Science of the Total Environment, 2019, 676, 651-664.	8.0	65
102	Robinia pseudoacacia L. in Short Rotation Coppice: Seed and Stump Shoot Reproduction as well as UAS-based Spreading Analysis. Forests, 2019, 10, 235.	2.1	14
103	Transgressive overyielding in mixed compared with monospecific Scots pine (Pinus sylvestris L.) and oak (Quercus robur L., Quercus petraea (Matt.) Liebl.) stands – Productivity gains increase with annual water supply. Forest Ecology and Management, 2019, 439, 81-96.	3.2	33
104	Maintenance of long-term experiments for unique insights into forest growth dynamics and trends: review and perspectives. European Journal of Forest Research, 2019, 138, 165-185.	2.5	68
105	Effects of Drought on the Phenology, Growth, and Morphological Development of Three Urban Tree Species and Cultivars. Sustainability, 2019, 11, 5117.	3.2	19
106	Effect of forest structure on stand productivity in Central European forests depends on developmental stage and tree species diversity. Forest Ecology and Management, 2019, 434, 193-204.	3.2	53
107	Growth patterns and effects of urban micro-climate on two physiologically contrasting urban tree species. Landscape and Urban Planning, 2019, 183, 88-99.	7.5	43
108	Modelling approaches for mixed forests dynamics prognosis. Research gaps and opportunities. Forest Systems, 2019, 28, eR002.	0.3	29

#	Article	IF	CITATIONS
109	Assessing site productivity based on national forest inventory data and its dependence on site conditions for spruce dominated forests in Germany. Forest Systems, 2019, 28, e007.	0.3	3
110	Bestandsstruktur. Quantifizierung und Analyse. , 2019, , 199-252.		0
111	Bestandsentwicklung. Abstrahiert $ ilde{A}^{1\!\!/}_{4}$ ber Bestandessummen- und Mittelwerte. , 2019, , 291-371.		0
112	Evaluierung und Anwendung von Bestandsmodellen. , 2019, , 525-569.		0
113	SchÃæung der ProduktivitÃævon Waldbestäden. , 2019, , 431-464.		0
114	Diagnose von Wachstumsstörungen. , 2019, , 571-627.		0
115	Baumwachstum, Umweltbedingungen und Nachbarschaft. , 2019, , 121-197.		0
116	Wissen schaffen und in die Praxis transferieren. , 2019, , 629-651.		0
117	Der Wald und sein Wachstum. Einführung. , 2019, , 1-36.		1
118	Waldbauliche Regelung der Bestandsentwicklung. Konzepte, Maßnahmen und ihre quantitative Formulierung. , 2019, , 373-429.		0
119	Gestalt von Bämen. , 2019, , 37-119.		0
120	Evolution der Größenverteilung der Bäme in Waldbestäden. , 2019, , 253-290.		0
121	Modelle für die Baum- und Bestandsentwicklung. , 2019, , 465-524.		0
122	Daily stem water deficit of Norway spruce and European beech in intra- and interspecific neighborhood under heavy drought. Scandinavian Journal of Forest Research, 2018, 33, 568-582.	1.4	8
123	Positive biodiversity–productivity relationships in forests: climate matters. Biology Letters, 2018, 14, 20170747.	2.3	133
124	What Characteristics of Soil Fertility Can Improve in Mixed Stands of Scots Pine and European Beech Compared with Monospecific Stands?. Communications in Soil Science and Plant Analysis, 2018, 49, 237-247.	1.4	22
125	Height – Diameter allometry in South Africa's indigenous high forests: Assessing generic models performance and function forms. Forest Ecology and Management, 2018, 410, 1-11.	3.2	55
126	Drought can favour the growth of small in relation to tall trees in mature stands of Norway spruce and European beech. Forest Ecosystems, 2018, 5, .	3.1	63

#	Article	IF	CITATIONS
127	Maximum stand density strongly depends on species-specific wood stability, shade and drought tolerance. Forestry, 2018, 91, 459-469.	2.3	24
128	Effects of crown architecture and stand structure on light absorption in mixed and monospecific <i>Fagus sylvatica</i> and <i>Pinus sylvestris</i> forests along a productivity and climate gradient through Europe. Journal of Ecology, 2018, 106, 746-760.	4.0	125
129	Urban climate modifies tree growth in Berlin. International Journal of Biometeorology, 2018, 62, 795-808.	3.0	23
130	Species Mixing Regulation with Respect to Forest Ecosystem Service Provision. Forests, 2018, 9, 632.	2.1	18
131	Effects of the urban heat island and climate change on the growth of Khaya senegalensis in Hanoi, Vietnam. Forest Ecosystems, 2018, 5, .	3.1	16
132	Forestry projections for species diversity-oriented management: an example from Central Europe. Ecological Processes, 2018, 7, .	3.9	5
133	Models for Mixed Forests. Managing Forest Ecosystems, 2018, , 343-380.	0.9	5
134	Modeling Ecosystem Services for Park Trees: Sensitivity of i-Tree Eco Simulations to Light Exposure and Tree Species Classification. Forests, 2018, 9, 89.	2.1	36
135	Growth and Structure in Mixed-Species Stands Compared with Monocultures: Review and Perspectives. Managing Forest Ecosystems, 2018, , 131-183.	0.9	7
136	Characterization of Mixed Forests. Managing Forest Ecosystems, 2018, , 27-71.	0.9	12
137	Structural response of black locust (Robinia pseudoacacia L.) and small-leaved lime (Tilia cordata) Tj ETQq1 1 0.78 ecological functions and services. Urban Forestry and Urban Greening, 2018, 35, 129-138.	34314 rgB 5.3	T /Overlock 16
138	Estimation and Uncertainty of the Mixing Effects on Scots Pine—European Beech Productivity from National Forest Inventories Data. Forests, 2018, 9, 518.	2.1	15
139	Groundwater recharge algorithm for forest management models. Ecological Modelling, 2018, 385, 154-164.	2.5	8
140	Impact of Climate Trends and Drought Events on the Growth of Oaks (Quercus robur L. and Quercus) Tj ETQq0 0	0.rgBT /O\ 2.9	verlock 10 Ti
141	An Inventory-Based Regeneration Biomass Model to Initialize Landscape Scale Simulation Scenarios. Forests, 2018, 9, 212.	2.1	6
142	Biodiversity along temperate forest succession. Journal of Applied Ecology, 2018, 55, 2756-2766.	4.0	175
143	Growth recovery of mature Norway spruce and European beech from chronic O3 stress. European Journal of Forest Research, 2018, 137, 251-263.	2.5	9
144	Static site indices from different national forest inventories: harmonization and prediction from site conditions. Annals of Forest Science, 2018, 75, 1.	2.0	29

#	Article	IF	CITATIONS
145	Tree species richness enhances stand productivity while stand structure can have opposite effects, based on forest inventory data from Germany and the United States of America. Forest Ecosystems, 2018, 5, .	3.1	36
146	Over- and Underyielding in Time and Space in Experiments with Mixed Stands of Scots Pine and Norway Spruce. Forests, 2018, 9, 495.	2.1	23
147	Wood density reduced while wood volume growth accelerated in Central European forests since 1870. Forest Ecology and Management, 2018, 429, 589-616.	3.2	89
148	Key drivers of competition and growth partitioning among Robinia pseudoacacia L. trees. Forest Ecology and Management, 2018, 430, 86-93.	3.2	28
149	Mixed Forests' Future. Managing Forest Ecosystems, 2018, , 397-412.	0.9	2
150	Data Platforms for Mixed Forest Research: Contributions from the EuMIXFOR Network. Managing Forest Ecosystems, 2018, , 73-101.	0.9	6
151	Silviculture of Mixed Forests: A European Overview of Current Practices and Challenges. Managing Forest Ecosystems, 2018, , 185-253.	0.9	11
152	Effects of climate trends and drought events on urban tree growth in Santiago de Chile. , 2018, 45, 35-50.		12
153	Species proportions by area in mixtures of Scots pine (Pinus sylvestris L.) and European beech (Fagus) Tj ETQq1	1 0,78431 2.5	4 rgBT /Ove
154	An unsupervised two-stage clustering approach for forest structure classification based on X-band InSAR data — A case study in complex temperate forest stands. International Journal of Applied Earth Observation and Geoinformation, 2017, 57, 36-48.	2.8	12
155	Climate influences on the maximum size-density relationship in Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands. Forest Ecology and Management, 2017, 385, 295-307.	3.2	59
156	Leaf density-based modelling of phototropic crown dynamics and long-term predictive application to European beech. Ecological Modelling, 2017, 347, 63-71.	2.5	5
157	Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. Forest Ecology and Management, 2017, 396, 160-175.	3.2	219
158	Tree species and size drive water consumption of beech/spruce forests - a simulation study highlighting growth under water limitation. Plant and Soil, 2017, 418, 337-356.	3.7	32
159	A non-stochastic portfolio model for optimizing the transformation of an even-aged forest stand to continuous cover forestry when information about return fluctuation is incomplete. Annals of Forest Science, 2017, 74, 1.	2.0	26
160	Validation of a functional-structural tree model using terrestrial Lidar data. Ecological Modelling, 2017, 357, 55-57.	2.5	9
161	Modelling Mixed-Species Forest Stands. , 2017, , 383-431.		4

Mixed-Species Forests: The Development of a Forest Management Paradigm. , 2017, , 1-25.

18

#	Article	IF	CITATIONS
163	Forest Management Planning in Mixed-Species Forests. , 2017, , 503-543.		Ο
164	Perspectives for Future Research on Mixed-Species Systems. , 2017, , 579-606.		3
165	From Observations to Evidence About Effects of Mixed-Species Stands. , 2017, , 27-71.		17
166	Stand Dynamics of Mixed-Species Stands Compared with Monocultures. , 2017, , 117-209.		22
167	Size-Structure Dynamics in Mixed Versus Monospecific Stands. , 2017, , 211-269.		6
168	Individual Tree Structure and Growth in Mixed Compared with Monospecific Stands. , 2017, , 271-336.		7
169	Ecological Stability of Mixed-Species Forests. , 2017, , 337-382.		78
170	Silvicultural Options for Mixed-Species Stands. , 2017, , 433-501.		25
171	Species interactions increase the temporal stability of community productivity in <i>Pinus sylvestris–Fagus sylvatica</i> mixtures across Europe. Journal of Ecology, 2017, 105, 1032-1043.	4.0	140
172	Stem growth is favored at expenses of root growth in mixed stands and humid conditions for Douglas-fir (Pseudotsuga menziesii) and European beech (Fagus sylvatica). Trees - Structure and Function, 2017, 31, 349-365.	1.9	19
173	Using canopy heights from digital aerial photogrammetry to enable spatial transfer of forest attribute models: a case study in central Europe. Scandinavian Journal of Forest Research, 2017, 32, 748-761.	1.4	12
174	Changes in structural heterogeneity and stand productivity by mixing Scots pine and Maritime pine. Forest Ecology and Management, 2017, 405, 219-228.	3.2	41
175	Predicting the spatial and temporal dynamics of species interactions in Fagus sylvatica and Pinus sylvestris forests across Europe. Forest Ecology and Management, 2017, 405, 112-133.	3.2	40
176	Terrestrial laser scanning reveals differences in crown structure of Fagus sylvatica in mixed vs. pure European forests. Forest Ecology and Management, 2017, 405, 381-390.	3.2	80
177	Reconstructing minimal length tree branch systems from leaf positions. Ecological Informatics, 2017, 42, 61-66.	5.2	2
178	Stem and root diameter growth of European beech and Norway spruce under extreme drought. Forest Ecology and Management, 2017, 406, 184-195.	3.2	50
179	EuMIXFOR empirical forest mensuration and ring width data from pure and mixed stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) through Europe. Annals of Forest Science, 2017, 74, 1.	2.0	27
180	Biomass production dynamics for common forest tree species in Denmark – Evaluation of a common garden experiment after 50 yrs of measurements. Forest Ecology and Management, 2017, 400, 645-654.	3.2	14

#	Article	IF	CITATIONS
181	Stand density sensitive biomass functions for young oak trees at four different European sites. Trees - Structure and Function, 2017, 31, 1811-1826.	1.9	18
182	Effect of forest stand management on species composition, structural diversity, and productivity in the temperate zone of Europe. European Journal of Forest Research, 2017, 136, 739-766.	2.5	114
183	Climate change accelerates growth of urban trees in metropolises worldwide. Scientific Reports, 2017, 7, 15403.	3.3	126
184	Tree ring wood density of Scots pine and European beech lower in mixed-species stands compared with monocultures. Forest Ecology and Management, 2017, 400, 363-374.	3.2	51
185	Sizeâ€dependence of tree growth response to drought for Norway spruce and European beech individuals in monospecific and mixedâ€species stands. Plant Biology, 2017, 19, 709-719.	3.8	37
186	Inter- and intraannual growth patterns of urban small-leaved lime (Tilia cordata mill.) at two public squares with contrasting microclimatic conditions. International Journal of Biometeorology, 2017, 61, 1095-1107.	3.0	42
187	The increase of atmospheric CO2 affects growth potential and intrinsic water-use efficiency of Norway spruce forests: insights from a multi-stable isotope analysis in tree rings of two Alpine chronosequences. Trees - Structure and Function, 2017, 31, 503-515.	1.9	25
188	Modeling Tree Growth Taking into Account Carbon Source and Sink Limitations. Frontiers in Plant Science, 2017, 8, 182.	3.6	32
189	Robinia pseudoacacia L. Flower Analyzed by Using An Unmanned Aerial Vehicle (UAV). Remote Sensing, 2017, 9, 1091.	4.0	27
190	Decision Support Tools and Strategies to Simulate Forest Landscape Evolutions Integrating Forest Owner Behaviour: A Review from the Case Studies of the European Project, INTEGRAL. Sustainability, 2017, 9, 599.	3.2	23
191	Drought Stress Reaction of Growth and Δ13C in Tree Rings of European Beech and Norway Spruce in Monospecific Versus Mixed Stands Along a Precipitation Gradient. Forests, 2017, 8, 177.	2.1	30
192	Allometric Models to Predict Aboveground Woody Biomass of Black Locust (Robinia pseudoacacia L.) in Short Rotation Coppice in Previous Mining and Agricultural Areas in Germany. Forests, 2017, 8, 328.	2.1	13
193	Toward managing mixed-species stands: from parametrization to prescription. Forest Ecosystems, 2017, 4, .	3.1	70
194	Reactions to gap emergence: Norway spruce increases growth while European beech features horizontal space occupation – evidence by repeated 3D TLS measurements. Silva Fennica, 2017, 51, .	1.3	14
195	Effects of Climate and the Urban Heat Island Effect on Urban Tree Growth in Houston. Open Journal of Forestry, 2017, 07, 428-445.	0.3	9
196	A review of thinning effects on Scots pine stands: From growth and yield to new challenges under global change. Forest Systems, 2017, 26, eR03S.	0.3	66
197	The Urban Environment Can Modify Drought Stress of Small-Leaved Lime (Tilia cordata Mill.) and Black Locust (Robinia pseudoacacia L.). Forests, 2016, 7, 71.	2.1	59
198	Tree Species and Their Space Requirements in Six Urban Environments Worldwide. Forests, 2016, 7, 111.	2.1	24

#	Article	IF	CITATIONS
199	Variations of nutrient concentrations and contents between summer and autumn within tree compartments of European beech (<i>Fagus sylvatica</i>). Journal of Plant Nutrition and Soil Science, 2016, 179, 746-757.	1.9	4
200	Wood quality in complex forests versus even-aged monocultures: review and perspectives. Wood Science and Technology, 2016, 50, 845-880.	3.2	112
201	Mixing of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) enhances structural heterogeneity, and the effect increases with water availability. Forest Ecology and Management, 2016, 373, 149-166.	3.2	115
202	Does belowground interaction with Fagus sylvatica increase drought susceptibility of photosynthesis and stem growth in Picea abies?. Forest Ecology and Management, 2016, 375, 268-278.	3.2	65
203	Positive biodiversity-productivity relationship predominant in global forests. Science, 2016, 354, .	12.6	864
204	Improved productivity and modified tree morphology of mixed versus pure stands of European beech (Fagus sylvatica) and Douglas-fir (Pseudotsuga menziesii) with increasing precipitation and age. Annals of Forest Science, 2016, 73, 1047-1061.	2.0	65
205	Mixture reduces climate sensitivity of Douglas-fir stem growth. Forest Ecology and Management, 2016, 376, 205-220.	3.2	109
206	Tree diameter growth after root trenching in a mature mixed stand of Norway spruce (Picea abies [L.]) Tj ETQq0 (0 Q rg BT /C 1.9	Vyglock 10 T
207	Characterization of the structure, dynamics, and productivity of mixed-species stands: review and perspectives. European Journal of Forest Research, 2016, 135, 23-49.	2.5	170
208	Prediction of stem volume in complex temperate forest stands using TanDEM-X SAR data. Remote Sensing of Environment, 2016, 174, 197-211.	11.0	44
209	Tree species mixing can increase maximum stand density. Canadian Journal of Forest Research, 2016, 46, 1179-1193.	1.7	113
210	Forest vertical structure characterization using ground inventory data for the estimation of forest aboveground biomass. Canadian Journal of Forest Research, 2016, 46, 25-38.	1.7	6
211	Effect of tree species mixing on the size structure, density, and yield of forest stands. European Journal of Forest Research, 2016, 135, 1-22.	2.5	137
212	Modelling sawn timber volume and strength development at the individual tree level – essential model features by the example of Douglas fir. Silva Fennica, 2016, 50, .	1.3	12
213	Structure and ecosystem services of small-leaved lime (Tilia cordata Mill.) and black locust (Robinia) Tj ETQq1 1 0	.784314 r	gBT /Overloc
214	Analysing the effect of stand density and site conditions on structure and growth of oak species using Nelder trials along an environmental gradient: experimental design, evaluation methods, and results. Forest Ecosystems, 2015, 2, .	3.1	23
215	How Sensitive Are Ecosystem Services in European Forest Landscapes to Silvicultural Treatment?. Forests, 2015, 6, 1666-1695.	2.1	103
	A vortically discretized concerv description for ODCHIDEE (SVN r2200) and the modifications to the		

216A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the
energy, water and carbon fluxes. Geoscientific Model Development, 2015, 8, 2035-2065.3.671

#	Article	IF	CITATIONS
217	Long-term stand dynamics of managed spruce–fir–beech mountain forests in Central Europe: structure, productivity and regeneration success. Forestry, 2015, 88, 407-428.	2.3	49
218	Crown size and growing space requirement of common tree species in urban centres, parks, and forests. Urban Forestry and Urban Greening, 2015, 14, 466-479.	5.3	187
219	Tamm Review: On the strength of evidence when comparing ecosystem functions of mixtures with monocultures. Forest Ecology and Management, 2015, 356, 41-53.	3.2	111
220	Representation of species mixing in forest growth models. A review and perspective. Ecological Modelling, 2015, 313, 276-292.	2.5	149
221	Using semi-global matching point clouds to estimate growing stock at the plot and stand levels: application for a broadleaf-dominated forest in central Europe. Canadian Journal of Forest Research, 2015, 45, 111-123.	1.7	43
222	Ernst Assmann: A German pioneer in forest production ecology and quantitative silviculture. European Journal of Forest Research, 2015, 134, 391-402.	2.5	6
223	Assessing height changes in a highly structured forest using regularly acquired aerial image data. Forestry, 2015, 88, 304-316.	2.3	39
224	Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. European Journal of Forest Research, 2015, 134, 927-947.	2.5	257
225	Possibilities and Limitations of Spatially Explicit Site Index Modelling for Spruce Based on National Forest Inventory Data and Digital Maps of Soil and Climate in Bavaria (SE Germany). Forests, 2014, 5, 2626-2646.	2.1	21
226	Forest stand growth dynamics in Central Europe have accelerated since 1870. Nature Communications, 2014, 5, 4967.	12.8	431
227	Temporal variation of competition and facilitation in mixed species forests in <scp>C</scp> entral <scp>E</scp> urope. Plant Biology, 2014, 16, 166-176.	3.8	132
228	Forest Trees Under Air Pollution as a Factor of Climate Change. Plant Ecophysiology, 2014, , 117-163.	1.5	11
229	Roundwood pre-grading with longitudinal acoustic waves for production of structural boards. European Journal of Wood and Wood Products, 2014, 72, 87-98.	2.9	24
230	Influence of initial plant density on sawn timber properties for Douglas-fir (Pseudotsuga menziesii) Tj ETQq0 0 0	rgBT/Over	·loဌန 10 Tf 50
231	Changes of forest stand dynamics in Europe. Facts from long-term observational plots and their relevance for forest ecology and management. Forest Ecology and Management, 2014, 316, 65-77.	3.2	59
232	TanDEM-X Pol-InSAR Performance for Forest Height Estimation. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 6404-6422.	6.3	224
233	Mixed Norway spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica [L.]) stands under drought: from reaction pattern to mechanism. Trees - Structure and Function, 2014, 28, 1305-1321.	1.9	106
234	Editorial note: Evaluating the effect of plant water availability on inner alpine coniferous trees based on sap flow measurements. European Journal of Forest Research, 2014, 133, 675-675.	2.5	0

#	Article	IF	CITATIONS
	Growth reaction patterns of tree height, diameter, and volume of Douglas-fir (Pseudotsuga menziesii) Tj ETQq1 1		<u> </u>
235	Research, 2014, 133, 1043-1056.	2.5	66
236	Analyzing size-symmetric vs. size-asymmetric and intra- vs. inter-specific competition in beech (Fagus) Tj ETQq0 () 0 ₃ rgBT /C)verlock 10 T
237	Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. Forest Ecology and Management, 2014, 327, 251-264.	3.2	423
238	Predicting Tree Mortality for European Beech in Southern Germany Using Spatially Explicit Competition Indices. Forest Science, 2014, 60, 613-622.	1.0	12
239	Size-structure dynamics of mixed versus pure forest stands. Forest Systems, 2014, 23, 560.	0.3	30
240	Mixed stands of Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.) Karst] can be more productive than monocultures. Evidence from over 100 years of observation of long-term experiments. Forest Systems, 2014, 23, 573.	0.3	70
241	European Mixed Forests: definition and research perspectives. Forest Systems, 2014, 23, 518.	0.3	107
242	EuMIXFOR Introduction: integrating scientific knowledge in sustainable management of mixed forests. Forest Systems, 2014, 23, 515.	0.3	3
243	From ground to above canopy—Bat activity in mature forests is driven by vegetation density and height. Forest Ecology and Management, 2013, 306, 179-184.	3.2	82
244	Structural crown properties of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus) Tj ETQq0 0 0	rgBT /Ovei 1.9	rlock 10 Tf 5(163
211	Function, 2013, 27, 1035-1047.	1.7	100
245	Flux-Based Ozone Risk Assessment for Adult Beech and Spruce Forests. Developments in Environmental Science, 2013, 13, 251-266.	0.5	7
246	Monitoring the formation of structures and patterns during initial development of an artificial catchment. Environmental Monitoring and Assessment, 2013, 185, 5965-5986.	2.7	12
247	Feedbacks between Vegetation, Surface Structures and Hydrology during Initial Development of the Artificial Catchment †Chicken Creek'. Procedia Environmental Sciences, 2013, 19, 86-95.	1.4	5
248	Morphological plasticity of European beech (Fagus sylvatica L.) in pure and mixed-species stands. Forest Ecology and Management, 2013, 295, 97-108.	3.2	133
249	Resistance of European tree species to drought stress in mixed <i>versus</i> pure forests: evidence of stress release by interâ€specific facilitation. Plant Biology, 2013, 15, 483-495.	3.8	455
250	Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. European Journal of Forest Research, 2013, 132, 263-280.	2.5	218
251	Extending a physiological forest growth model by an observation-based tree competition module improves spatial representation of diameter growth. European Journal of Forest Research, 2013, 132, 943-958.	2.5	5
252	Climatic turning point for beech and oak under climate change in Central Europe. Ecosphere, 2013, 4, 1-19.	2.2	63

#	Article	IF	CITATIONS
253	Comparison of Forest Attributes Derived from Two Terrestrial Lidar Systems. Photogrammetric Engineering and Remote Sensing, 2013, 79, 245-257.	0.6	16
254	Species-Specific and Ontogeny-Related Stem Allometry of European Forest Trees: Evidence from Extensive Stem Analyses. Forest Science, 2013, 59, 290-302.	1.0	18
255	Relationships between substrate, surface characteristics, and vegetation in an initial ecosystem. Biogeosciences, 2013, 10, 8283-8303.	3.3	17
256	Modelling the impact of climate change on the productivity and water-use efficiency of a central European beech forest. Climate Research, 2013, 58, 81-95.	1.1	28
257	Change of allometry between coarse root and shoot of Lodgepole pine (<i>Pinus contorta</i> DOUGL.) Tj ETQq1 Journal of Forest Research, 2012, 27, 532-544.	1 0.78431 1.4	26 26
258	Evaluation of a ray-tracing canopy light model based on terrestrial laser scans. Canadian Journal of Remote Sensing, 2012, 38, 619-628.	2.4	22
259	Flux-based ozone risk assessment for adult beech forests. Trees - Structure and Function, 2012, 26, 1713-1721.	1.9	13
260	Coarse root–shoot allometry of <i>Pinus radiata</i> modified by site conditions in the Western Cape province of South Africa. Southern Forests, 2012, 74, 237-246.	0.7	13
261	The Balance Between Resource Sequestration and Retention: A Challenge in Plant Science. Ecological Studies, 2012, , 3-24.	1.2	17
262	Analysis and management of stand dynamics of Vietnamese dipterocarp forests by applying a dynamic growth model. Annals of Forest Science, 2012, 69, 581-601.	2.0	4
263	Evidence of variant intra- and interspecific scaling of tree crown structure and relevance for allometric theory. Oecologia, 2012, 169, 637-649.	2.0	96
264	Aggregative response in bats: prey abundance versus habitat. Oecologia, 2012, 169, 673-684.	2.0	131
265	Size-dependent responses to summer drought in Scots pine, Norway spruce and common oak. Trees - Structure and Function, 2012, 26, 557-569.	1.9	133
266	Climate effects on productivity and resource-use efficiency of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in stands with different spatial mixing patterns. Trees - Structure and Function, 2012, 26, 1343-1360.	1.9	69
267	Case Study "Kranzberger Forst― Growth and Defence in European Beech (Fagus sylvatica L.) and Norway Spruce (Picea abies (L.) Karst.). Ecological Studies, 2012, , 243-271.	1.2	13
268	Allometry of Tree Crown Structure. Relevance for Space Occupation at the Individual Plant Level and for Self-Thinning at the Stand Level. Ecological Studies, 2012, , 287-310.	1.2	15
269	Principles of Growth Partitioning Between Trees in Forest Stands Under Stress. Ecological Studies, 2012, , 311-329.	1.2	9
270	Mechanistic Modelling of Soil–Plant–Atmosphere Systems. Ecological Studies, 2012, , 335-353.	1.2	5

#	Article	IF	CITATIONS
271	Effects of Stress and Defence Allocation on Tree Growth: Simulation Results at the Individual and Stand Level. Ecological Studies, 2012, , 401-432.	1.2	28
272	Predictability of Plant Resource Allocation: New Theory Needed?. Ecological Studies, 2012, , 433-449.	1.2	7
273	Wachstum und Wertleistung der Douglasie in Abhägigkeit von der Standraumgestaltung. Schweizerische Zeitschrift Fur Forstwesen, 2012, 163, 96-104.	0.1	11
274	Ontogeny partly explains the apparent heterogeneity of published biomass equations for Fagus sylvatica in central Europe. Forest Ecology and Management, 2011, 261, 1188-1202.	3.2	71
275	The dependency of the size-growth relationship of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in forest stands on long-term site conditions, drought events, and ozone stress. Trees - Structure and Function, 2011, 25, 355-369.	1.9	71
276	Combining tree-ring analyses on stems and coarse roots to study the growth dynamics of forest trees: a case study on Norway spruce (Picea abies [L.] H. Karst). Trees - Structure and Function, 2011, 25, 859-872.	1.9	23
277	Beitrag des terrestrischen Laserscannings zur Erfassung der Struktur von Baumkronen Application of terrestrial laser scanning for measuring tree crown structures. Schweizerische Zeitschrift Fur Forstwesen, 2011, 162, 186-194.	0.1	6
278	Simulation tools for decision support to adaptive forest management in Europe. Forest Systems, 2011, 3, 86.	0.3	15
279	Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Annals of Forest Science, 2010, 67, 712-712.	2.0	268
280	Using terrestrial laser scanner for estimating leaf areas of individual trees in a conifer forest. Trees - Structure and Function, 2010, 24, 609-619.	1.9	46
281	Analysing the long-term effects of artificial pruning of wild cherry by computer tomography. Trees - Structure and Function, 2010, 24, 797-808.	1.9	15
282	Tree and stand growth of mature Norway spruce and European beech under long-term ozone fumigation. Environmental Pollution, 2010, 158, 1061-1070.	7.5	104
283	Advances in understanding ozone impact on forest trees: Messages from novel phytotron and free-air fumigation studies. Environmental Pollution, 2010, 158, 1990-2006.	7.5	97
284	Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica) – Resume from the free-air fumigation study at Kranzberg Forest. Environmental Pollution, 2010, 158, 2527-2532.	7.5	140
285	Combating the effects of climatic change on forests by mitigation strategies. Carbon Balance and Management, 2010, 5, 8.	3.2	33
286	Productivity and carbon dynamics in managed Central European forests depending on site conditions and thinning regimes. Forestry, 2010, 83, 483-496.	2.3	25
287	Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in central Europe. Canadian Journal of Forest Research, 2010, 40, 370-384.	1.7	163
288	Re-Evaluation of Allometry: State-of-the-Art and Perspective Regarding Individuals and Stands of Woody Plants. Progress in Botany Fortschritte Der Botanik, 2010, , 339-369.	0.3	29

#	Article	IF	CITATIONS
289	Forest Dynamics, Growth, and Yield. , 2009, , 1-39.		200
290	Evaluation of the forest growth simulator SILVA on dominant trees in mature mixed Silver fir–Norway spruce stands in South-West Germany. Ecological Modelling, 2009, 220, 1670-1680.	2.5	27
291	Combined application of computer tomography and light microscopy for analysis of conductive xylem area in coarse roots of European beech and Norway spruce. European Journal of Forest Research, 2009, 128, 145-153.	2.5	23
292	Modelling above and below ground carbon dynamics in a mixed beech and spruce stand influenced by climate. European Journal of Forest Research, 2009, 128, 171-182.	2.5	52
293	Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. European Journal of Forest Research, 2009, 128, 183-204.	2.5	251
294	Intra-annual growth response of adult Norway spruce (PiceaÂabies [L.] KARST.) and European beech (FagusÂsylvatica L.) to an experimentally enhanced, free-air ozone regime. European Journal of Forest Research, 2009, 128, 135-144.	2.5	14
295	Forest Dynamics, Growth and Yield. , 2009, , .		430
296	Standard Analysis of Long-Term Experimental Plots. , 2009, , 181-222.		2
297	Changes of soil chemistry, stand nutrition, and stand growth at two Scots pine (Pinus sylvestris L.) sites in Central Europe during 40Âyears after fertilization, liming, and lupine introduction. European Journal of Forest Research, 2008, 127, 43-61.	2.5	65
298	Linking stand-level self-thinning allometry to the tree-level leaf biomass allometry. Trees - Structure and Function, 2008, 22, 611-622.	1.9	24
299	Analysis of long-term dynamics of crowns of sessile oaks at the stand level by means of spatial statistics. Forest Ecology and Management, 2008, 255, 2007-2019.	3.2	48
300	Models for Forest Ecosystem Management: A European Perspective. Annals of Botany, 2007, 101, 1065-1087.	2.9	214
301	Long-term effects of logging intensity on structures, birds, saproxylic beetles and wood-inhabiting fungi in stands of European beech Fagus sylvatica L Forest Ecology and Management, 2007, 242, 297-305.	3.2	87
302	Biometrical Models as Tools for Forest Ecosystem Management. , 2006, , .		1
303	Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica). Trees - Structure and Function, 2006, 20, 539-548.	1.9	127
304	Species-specific allometric scaling under self-thinning: evidence from long-term plots in forest stands. Oecologia, 2006, 146, 572-583.	2.0	126
305	Applications of Tree Growth Modelling in Decision Support for Sustainable Forest Management. , 2006, , 131-149.		7

#	Article	IF	CITATIONS
307	The Individual-Tree-Based Stand Simulator SILVA. , 2006, , 78-84.		8
308	Crown Allometry and Growing Space Efficiency of Norway Spruce (Picea abies [L.] Karst.) and European Beech (Fagus sylvatica L.) in Pure and Mixed Stands. Plant Biology, 2005, 7, 628-639.	3.8	116
309	Growth of Adult Norway Spruce (Picea abies [L.] Karst.) and European Beech (Fagus sylvatica L.) Under Free-Air Ozone Fumigation. Plant Biology, 2005, 7, 611-618.	3.8	54
310	The Plant's Capacity in Regulating Resource Demand. Plant Biology, 2005, 7, 560-580.	3.8	93
311	Resource Allocation in Plants - The Balance between Resource Sequestration and Retention. Plant Biology, 2005, 7, 557-559.	3.8	10
312	Stand density and growth of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus) Tj ETQq0 0 0 rgl 124, 193-205.	3T /Overlo 2.5	ck 10 Tf 50 5 126
313	Effects of environmental changes on the vitality of forest stands. European Journal of Forest Research, 2005, 124, 349-362.	2.5	29
314	Concept and feasibility study for the integrated evaluation of environmental monitoring data in forests. European Journal of Forest Research, 2005, 124, 251-260.	2.5	10
315	Response patterns in adult forest trees to chronic ozone stress: identification of variations and consistencies. Environmental Pollution, 2005, 136, 365-369.	7.5	55
316	Diversity and Productivity in Forests: Evidence from Long-Term Experimental Plots. , 2005, , 41-64.		115
317	Characterising the effects of high ammonia emission on the growth of Norway spruce. Plant and Soil, 2004, 262, 337-349.	3.7	5
318	The timing of bud burst and its effect on tree growth. International Journal of Biometeorology, 2004, 48, 109-118.	3.0	103
319	Oberirdische holzige Biomasse in Kiefern-/Buchen- und Eichen-/Buchen-Mischbest�nden. European Journal of Forest Research, 2003, 122, 287-301.	0.3	10
320	The elasticity of growth in pure and mixed stands of Norway spruce (Picea abies [L.] Karst.) and common beech (Fagus sylvatica L.). Journal of Forest Science, 2003, 49, 491-501.	1.1	26
321	Simulation and sustainability of cork oak stands , 2003, , 259-266.		3
322	The single tree-based stand simulator SILVA: construction, application and evaluation. Forest Ecology and Management, 2002, 162, 3-21.	3.2	422
323	A Unified Law of Spatial Allometry for Woody and Herbaceous Plants. Plant Biology, 2002, 4, 159-166.	3.8	33
324	Growth and Parasite Defence in Plants; the Balance between Resource Sequestration and Retention: In Lieu of a Guest Editorial. Plant Biology, 2002, 4, 133-136.	3.8	46

#	Article	IF	CITATIONS
325	A Model for Individual Tree Development Based on Physiological Processes. Plant Biology, 2002, 4, 167-180.	3.8	86
326	Der Eichen-Durchforstungsversuch Waldleiningen 88. Auswirkungen unterschiedlicher EingriffsstÄ r ken nach 65 Jahren Beobachtung. European Journal of Forest Research, 2001, 120, 90-113.	0.3	8
327	Neue Methoden zur Analyse und Charakterisierung von Bestandesstrukturen. European Journal of Forest Research, 2000, 119, 62-78.	0.3	14
328	Methoden zur Visualisierung des Waldwachstums. European Journal of Forest Research, 2000, 119, 100-113.	0.3	6
329	Zur finanziellen Analyse der Waldpflegeentscheidung bei Berücksichtigung der Biodiversitä, dargestellt am Beispiel der Fichte in Sachsen. European Journal of Forest Research, 2000, 119, 226-244.	0.3	7
330	Modelling the conversion from even-aged to uneven-aged stands of Norway spruce (Picea abies L.) Tj ETQq0 0 0	rgBT/Ove	rlo <u>ç</u> g 10 Tf 50؛
331	Waldwachstum im Wandel. European Journal of Forest Research, 1999, 118, 228-250.	0.3	33
332	Die Fichten-Buchen-Mischbestäde des Sonderforschungsbereiches "Wachstum oder Parasitenabwehr?" im Kranzberger Forst. European Journal of Forest Research, 1998, 117, 241-257.	0.3	93
333	Improving the simulation of stand structure in a forest gap model. Forest Ecology and Management, 1997, 95, 183-195.	3.2	63
334	Analysis and modeling of spatial stand structures. Methodological considerations based on mixed beech-larch stands in Lower Saxony. Forest Ecology and Management, 1997, 97, 237-253.	3.2	146
335	Bestandesstruktur und Leistung der Douglasien-Düngungsversuche Amberg 257, Waldsassen 256 und Burglengenfeld 244 in der Oberpfalz. European Journal of Forest Research, 1997, 116, 79-95.	0.3	0
336	Growth Trends of Forests in Southern Germany. , 1996, , 107-131.		34
337	Perspektiven einer modellorientierten Waldwachstumsforschung. European Journal of Forest Research, 1995, 114, 188-209.	0.3	14
338	Zunehmende Unstimmigkeit zwischen erwartetem und wirklichem Wachstum unserer WaldbestÃ ¤ de. European Journal of Forest Research, 1992, 111, 366-382.	0.3	20
339	Wuchsmodelle für Mischbestäde als Herausforderung für die Waldwachstumsforschung. European Journal of Forest Research, 1992, 111, 87-105.	0.3	5
340	Applying a common allometric equation to convert forest height from Pol-InSAR data to forest biomass. , 0, , .		28
341	Effect of variable retention cutting on the relationship between growth of coarse roots and stem of <i>Picea mariana</i> . Scandinavian Journal of Forest Research, 0, , 1-12.	1.4	3
342	Structure, growth and growing space efficiency of Pinus radiata (D. Don) trees as affected by their social position. Southern Forests, 0, , 1-12.	0.7	1

#	Article	IF	CITATIONS
343	A New Method to Reconstruct Recent Tree and Stand Attributes of Temporary Research Plots: New Opportunity to Analyse Mixed Forest Stands. , 0, , .		4